1. Balls and Bins Suppose each of n balls are thrown independently into n bins uniformly at random. Let X be the number of empty bins. Compute $E[X]$.
2. Suppose $n \geq 2$ and m are positive integers. There are m identical coins to be distributed among n persons.
We describe a procedure called Unfair to divide the coins. The first person comes along and an integer x is picked uniformly at random from $\{0,1,2, \ldots, m\}$. Then, the first person takes x coins and goes home. In general, when the i th person comes along (where $i<n$), and there are r coins left, an integer y is picked uniformly at random from $\{0,1,2, \ldots, r\}$ and the i th person goes home with y coins. The nth (last) person just takes whatever that is left.
Define X_{i} to be the number of coins the i th person takes.
(a) Compute $E\left[X_{1}\right]$, the expected number of coins the first person receives.
(b) Suppose $n \geq 3$. Given that the first person receives x coins, what is the expected number of coins the second person receives? (Compute $E\left[X_{2} \mid X_{1}=x\right]$.)
(c) Assume $n \geq 3$. Compute $E\left[X_{2}\right]$.
(d) For general $i \leq n$, compute $E\left[X_{i}\right]$.

We next consider another procedure called Fair. First, compute the set S of all integer solutions to the equation $x_{1}+x_{2}+x_{3}+\ldots+x_{n}=m$, where each $x_{i} \geq 0$. A solution $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is picked uniformly at random from S, and for each $1 \leq i \leq n$, the i th person receives x_{i} coins.
(a) What is the size of S ?
(b) Suppose X_{1} is the number of coins received by the first person. What is the probability that $X_{1}=k$, where $0 \leq k \leq m$? Express your answer in terms of n, m and k.
(c) Prove that for all positive integers $n \geq 2$ and $m \geq 1$,

$$
\sum_{k=0}^{m} k \cdot\binom{m+n-k-2}{n-2}=\frac{m}{n} \cdot\binom{m+n-1}{m} .
$$

3. Let $B=\operatorname{Bin}(n, p)$, i.e., flipping n biased coins, each having heads with probability p. Compute $E\left[B^{2}\right]$.
(For general $k \geq 2$, how to compute $E\left[B^{k}\right]$?)
