Review Propositional logic

- 1. proposition: a statement that either true or false, but not both
- 2. logical operators: \neg (negation), \land (and), \lor (or), \oplus (exclusive or), \rightarrow (implication), \leftrightarrow (biconditional)
- 3. truth table: used to determine the truth value of propositions

Predicates and Quantifiers

- 1. predicates: a statement that may be true or false depending on the values of its variables
- 2. domain: collection of values a variable would take
- 3. quantifiers: \forall (universal, for all), \exists (existential, there exists)

Questions

- 1. Express these system specifications using the propositions p "The message is scanned for viruses" and q "The message was sent from an unknown system" together with logical connectives (including negations).
 - (a) "The message is scanned for viruses whenever the message was sent from an unknown system."
 - (b) "The message was sent from an unknown system but it was not scanned for viruses."
 - (c) "It is necessary to scan the message for viruses whenever it was sent from an unknown system."
 - (d) "When a message is not sent from an unknown system, it is not scanned for viruses."

2. Show that $\neg p \rightarrow (q \rightarrow r)$ and $q \rightarrow (p \lor r)$ are logically equivalent.

- 3. Let P(x) be "x can speak English." and Q(x) be "x knows C++.", where the universe of discourse is the set of all students in our class. Use quantifiers to express the following statements.
 - (a) There is a student in our class who can speak English but does not know C++.
 - (b) Every student in our class speaks English.
 - (c) Every one that knows C++ in our class can speak English.

4. The following four cards sit on a table:

Each card has a digit on one side and a letter on the other side. Which cards should you turn around to test the following statement: "whenever there is a vowel on one side of a card, there is an even digit on the other side"? (In English, vowels are letters A, E, I, O, U.)

5. Given two statements p and q, we say that p is a stronger statement than q, if $p \to q$. Prove that if p_1 is stronger than p_2 , then $(p_2 \to q)$ is stronger than $(p_1 \to q)$.