COMP2121A: Discrete Mathematics

(In this tutorial, you can use axiom of choice, explicitly or implicitly.)

1. Define three functions from \mathbf{Z} to $\mathbf{Z}: f(x)=x^{2}, g(x)=-x+1$ and $h(x)=\left\lceil\frac{x}{2}\right\rceil$. Determine whether they are injection, surjection, or bijection. (For any number y, $\lceil y\rceil$ denotes the smallest integer which is at least y. For example, $\lceil 0.5\rceil=1,\lceil 2\rceil=2$, $\lceil-1.5\rceil=-1$.)
2. Prove that every infinite set has a countably infinite subset.
3. Prove that if there is a surjection from B to A, then there is an injection from A to B.
4. Prove that if there is an injection from A to B and an injection from B to A, then there is a bijection from A to B.
5. (Just for fun, yon don't need to prove it.) The following statements are equivalent to axiom of choice (under some assumptions ${ }^{1}$ in set theory).

- For any infinite set A , there is a bijection between A and $A \times A$.
- Connected (infinite) graph has a spanning tree.

[^0]
[^0]: ${ }^{1}$ To be specific, the assumptions are axioms 1 to 8 in Zermelo-Fraenkel set theory, for more information see https://en.wikipedia.org/wiki/Zermelo-Fraenkel_set_theory.

