
	 1	

Interim Report

Final Year Project 2017-2018, Department of

Computer Science, The University of Hong Kong

Topic: Blockchain research and implementation (fyp17064)

Name: NG King Pui

UID: 3035178820

Date of Submission: 21/1/2018

	 2	

Abstract

Blockchain is a hot topic in the technology world. Bitcoin is one of the typical examples of

applications of blockchain. The principle behind blockchain is to chain up blocks of data and

let everyone have a copy of the chain, a.k.a. distributed ledger system. The blocks of data are

chained up with hash, which is mathematically-proven secure. Once a single block changes a

bit, the whole chain looks different. When a new block is going to be appended, everyone has

to validate the chain by comparing with their own copy. Unauthorized data entries are then

revoked by the crowd. Also, the data are transparent to everyone as they all have a copy.

With these two features, blockchain breaks the gap of trust, which allows blockchain to play

an important role in many different areas, especially monetary transaction. Besides Bitcoin,

smart contracts are another application of blockchain. Smart contracts will execute

automatically once the condition set is met, preventing breach of contracts. However, there

are still loopholes in smart contracts. It may result in millions of monetary losses. In this

project, the security holes of smart contracts on Ethereum will be studied and a tool of

checking smart contracts and detecting such holes is expected to be a final deliverable.

	 3	

Table of Content

1.Background 4

2.Methodology 6

 2.1 Ethereum 6

 2.2 Solidity 8

 2.3 Geth 8

 2.4 Web3.js 9

 2.5 Summary of checking tool 11

3. Current Status 12

 3.1 Research on security loopholes 12

 3.1.1 Wrong typecast 12

 3.1.2 Immutable bugs 12

 3.1.3 Unpredictable states 13

 3.2 Development of the checking tool 14

 3.2.1 Launching a private chain 14

 3.2.2 Launching a prototype of web tool 14

4. Problems Encountered 16

 4.1 Insufficient security loopholes 16

 4.2 Computing resources of the tool 16

5. Upcoming Milestones 17

6. Limitation 18

 6.1 Uncovered security loopholes 18

 6.2 Cross platform checking 18

7. Conclusion 18

8. Reference 19

9. Table of Figures 19

	 4	

1. Background

Blockchain is the backbone of Bitcoin, which is now gaining more and more attention in the

world. The principle behind blockchain is to chain up blocks of data and let everyone have a

copy of the chain, a.k.a. distributed ledger system. The blocks of data are chained up with

hash, which is mathematically-proven secure and used in many other security measures.

Every block will have its own unique hash value, which is generated based on its own data

and the hash value of the last block. That is the reason why it is called blockchain, from

chaining up blocks of data with hash. Therefore, if someone try to manipulate one block of

data, e.g. change his own account balance, to fake others, his own copy of the chain will be

different with others in terms of has value. Others can then tell his cop is not valid hence

revoking that block. With the power of the crowd, it is difficult to create fake record in

blockchain. Also as everyone has a copy, every transaction record is transparent to everyone.

It then prevents under-the-table deals. With these 2 features, blockchain breaks the gap of

trust. It can then be utilized in many areas, especially monetary transaction.

Smart contract is one of the typical examples of application of blockchain. Built on top of

blockchain, smart contracts share the feature of security and transparency. Besides, smart

contracts allow users to run their own script to make the contracts self-enforcing and self-

executing. With the scripts, the application of smart contracts can be much wider across

different industries. Apart from that, smart contracts reduce the cost and increase the

efficiency significantly when compared with traditional contracts. When creating a traditional

contract, legal consultancy is usually required to fit the interests of both sides and the

regulations. This process will induce huge cost, in terms of both money and time. But with

smart contracts, the consultancy cost can be eliminated. Additionally, based on the self-

executing feature of smart contracts, the contract can become effective once the condition set

is met.

For example, there is a contract between A and B, which is about A has to pay B $1 million

to buy a house. With the traditional approach, A and B have to seek for relevant legal

services in order to make the transaction. This induces a huge cost to both A and B. However,

with smart contract, the script can check whether A has enough balance to pay B; and B

really has the ownership of the house. Once both conditions above are met, the contract will

	 5	

execute automatically. Also this contract is appended in a blockchain, which can be served as

a proof of the fact that A owns the house after this transaction.

With such features, smart contract is expected to be more commonly used in the future.

However, smart contract still has some flaws that may hinder its application. In this project,

the focus will be on its security loopholes as security is the first concern of every digital

transaction.

	 6	

2. Methodology

In this section, the platform chosen Ethereum and the language of smart contracts Solidity are

discussed. Moreover, the framework Geth and Web3.js, which are the major modules of

developing the checking tool, are discussed and their roles in the tool are explained.

2.1 Ethereum
Ethereum is the chosen platform of development in this project. Ethereum is open-source

blockchain platform. It is the most prominent platform for smart contracts (Buterin, 2013). It

allows users to create their own scripts written in Solidity, a contract-oriented programming

language for writing smart contracts. It is designed to create smart contracts on Ethereum.

However, Solidity is also considered as one of the reasons why the implementation of smart

contracts particularly prone to errors in Ethereum (Atezi, Bartoletti, Cimoli, 2017). In order

to investigate these errors caused by Solidity, this is chosen as the language to use.

Ethereum is a blockchain platform. To create incentive for others to compute the result

together, a token Ether is created to pay for those who have computed. For example, to

validate a block of data about A buying a house from B, the transaction need to be validated

by the crowd. To pay for the computing power, both A and B have to pay in Ether, or namely

gas, for their effort. Currently one Ether token equals around US$300.

	 7	

Figure 1: Architecture of Ethereum

Figure 1 shows the architecture of Ethereum. The header consists of many data which help

identifying blocks. The PrevHash will help when chasing back the chain of data. This part

makes Ethereum adopt the structure of blockchain, which make them share the same features

mentioned in Background section. The state is the data stored in the block. These data can be

balance or other data as shown in Fig.1.

	 8	

2.2 Solidity
Solidity is a programming language designed for writing smart contracts. Fig. 2 shows how

does a simple wallet object is created with Solidity. Owner contains the unique address of the

owner of the wallet. It initializes the owner as who creates this object. Also the Pay function

takes in the amount to send and the address of recipient. Before the owner actually pays, the

function will first check does the owner call this function and if the owner has enough

balance to pay that amount. If these conditions are all met, the function will deduct the

amount from the owner and call recipient.send(amount) to increase the balance of recipient. It

is only a simple example. More functions can be added if required.

Figure 2: Simple demo code of a wallet in Solidity (Atezi, Bartoletti, Cimoli, 2017)

2.3 Geth
Besides researching on the potential attacks on Ethereum smart contracts, another

key deliverable of this project is a tool checking smart contracts whether the identified

security loopholes exist in those contracts. In order to check those contracts, a private

blockchain is needed. With a private blockchain, a isolated testing environment is created so

that no real monetary transaction is involved. Additionally, all the factors in a private testing

blockchain are under my control. In a public blockchain, due to the nature of decentralized

system, it is impossible to control the behavior of every single user. Therefore, some extreme

cases cannot be tested. On the other hand, virtual users can be created to simulate different

scenario, including extreme cases. Due to these two reasons, a private blockchain is a desired

testing environment of Ethereum smart contracts.

	 9	

In order to create a private blockchain to simulate attacks on Ethereum smart contracts, Geth,

or Go-Ethereum, is used to create such a isolated environment. Geth is the official Ethereum

implementation written in a programming language Go. It is widely used to communicate

with the Ethereum network. Its functionalities include managing different accounts, mining

cryptocurrency Ether and executing smart contracts. In this project, the functionalities to be

used are mainly managing different dummy accounts and executing smart contracts under

testing.

In order to create a private chain without communicating with the main public Ethereum

chain, all the nodes in the private chain should not be connected to the public chain and be

discovered by other users. A network ID different from the main network is needed to make

sure that the nodes out of our testing environment are not connected to our private chain. The

network ID of the main chain is 1. Therefore, if the network ID of the private chain is not 1,

the nodes in our private chain cannot connect to the main chain where many real monetary

transactions are made.

Moreover, the maximum number of peer can be set to zero to further confirm that no other

peer is connected to the private network. The corresponding command is:
--maxpeers 0

 0 here is the parameter indicating the desired maximum number of peers. As we look for an

isolated testing environment, 0 is the desired number of peers.

2.4 Web3.js
With Geth, an isolated testing environment is created. The next step is to deploy the smart

contracts. Web3.js is the library to use. Web3.js is JavaScript API (application programming

interface) which can compile smart contracts written Solidity and execute them in the private

chain.

	 10	

Figure 3: A screenshot of web-based application in Web3.js by mobilefish.com

Additionally, as it is a module in Node.js, another framework building web application, this

tool can be launched as a web application. It makes the tool more user-friendly as no

command input is needed to use tool. The entry barrier of using this tool is lowered by a

simple web interface. The above figure is a screenshot of a web-application of Ethereum. It is

easier to use compared with traditional command line tool.

To compile a Solidity smart contract, the command to use is:
web3.eth.compile.solidity(sourceString [, callback])

sourceString is the contract itself in string form. The callback is the function called after the

contract is successfully compiled. After that an instance of contract object is created to

execute the contract. The contract can then be executed and be tested under different potential

attacks.

	 11	

2.5 Summary of checking tool

Figure 4: Architecture and logic flow of the checking tool

To conclude, the architecture of the checking tool is shown as above. The smart contracts in

Solidity are the input of the system. They will be compiled with Web3.js and be executed on

an isolated private chain created with Geth. The identified security loopholes are then tested

under that environment. The tool is launched as a web-based application powered by Web3.js

and Node.js to make the tool more user-friendly.

	 12	

3. Current Status

3.1 Research on security loopholes
At the current moment, the major work done is research on the topic, including the principle

of blockchain and smart contracts, the skills to write smart contracts on Ethereum with

Solidity and the existing and identified security loopholes of smart contracts. The principle of

blockchain is mentioned in Background section and introduction of Ethereum is included in

Methodology section. Therefore, this section will focus on the findings on the identified

security loopholes of smart contracts.

In “A Survey on Attacks on Ethereum smart contracts, it provides a list of known

vulnerability of Ethereum Smart Contracts.

3.1.1 Wrong Typecast

Figure 5; A sample code of wrong typecast

First, wrong typecast to variables is one of the vulnerabilities identified. Solidity compiler

dons not check whether a function takes in a correct type of variable. A sample code is shown

in Figure 5. The function sweepCommission takes in a parameter with typr uint, which stands

for unsigned integer, like 20. If parameters with other types, like string or decimal number,

error should be prompted to notify the developer. However in Solidity, no error will be

returned and the developer cannot notice such an error as usually the other language compile

will check the type of variables. So the developer may think that the contract is correctly

executed. It could bring chaining effect if the number of parties involved is huge. The whole

system may fall.

3.1.2 Immutable bugs
Next, the bugs are immutable once it is on the blockchain. Based on the mechanism of

blockchain, it is nearly impossible to change a single block of data once it is appended. That

	 13	

means once a bug is on the blockchain, it is difficult to remove it. Once the bugs or

vulnerability stack up, the system may fall.

3.1.3 Unpredictable States

Figure 6: An example of unpredictable state scenario

Finally, unpredictable state is another problem to be considered. As mentioned in

Methodology section, state is the data contained in a block, e.g. balance. However,

sometimes the smart contracts cannot be executed immediately. An example scenario is

shown in above figure. A has 20 dollars as balance. B sends 10 dollars to A and A pays C 30

dollars. These transactions will be valid if A first collects money from B followed by paying

C. However, it is not guaranteed that A collects money first. The time taken for checking

processes of two different transactions and network speed of different users are some

potential factors affecting the order of executing those contracts.

The above are some of the vulnerabilities of smart contracts. There are more in “A survey on

attacks on Ethereum smart contracts” not studied and remained not identified. The research

will mainly focus on the holes identified in “A survey on attacks on Ethereum smart

contracts”. If some other holes are identified during the research in later stage, they will be

included in this project as well.

	 14	

3.2 Developing the checking tool
Besides the research on attacks on Ethereum smart contracts, the research on how to develop

a checking is necessary. The working principle of the checking tool is discussed in the

Methodology part. Therefore in this section, only the current progress of the development is

reported.

At this stage, the research of how to develop the tool is done. The research result can refer to

Geth and Web3.js in Methodology.

Besides the research, the development phase has begun. A private chain is set up in my own

Wprivate chain. I can now perform simulated transactions under my control. However some

parts, like the designing scenarios of different attacks These parts will be further discussed in

the Upcoming Milestone part.

3.2.1 Launching a private chain
As mentioned above, the testing environment will be a private chain. At this stage, a private

chain is set up in my own machine using Geth. After testing, simple Ethereum smart

contracts can be executed in that chain. Additionally, as a private chain in a completely

closed environment is used, all the user activities, like transactions, are all under control.

3.2.2 Launching a prototype of the web-based tool
Besides setting up the chain, a web-based tool is required to provide the best user experience.

Figure 7: A screenshot of prototype of the web tool

	 15	

The above is a screen shot of the prototype of the web tool. It allows the users to upload the

smart contract file with extension .sol. The smart contract is then passed to the private chain

and executed. Then the result, in this case the new balance, is shown. At this stage, the

interface is not designed and implemented. Moreover only the basic functions, like uploading

and running a smart contract, are implemented in this prototype. The other functions, like

simulating different attacks, are to be implemented in later stage. These works remaining will

be further discussed in Upcoming Milestones section.

	 16	

4. Problems Encountered
There are several problems encountered in this project. This section will discuss those

problems in both the research and development.

4.1 Insufficient security loopholes
Smart contract is still quite new to the society. The reliable research in this field is still not

enough. The main reference I take in this project is “A Survey of Attacks on Ethereum Smart

contracts”. However, there are some loopholes not covered. If some reports on the Internet

are also considered, more research will be needed to verify the identified loophole. Due to

time constraint of this project, the research will be stopped by Dec 2017. It is a pity that some

unverified and potential security holes are not covered in this project.

4.2 Computing Resources of the tool
The checking tool requires an isolated environment for testing. However, the computing

power and storage required to run a private chain is not negligible. Moreover, if a private

chain is created for every test, the storage will be soon full. Therefore, a way to solve this

problem is needed for making the tool scalable for future use. A possible approach is to clean

up the chain when the test ends. But this is to be tested.

4.3 Deploying the tool to the cloud
To make the tool available to public, the ideal approach is to deploy the tool to cloud.

However, as mentioned above in 4.2, the storage and computing power are major concerns.

Since it is currently in development phase, the development and testing will be done in local

machines to reduce development costs like running a machine on cloud. However, the tool

can be migrated to cloud when conducting pressure test on the tool.

	 17	

5. Upcoming Milestones
At this stage, the basic research of the topic is done. Afterwards, the project will be in

development phase, which is designing, developing and testing the tool of checking a smart

contract.

The design phase will take about half a month. The design of mechanism is done when the

research is completed as the way to check a smart contract based on the security holes found

is research is known. Therefore this phase will mainly focus on designing the interface of the

tool and merging the check result with the interface.

After the design phase, the development work will be the next phase. It is also the most

important part in the project. Based on the findings in the research phase, the tool will take in

different smart contracts and put them into different attacks scenarios. In this phase the focus

will be on designing and developing different attacks scenarios. As the implementation of

these scenarios are currently under progress, they are not included in the prototype of the web

tool.

Finally, the tool will be under testing. Sample dummy smart contracts written by others and

me will be processed by the tool. Based on the test result, the bugs can be identified and fixed

later. The process will be repeated until the tool is bug-free. Also some other users will be

invited to use the tool and asked about the experience and check result of the tool. These

comments can improve the tool. Also the other deliverables like final report and poster

should be ready by the end of testing phase.

The schedule of expected upcoming milestones is:

Time Project Status

Feb – Mar 2018 Developing the tool and different attacks scenarios

Mar - Apr 2018 Testing and fixing bugs of the tool, Writing the final report

Figure 8: the schedule of expected upcoming milestones

	 18	

6. Limitation
During the research of the project, there are some challenges and limitations of the project.

6.1 Uncovered security loopholes
First, there may be other security loopholes of smart contracts that are not included in this

tool. Although the essay “A Survey Attacks on Ethereum Smart Contracts” provides various

identified attacks on smart contracts, it is foreseeable that there will be new attacks in the

future. As a checking tool of smart contracts, it should identify as many security holes as

possible to prevent false-positive situation. Therefore in the future this tool needs regular

update to deal with new security loopholes. However, due to time constraint, the

development work will take up most of the time. So not much research on new attacks can be

done.

6.2 Cross platform checking
Next, this tool can only detect security holes within the same blockchain. On Ethereum, all

the transaction is done with the currency Ether, a cryptocurrency produced in Ethereum

computation. However, to make smart contracts practical, the smart contracts must get data

from other sources to validate a contract. Like in the example of A buying a house from B,

the contract must see if B has the ownership of the house from other source like the

government if the data required is not on the same blockchain. So API (application

programming interface) must be used for data exchange. However, communication of

different APIs or the API itself may create security holes which cannot be checked with this

tool.

7. Conclusion
With the rise of blockchain and the convenience brought by smart contracts, the coverage of

smart contracts is expected to grow rapidly. That is the reason why security loopholes of

smart contracts are concerned. In this project, the loopholes are studied and a tool checking

the vulnerability of smart contracts from those security holes will be developed as the final

deliverable.

	 19	

8. Reference
1. Atzei, N, Bartoletti, M, and Cimol, T.i: A Survey of Attacks on Ethereum Smart

contracts, Universita degli Studi di Cagliari, Cagliari, Italy (2017)

2. Buterin, V.: Ethereum: a next generation smart contract and decentralized application

platform. https://github.com/ethereum/wiki/wiki/White-Paper (2013)

3. Creating a Private Chain/Testnet, https://souptacular.gitbooks.io/ethereum-tutorials-

and-tips-by-hudson/content/private-chain.html (2017)

4. Geth – Ethereum Wiki, https://github.com/ethereum/go-ethereum/wiki/geth (2017)

5. Javascript API – Ethereum Wiki, https://github.com/ethereum/wiki/wiki/JavaScript-

API#web3ethcontract (2017)

6. Mobilefish.com, Demonstration Ethereum Dapp,

https://www.mobilefish.com/download/ethereum/DemoDapp.html (2017)

9. Table of Figures
Figure 1: Architecture of Ethereum 7

Figure 2: Simple demo code of a wallet in Solidity (Atezi, Bartoletti, Cimoli, 2017) 8

Figure 3: A screenshot of web-based application in Web3.js by mobilefish.com 10

Figure 4: Architecture and logic flow of the checking tool 11

Figure 5; A sample code of wrong typecast 12

Figure 6: An example of unpredictable state scenario 13

Figure 7: A screenshot of prototype of the web tool 14

Figure 8: the schedule of expected upcoming milestones 16

