1. Balls and Bins Suppose each of n balls are thrown independently into n bins uniformly at random. Let X be the number of empty bins. Compute E[X].

2. Suppose $n \ge 2$ and m are positive integers. There are m identical coins to be distributed among n persons.

We describe a procedure called UNFAIR to divide the coins. The first person comes along and an integer x is picked uniformly at random from $\{0, 1, 2, ..., m\}$. Then, the first person takes x coins and goes home. In general, when the *i*th person comes along (where i < n), and there are r coins left, an integer y is picked uniformly at random from $\{0, 1, 2, ..., r\}$ and the *i*th person goes home with y coins. The nth (last) person just takes whatever that is left.

Define X_i to be the number of coins the *i*th person takes.

(a) Compute $E[X_1]$, the expected number of coins the first person receives.

(b) Suppose $n \ge 3$. Given that the first person receives x coins, what is the expected number of coins the second person receives? (Compute $E[X_2|X_1 = x]$.)

(c) Assume $n \ge 3$. Compute $E[X_2]$.

(d) For general $i \leq n$, compute $E[X_i]$.

We next consider another procedure called FAIR. First, compute the set S of all integer solutions to the equation $x_1 + x_2 + x_3 + \ldots + x_n = m$, where each $x_i \ge 0$. A solution (x_1, x_2, \ldots, x_n) is picked uniformly at random from S, and for each $1 \le i \le n$, the *i*th person receives x_i coins.

(a) What is the size of S?

(b) Suppose X_1 is the number of coins received by the first person. What is the probability that $X_1 = k$, where $0 \le k \le m$? Express your answer in terms of n, m and k.

(c) Prove that for all positive integers $n \ge 2$ and $m \ge 1$,

$$\sum_{k=0}^{m} k \cdot \binom{m+n-k-2}{n-2} = \frac{m}{n} \cdot \binom{m+n-1}{m}.$$

3. Let B = Bin(n, p), i.e., flipping n biased coins, each having heads with probability p. Compute $E[B^2]$.

(For general $k \ge 2$, how to compute $E[B^k]$?)