COMP2121A: Discrete Mathematics

The last question is for those who want more practice, and we might not have time to cover it during the tutorial session.

1. Let A be the set of digits in the base- 10 expression of the rational number $\frac{41}{333}$, let B be the same for $\frac{44}{333}$. Prove that $\mathrm{A}=\mathrm{B}$.
2. Find the cardinality (number of elements) of the set $S=\left\{p / q: p, q \in N^{+}, p, q, \leq 3\right\}$.
3. Generalize De Morgan's laws for n sets and prove the laws by induction.
4. We define the following relations on \mathbf{Z}. Determine whether they are reflexive, symmetric or transitive.
(a) $R=\{(a, b): a+b$ is even $\}$
(b) $R=\{(a, b): a+b$ is odd $\}$
(c) $R=\{(a, b): a<b\}$
(d) $R=\{(a, b):|a-b|<2\}$
5. Order the following functions in order of their growth rate. If $f(x)$ is $O(g(x))$, but $g(x)$ is not $O(f(x))$, then put $f(x)$ above $g(x)$. If they are each big- O of each other, then place them on the same level.

$$
\begin{array}{llllllll}
x^{3} & 3^{x} & x! & x \log x & 2^{x \log x} & \log x^{2} & \log \log x & 2^{x^{2}}
\end{array} \log ^{2} x
$$

