Question 1: Random Inputs and Functions (15 points)

Let $n \geq 2$ be an even number. For $1 \leq i \leq n, x_{i}$ is an independent input taking values in $\{0,1\}$ uniformly at random, i.e., with probability $\frac{1}{2}, x_{i}$ equals 1 .
A random function $F:\{0,1\}^{n} \rightarrow\{0,1\}$ is picked from the following choices, each with probability $\frac{1}{4}$.
(1) $\operatorname{AND}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ equals 1 iff all x_{i} 's are 1 .
(2) $\mathrm{OR}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ equals 1 iff at least one x_{i} equals 1 .
(3) $\operatorname{XOR}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ equals 1 iff an odd number of the x_{i} 's equal 1 .
(4) $\operatorname{MAJ}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ equals 1 iff more than half of the x_{i} 's equal 1 . (If exactly half of the x_{i} 's are 1 , the output is still 0 .)
The random function F is applied to the random inputs to produce a random output $Y=F\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.

1. (10 pt) For each of the 4 function choices, compute the conditional probability that the output is 1, given that particular choice for F. In other words, compute $\operatorname{Pr}[Y=$ $1 \mid F=\mathrm{AND}], \operatorname{Pr}[Y=1 \mid F=\mathrm{OR}], \operatorname{Pr}[Y=1 \mid F=\mathrm{XOR}]$ and $\operatorname{Pr}[Y=1 \mid F=\mathrm{MAJ}]$. Express your answer in terms of n.
2. (5 pt) For the special case $n=4$, compute the conditional probability that the function F is MAJ given that the output Y is 1 .

Question 2: Hunters and Rabbits (10 points)

Suppose there are m different hunters and n different rabbits. Each hunter selects a rabbit uniformly at random independently as a target. Suppose all the hunters shoot at their chosen targets at the same time and every hunter hits his target.
(a) (2 pt) Consider a particular Rabbit 1. What is the probability that Rabbit 1 survives?
(b) (2 pt) Suppose $m=7$ and $n=5$. What is the expected number of surviving rabbits? Compute the answer up to 6 decimal places.
(c) (6 pt) Suppose $m=7$ and $n=5$. What is the probability that no rabbit survives? Compute the answer up to 5 decimal places.

Question 3: Moments of Binomial Distribution

Let $B=\operatorname{Bin}(n, p)$, i.e., flipping n biased coins, each having heads with probability p. Compute $E\left[B^{2}\right]$.
(For general $k \geq 2$, how to compute $E\left[B^{k}\right]$?)

