1. Assume that a digital lock opens anytime a correct sequence of 3 digits $(0, \ldots, 9)$ is entered. The brute force approach is to try out all possibilities, i.e., $000,001,002, \ldots, 999$ and $10^{3} \times 3$ digits have to be entered. However, note that if 135286 is entered, effectively the following 3 -digit sequences have been tried: 135, 352, 528 and 286 . Does there exist a method to construct a sequence of $10^{3}+4$ digits so that the sequence contains all possible 3 -digit sequences as its subsequences. Prove or give arguments to support your claim. (Hint: Transform this problem into a graph problem, and then define the vertices and edges of this graph.)
2. We draw some circles on the plane (say, n in number). These divide the plane into a number of regions. Figure 0.1 shows such a set of circles, and also an "alternating" coloring of the regions with two colors. Now our question is: can we always color these regions this way?
You may follow the following steps to prove that the graph G representing regions is bipartite (hence can be two-colored).
(a) Encode each region by 0,1 strings such that the code of adjacent regions differ by exactly one bit.
(b) Argue that any cycle on the graph G is of even length.

Figure 0.1: Two-coloring the regions formed by a set of circles.
3. If a planar graph has all degrees even, prove that the faces can be colored with two colors in such a way that any two faces with a common edge on their boundary get different colors.

