The last two questions are extra questions for those who want more practice, and we might not have time to cover them during the tutorial session.

1. Define $f(n)=1^{2}+2^{2}+3^{2}+\ldots+n^{2}$. Use mathematical induction to prove that $f(n)=\frac{n *(n+1) *(2 n+1)}{6}$ for all positive integers.
2. Given a finite set A of n points on the plane (2-dimensional space) such that for any two points x, y in A, the line containing x and y must contain another point z in A. Prove that all points in A are on the same line. ${ }^{1}$
(a) Is the following proof (induction on the number of points) correct? If not, where is the bug?

- Base case: for point set of size 3 the statement is true.
- Inductive step: assume this statement is true for point set of size $k \geq 3$. Consider the case when we have a point set A of size $k+1$. We argue as follows.
i. Pick A^{\prime} of k points from the given point set A. Let x be the other point in A but not in A^{\prime}.
ii. By induction hypothesis, points in A^{\prime} are on the same line.
iii. Pick any y in A^{\prime}, the line going through x, y contains another point z in A.
iv. Thus, x, y and z are on the same line.
v. So x and all points in A^{\prime} are on the same line.
(b) Can you give a proof by contradiction?

3. Prove that $m^{2}=n^{2}$ if and only if $m=n$ or $m=-n$.
4. Let p denotes the statement " $\sqrt{2}+\sqrt{3}$ is an irrational number", q denotes the statement " $\sqrt{6}$ is an irrational number".
(a) Prove that q is true. (That is, $\sqrt{6}$ is irrational.)
(b) Prove $\neg p \rightarrow \neg q$ is true. (That is, if $\sqrt{2}+\sqrt{3}$ is rational, then $\sqrt{6}$ is rational.)
(c) Is $\sqrt{2}+\sqrt{3}$ rational or irrational? Prove it using logical arguments and the results from (4a) and (4b).
[^0]
[^0]: ${ }^{1}$ This is equivalent to Sylvester-Gallai theorem, which is named after James Joseph Sylvester, who posed it as a problem in 1893, and Tibor Gallai, who published one of the first proofs of this theorem in 1944.

