COMP2121A: Discrete Mathematics

Problem Solving Session 2

Review. Proof methods, $p \rightarrow q \Leftrightarrow \neg p \vee q$

1. direct proof
2. proof by contradiction, assume $p \wedge \neg q$, try to find a contradiction
3. proof by contrapositive, prove $\neg q \rightarrow \neg p$
4. mathematical induction, show that $P(x)$ is true for all $x \in \bigcup_{i \geq 0} S_{i}$
(a) base case, prove $P(x)$ is true for all $x \in S_{0}$
(b) inductive step, given $P(x)$ is true for all $x \in \bigcup_{0 \leq i \leq k-1} S_{i}$, prove $P(x)$ is true for all $x \in S_{k}$

Questions.

1. Given a real number x and an positive integer n, show an efficient method to evaluate x^{n} with only multiplications and additions.
2. Define $f(n)=1^{3}+2^{3}+3^{3}+\ldots+n^{3}$. Use mathematical induction to prove that $f(n)=\left[\frac{n \cdot(n+1)}{2}\right]^{2}$ for all positive integers.
3. Prove the following statement. There exist irrational numbers x and y such that x^{y} is rational. (Hint: Consider $\sqrt{2}^{\sqrt{2}}$. Is it rational or not?)
4. Given a finite set A of n points on the plane (2-dimensional space) such that for any two points x, y in A, the line containing x and y must contain another point z in A. Prove that all points in A are on the same line. ${ }^{1}$
(a) Is the following proof (induction on the number of points) correct? If not, where is the bug?

- Base case: for point set of size 3 the statement is true.
- Inductive step: assume this statement is true for point set of size $k \geq 3$. Consider the case when we have a point set A of size $k+1$. We argue as follows.
i. Pick A^{\prime} of k points from the given point set A. Let x be the other point in A but not in A^{\prime}.
ii. By induction hypothesis, points in A^{\prime} are on the same line.
iii. Pick any y in A^{\prime}, the line going through x, y contains another point z in A.
iv. Thus, x, y and z are on the same line.
v. So x and all points in A^{\prime} are on the same line.
(b) Can you give a proof by contradiction?

[^0]
[^0]: ${ }^{1}$ This is equivalent to Sylvester-Gallai theorem, which is named after James Joseph Sylvester, who posed it as a problem in 1893, and Tibor Gallai, who published one of the first proofs of this theorem in 1944.

