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ABSTRACT 

Motivation: With the rapid development of next-generation se-

quencing techniques, metagenomics, also known as environmental 

genomics, has emerged as an exciting research area which enables 

us to analyze the microbial environment in which we live. An impor-

tant step for metagenomic data analysis is the identification and 

taxonomic characterization of DNA fragments (reads or contigs) 

resulting from sequencing a sample of mixed species. This step is 

usually referred to as “binning”. Binning algorithms that are based on 

sequence similarity and sequence composition markers rely heavily 

on the reference genomes of known microorganisms or phylogenetic 

markers. Due to the limited availability of reference genomes and 

the bias and low availability of markers, these algorithms may not be 

applicable in all cases. Unsupervised binning algorithms which can 

handle fragments from unknown species provide an alternative ap-

proach. However, existing unsupervised binning algorithms only 

work on datasets either with balanced species abundance ratios or 

rather different abundance ratios, but not both. 

Results: In this paper, we present MetaCluster 3.0, an integrated 

binning method based on the unsupervised top-down separation 

and bottom-up merging strategy, which can bin metagenomic frag-

ments of species with very balanced abundance ratios (say 1:1) to 

very different abundance ratios (e.g. 1:24) with consistently higher 

accuracy than existing methods.  

Availability: MetaCluster 3.0 can be downloaded at 

http://i.cs.hku.hk/~alse/MetaCluster/ 

1 INTRODUCTION  

Traditional microbial genomic studies usually focus on one single 

individual bacterial strain due to experimental limitations. In fact, 

all microorganisms in a habitat have various functional effects on 

one another and their hosts. For example, the diversity of microbes 

in humans is shown to be associated with common diseases such as 

Inflammatory Bowel Disease (IBD) (Qin et al., 2010) and gastroin-

testinal disturbance (Khachatryan et al., 2008). Genomic analysis 

on the collective genomes of all microorganisms from an environ-

mental sample (also known as metagenomics, environmental ge-

nomics, or community genomics) becomes essential. One major 

difficulty of metagenomics lies in the fact that most bacteria (up to 

99%) found in environmental samples are unknown and cannot be 
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cultivated and isolated under laboratory conditions (Amann et al., 

1990). With high-throughput sequencing technology, one possible 

solution is to directly sequence the DNA fragments of multiple 

species obtained from the mixed environmental DNA sample 

(Venter et al., 2004). Some well-known metagenomics projects, 

including the Acid Mine Drainage Biofilm (AMD) project which 

analyzes dozens of species (Tyson et al., 2004) and the recent Hu-

man Gut Microbiome (HGM) project which involves thousands of 

species, (Jones et al., 2008) study fragments obtained from this 

sequencing approach. 

DNA fragments of a metagenomics project are usually from 

multiple genomes and most of the genome sequences are unknown. 

An important step in metagenomic analysis is to group DNA frag-

ments from similar species together (referred to as binning) (Mav-

romatis et al., 2007) to obtain the microbe distribution of the sam-

ple and identify species (including unknown species) within the 

sample. Depending on different research needs, the binning proc-

ess could be performed on different taxonomic levels from King-

dom (the highest level) to Species (the lowest level). 

Traditional binning methods can be roughly classified as similar-

ity-based and composition-based. Similarity-based methods (Hu-

son, et al., 2007) align each DNA fragment to known reference 

genomes. Based on the alignment results (e.g. BLAST hits or se-

lected phylogenetic specific marker genes (Altschul, et al., 1997)), 

each fragment is assigned to the taxonomic class of the similar 

reference genomes. Similarity-based methods are usually limited 

by the availability of known microorganism genomes given that 

less than 1% of microorganisms have been cultured and sequenced. 

On the other hand, composition-based methods group DNA frag-

ments in a supervised or semi-supervised manner using generic 

features such as genome structure or composition. Structural fea-

tures, such as composition features of reference genomes or taxo-

nomic marker regions (e.g. 16S rRNA (Cole et al., 2005), recA and 

rpoB are commonly accepted fingerprint genes), are extracted and 

used to construct classifiers (Chan et al., 2008; Chatterji et al., 

2008) for determining DNA fragments from different species or 

constraints for semi-supervised clustering. These composition-

based methods usually suffer from the low availability and reliabil-

ity of taxonomic markers. For example, studies on the enhanced 

biological phosphorus removing (EBPR) sludge (Garcia Martin et 

al., 2006), Sargasso Sea (Venter et al., 2004) and the Minnesota 

soil samples (Tringe et al., 2005) indicate that only 0.17%, 0.06% 

and 0.017% of the DNA fragments respectively are known to carry 

16S rRNA markers, and the figures are still less than 1% even if 
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more markers such as recA and rpoB are included. Moreover, the 

reliability of taxonomic markers has also been challenged (Case et 

al., 2007) as some species may share multiple markers with other 

species or multiple kinds of 16S rRNA molecules exist in a single 

bacterium due to the high mutation and gene exchange ratio of 

microbes, which might lead to incorrect classifications. 

A more promising direction is to use unsupervised binning algo-

rithms based on the occurrence frequencies of l-mers (short DNA 

substrings of length l) of the DNA fragments (Karlin and Burge, 

1995; Karlin and Ladunga, 1994). In these approaches, each frag-

ment can be regarded as a vector containing the occurrence fre-

quencies of all possible l-mers in the fragment. The rationale be-

hind these approaches is based on the observation that the l-mer 

distributions of the fragments in the same genome are more similar 

than those l-mer distributions of two unrelated species (Chor et al., 

2009; Karlin et al., 1997; Yang et al., 2010). Based on this feature, 

many algorithms (e.g. TETRA (Teeling et al., 2004), MetaCluster 

(Yang et al., 2009), MetaCluster 2.0 (Yang et al., 2010) and Like-

lyBin (Kislyuk et al., 2009) have applied different unsupervised 

clustering methods on fragments based on the l-mer distributions 

with great success when the abundance ratios of the species in the 

sample are almost the same. These algorithms tend to cluster frag-

ments into clusters with similar size, and the binning performance 

of these algorithms will significantly be degraded when the abun-

dance ratios of species are very different, e.g. 1:8 or 1:10. To 

tackle this problem, another unsupervised clustering method called 

AbundanceBin (Wu and Ye, 2010) has been introduced recently 

which models the distribution of fragments from each species by 

different Poisson distributions. Fragments from species with high 

abundance ratios are usually sampled more while fragments from 

species with low abundance ratios are usually sampled less. Thus, 

fragments from species with different abundance ratios can be 

separated by their sampling rates. However, when the species have 

similar abundance ratios, say 1:1 or 1:2, the sampling rates of 

fragments from different species are similar and AbundanceBin 

fails to separate the fragments from these species. AbundanceBin 

also considers the case when the number of species k is unknown 

and determines k automatically. The estimation method seems not 

very effective and cannot predict the correct value when k > 3 in 

our experiments. None of the above algorithms can handle datasets 

from balanced species abundance ratios to very different species 

abundance ratios. In real situations, the abundance ratios are usu-

ally unknown and it is desirable to have an algorithm handles data-

sets with arbitrary abundance ratios. 

AbundanceBin takes advantage of the differences in abundance 

ratio of the species to separate the fragments and it is not obvious 

how to extend AbundanceBin to handle datasets with very bal-

anced abundance ratio. On the other hand, approaches that handle 

datasets with balanced abundance ratio usually try to cluster frag-

ments into k equal-sized clusters by assuming the number of spe-

cies in the dataset is k. Thus, species with low abundance ratio are 

forced to group wrongly with other species.  

In this paper, we present MetaCluster 3.0, an integrated binning 

algorithm based on two phases: top-down clustering (Phase 1) and 

bottom-up merging (Phase 2). In Phase 1, we first separate frag-

ments into small groups (clusters) with similar sizes and try to 

guarantee that the majority of the fragments belong to the same 

species. After Phase 1, it is possible that fragments from the same 

species are grouped into different clusters, so in Phase 2, we try to 

combine these clusters together. Figure 1 outlines the two phases 

of MetaCluster 3.0. This 2-phase strategy relies on the following 

key observations. First, the difference (we capture this difference 

using the Spearman distance measure) between two l-mer distribu-

tions of fragments from the same species follows a normal distri-

butions. The same is true for the two l-mer distributions of frag-

ments from species of different families. This observation is sup-

ported by an empirical study (see Section 2.2). Second, the differ-

ences in the two normal distributions allow us to derive a probabil-

istic model to determine how many clusters (k’) we should use in 

order to guarantee that most of the fragments in the same cluster 

belong to the same species in Phase 1 and when to merge the clus-

ters to make sure that there will not be too many fragments from 

other species being merged together.  

Based on our probabilistic model, if the abundance ratios of the 

species are more or less the same, the value of k’ will be similar to 

the number of species. If the species have very different abundance 

ratios, k’ tends to be large and the clusters will be small so that 

fragments from minority species could be assigned to separate 

clusters without mixing with fragments from other species. Al-

though fragments of majority species may then be put in different 

clusters, Phase 2 will try to merge them back. Thus, the issue of 

varying species abundance ratio is handled.  

To summarize, MetaCluster 3.0 can (1) determine automatically 

the number of different species in the sample, which is required as 

an input parameter for most unsupervised algorithms (Kislyuk et 

al., 2009; Teeling et al., 2004; Yang et al., 2009; Yang et al., 2010), 

and (2) classify accurately the metagenomic fragments with bal-

anced species abundance ratios, which cannot be handled by 

AbundanceBin (Wu and Ye, 2010), to very different species abun-

Top-down clustering: 

1.Calculating the K’ value 

2.K-median clustering 

3.Special group identification 
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Figure 1. The pipeline of MetaCluster 3.0 is divided into two major phases: Top-down clustering and Bottom-up merging. 
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dance ratio, which cannot be handled by other unsupervised algo-

rithms (Kislyuk et al., 2009; Teeling et al., 2004; Yang et al., 2009; 

Yang et al., 2010) and combinations of these situations, say 1:3:3:9, 

which cannot be handled by any unsupervised algorithms. 

2 METHODS 

In this section, we first define the l-mer feature vector of a frag-

ment that captures the l-mer frequency distribution of the fragment. 

Then, we describe the Spearman Footrule distance (Diaconis and 

Graham, 1977) to represent the difference (distance) between two 

l-mer feature vectors or their corresponding fragments. Besides 

Spearman Footrule distance, we have also tried different similarity 

measures such as Kendall’s Tau (Kendall, 1938) and those men-

tioned in (Wu and Ye, 2010; Yang et al., 2009). Spearman 

Footrule distance seems to be better in terms of performance in our 

clustering and computational complexity. We remark that there 

may also be other measures which are appropriate to solve the 

problem. Next, we will show the result of an empirical study which 

confirms our key observations. Lastly, we describe the details of 

top-down clustering (Phase 1) and bottom-up merging (Phase 2) 

together with our probabilistic model which is used to determine 

the number of clusters to be used in Phase 1 and when to merge 

two clusters in Phase 2. 

2.1 l-mer frequency and distance definition 

The DNA composition features of each DNA fragment are repre-

sented by the l-mer frequencies of the DNA fragment. As there are 

4 different DNA nucleotides, there are at most 4l kinds of l-mers in 

a DNA sequence. If a sliding window of width l is slid along each 

DNA fragment of length n and the frequency of every l-mer, say fw, 

w ∈ {A,C,G,T}l, is recorded, the total number of l-mers in a DNA 

fragment would be ∑fw = n – l + 1. For example, a DNA fragment 

of length 500 nt has 497 4-mers. The DNA feature vector is de-

fined as [f1, f2, …, fN(l)], where N(l) is the number of different l-

mers. As each DNA fragment can be obtained from either strand of 

the DNA genome, the frequency of one l-mer and its reverse com-

plement l-mer can be combined together and this process will re-

duce the size of vector by half, i.e. N(l) = 4l/2, if l is odd; N(l) = (4l 

+ 4 l/2)/2, if l is even. 

As mentioned in (Chor et al., 2009; Zhou  et al., 2008), setting l 

= 4 is the best (among l = 2 to 7) when barcoding a genome with 

DNA fragment size from 1,000 nt to 10,000 nt. Each DNA frag-

ment will be represented by a feature vector with 136 components 

and the input metagenomic sequencing dataset can be transformed 

to an n × 136 matrix with n rows representing n DNA fragments. 

Recall that our binning method is based on the observation (Chor 

et al., 2009; Teeling et al., 2004) that the l-mer distributions of 

those DNA substrings (fragments) from the same genome are simi-

lar. The similarity of 4-mer distribution is not limited to the coding 

region but the whole genome sequence (Chor et al., 2009; Zhou et 

al., 2008). We compute the difference of two l-mer distributions 

from two fragments by measuring the Spearman Footrule distance 

between their corresponding l-mer feature vectors.  

Spearman Footrule distance (henceforth referred as Spearman 

distance) is defined as follows. Consider two DNA fragments A 

and B with the following 4-mer feature vectors A: (a1, a2, …, ai, …, 

aj, …, aN(l)) and B: (b1, b2, …, bi, …, bj, …, bN(l)). The Spearman 

distance is based on an intuitive definition for comparing two or-

dered lists. Let rA(ai) be the rank of ai in the sorted list of ai’s and 

rA(bi) be the rank of bi in the sorted list of bi’s. Then the Spearman 

distance is defined as dists(A,B) = ∑| rA(ai) – rB(bi)|. The smaller 

the value of the metric, the more similar the vectors are. For vec-

tors with size k, the distance value can range between 0 and k(k+1). 

Compared with other distance metrics that rely on the exact value 

of each entry in the feature vectors, Spearman distance, which 

relies on the rank of the entries, is less sensitive to those entries 

with unexpectedly large values. Moreover, the Spearman distance 

gives a more global view of the distance of two feature vectors 

with respected to all the entries. 

2.2 Spearman distance distribution 

To confirm our observation that both the Spearman distance distri-

butions of the differences between two l-mer distributions of frag-

ments (pairwise fragment distances) from the same species and 

those from species of different families can be approximated by a 

normal distribution, we conduct an empirical study for 10,000 

genomes. For each genome, we randomly select 1 million pairs of 

fragments of 1,000 nt long, and compute the Spearman distances of 

all pairs. This distance distribution is referred as intra-distance 

distribution (see Figure 2). For fragments from different families, 

we select 10,000 pairs of genomes in which the two genomes of 

each pair belong to different families but are of the same order. For 

each pair of genomes, we select one fragment of length 1,000 nt 

from each genome and compute the Spearman distance of these 

two fragments. We repeat this randomly for 1 million pairs of frag-

ments. This distance distribution is referred as the inter-distance 

distribution (see Figure 2). From our empirical study, we can see 

that these two distributions can be approximated by normal 

distributions and there is a significant difference between these two 

distributions. In fact, the distribution can be modeled by a mixed 

Gaussian distribution because of differences in inter and intra dis-

tances among different genomes. However, as we assume that 

there is no information of what kinds of species are in the mixture, 

we used normal distribution for approximation only. In the follow-

ing, we describe the details of the two phases (top-down clustering 

and bottom-up merging) and how we make use of the difference in 

the intra-distance and inter-distance distributions to guarantee the 

accuracy of these two phases in MetaCluster 3.0.  

2.3 Top-down clustering 

Figure 2. Probability density functions of the Spearman distance 

between two fragments from the same species (intra distance) and 

between two fragments from the same order but different families 

(inter distance). Approx intra distance and approx inter distance is 

the normal distribution approximation of the two distances. 
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In this step, we apply the simple k-median algorithm1(Jain and 

Dubes, 1981) to cluster the fragments into k’ clusters of similar 

sizes. k-median algorithm repeatedly assigns feature vector to the 

closest cluster and select a feature vector in each cluster as the 

center with the following objective function  
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where feature vector ci is the center of cluster Ci and dists(A,ci) is 

the spearman distance between feature vectors A and ci. 

In MetaCluster 3.0, the value of k’ is determined automatically 

based on a probabilistic model by restricting the expected number 

of false positive fragments (from other species) in a cluster to be 

limited by some predefined threshold t × size of the cluster, t ∈ 

(0,1]. The details of how to determine k’ are given below. Since 

the k-median algorithm is a greedy algorithm, it is repeated several 

dozen times with different initial clustering centers. The one that 

gives the minimum objective function value will be selected. 

Now, we show how to determine k’. By dividing n fragments 

into k’ clusters, the average cluster size is n/k’. In each cluster, 

there are two sets of fragments, fragments from the same species as 

the center and fragments from species different from the center. 

The distance between each fragment and the center from the same 

species can be approximated by ),( 2
intraintra σµN  while the distance 

between each fragment and the center from different species can be 

approximated by ),( 2
interinter σµN  (Figure 2). Given a cluster Ci 

with the total distance between the center ci and each feature vector 

in the cluster ∑A∈Ci dists(A, ci) equals a particular value di. If s out 

of n/k’ fragments (including the center) in the cluster are sampled 

from the same species with average distance (intra-species distance) 

between the center and the rest s – 1 fragments be x, the probability 

that there are n/k’ – s false positives equals the probability that the 

average distance (inter-species distance) between the center and 

the n/k’ – s fragments from different species be (di – (s – 

1)x)/(n/k’ – s), which follows the Gaussian distribution 

))'//(,( 2

interinter
sknN −σµ . By considering all possible values of s 

and x, the expected number of false positives in a cluster can be 

calculated as follows 

∑ ∫ ∫
=

∞ −−−

−− 





'/

2
0

)'//())1((

0
)'//(,)1/(,

)()( 2

interinter

2

intraintra

kn

s

sknxsd

skns
dxdyyfxfs

i

σµσµ
 

where fµ,σ2(x) = 2)2/()( 2
22

πσ
σµ−− xe  is the probability density 

function of a normal distribution with mean µ and variance σ2.  

Since the expected number of false positives decreases with the 

value of k’, MetaCluster 3.0 will increase the value of k’ until the 

expected number of false positives in a cluster ≤ tn/k’. In the ex-

periments, we set t = 5% such that the expected accuracy is over 

95% for the first phase. 

Based on the above calculation, we expect that k’ can be much 

larger than the number of species if the species have very different 

abundance ratios such that fragments from species with high abun-

dance ratios will be divided into more clusters while fragments 

from species with low abundance ratios will be grouped into a 

single cluster or fewer clusters. 

  
1 We use k-median clustering algorithm as it is easy to compute. Further 

investigation on the effectiveness of different clustering algorithms should 

be conducted. 

As for the same genome, the l-mer distribution of some special 

genome region (such as insertion and exogenous transferred re-

gions) can be very different from general genome regions. These 

data points could be considered outliers and should be removed. In 

MetaCluster 3.0, those data points with center distance larger than 

µ + 2σ should be removed as outliers, where µ and σ are the aver-

age distance and standard deviation between a data point in the 

cluster and the center respectively. In some cases, the number of 

outlier DNA fragments from the majority species could be very 

large and might have special biological meaning. So these frag-

ments will be grouped together as some special clusters which will 

be excluded from the merging phase, but reported specifically for 

the attention of biologists. 

2.4 Bottom-up merging of the clusters 

After dividing the DNA fragments into k’ clusters, a bottom-up 

merging phase is introduced to merge the clusters from the same 

species into one cluster based on the inter-cluster similarity, i.e. 

inter-cluster distance. The inter-cluster distance of cluster C1 and 

cluster C2 is taken to be the average of all distances between pairs 

of DNA fragments A in C1 and B in C2. 
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When the number of species k in the sample is known, Meta-

Cluster 3.0 merges the pair of clusters with the minimum inter-

cluster distance greedily until there are k large clusters. In practical 

situations, the number of species k is usually unknown and Meta-

Cluster 3.0 should determine when to stop merging so that clusters 

that contain fragments from different species will not be merged 

into a cluster. Based on the observation that the Spearman distance 

between two fragments from the same species is usually smaller 

than the Spearman distance between two fragments from different 

species, MetaCluster 3.0 merges two clusters C1 and C2 with aver-

age intra-cluster distance d1 and d2 respectively if and only if the 

inter-cluster distance dist(C1, C2) is similar to d1 and d2, i.e. α · 

dist(C1, C2) ≤ average(d1, d2) for some threshold α ∈ (0,1]. The 

value of threshold α can be determined by minimizing the expected 

false negative and false positive fragments. Assume all fragments 

in C1(C2) are sampled from the same species, the intra-cluster dis-

tance can be modeled by the intra-species distance distribution. 

The probability that MetaCluster 3.0 does not merge two clusters 

incorrectly (false negative) can be calculated as follow: 

P(false negative) 

dxCCxCCdistPxddP∫
∞

>==
0

212121 )species same from,|/),(()),(average( α  

∫ ∫
∞ ∞

=
0 /

,, )()( 2
intraintra

2
intraintra

dxdyyfxf
x α

σµσµ
    (1) 

Similarly, the probability that MetaCluster 3.0 merges two clus-

ters incorrectly (false positive) can be calculated. 

P(false positive) = ∫ ∫
∞

0

/

0
,, )()( 2

interinter
2
intraintra

dxdyyfxf
x α

σµσµ
 (2) 

For µintra = 3550, σintra = 820, µinter = 5676 and σinter = 1278 esti-

mated from bacteria genome, setting the threshold α = 0.79 can 

minimize the expected false negative and false positive (1) + (2) 

fragments. This threshold is similar to the optimal threshold α = 

0.83 found in the simulated data. Unlike all other unsupervised 
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approaches which do not provide any taxonomic annotation for the 

clusters, MetaCluster 3.0 can label (annotate) the clusters with 

taxonomic information by calculating the average Spearman dis-

tance between each cluster and the 4-mer feature vectors of the 

known genome. Although many genomes are still unknown, it will 

provide an approximated annotation at high taxonomic ranks such 

as Family or Order, which helps the biologists to determine follow-

up experiments for further investigation. 

The time complexity of MetaCluster3.0 is O(n2) where n is the 

number of fragments. MetaCluster 3.0 does not use a lot of mem-

ory. Detailed information about the actual running time and the 

amount of memory used will be given in the next section. 

3 RESULTS 

In this section, we analyze the performance of the binning algo-

rithm, MetaCluster 3.0, based on the simulated metagenomic data-

sets. We compare the performance of MetaCluster 3.0 with Abun-

danceBin (Wu and Ye, 2010) and our previous version MetaClus-

ter 2.0 (Yang et al., 2009). We have not compared other unsuper-

vised binning algorithms because  MetaCluster 2.0 outperforms 

these algorithms in similar experimental setting (Yang et al., 2009). 

We use the default parameters for AbundanceBin and MetaCluster 

2.0. We have conducted three sets of experiments. (1) We fix the 

number of species to be 2 and vary the abundance ratio from the 

balanced situation 1:1 to the unbalanced situation of 1:24. We 

assume that the number of species in the dataset is known. The 

performance of our new version MetaCluster is consistently more 

accurate for all datasets with different abundance ratios. (2) We 

also compare the performance of MetaCluster 3.0 with Abun-

danceBin based on datasets with more species with different abun-

dance ratios. In this set of experiments, we also assume that the 

number of species is known. The results show that MetaCluster 3.0 

outperforms AbundanceBin. In particular, the accuracy of Meta-

Cluster 3.0 is 3 times better than that of AbundanceBin when the 

species abundance ratio is balanced. (3) Lastly, we demonstrate 

that MetaCluster 3.0 works better than AbundanceBin if the num-

ber of species in the dataset is unknown. In all the experiments, we 

use the parameters t = 5% and α = 0.8 for MetaCluster 3.0. We 

have varied the values of these parameters and the results are simi-

lar. 

3.1 The datasets  

A total of 120 pairs (240 genomes) of bacteria are randomly se-

lected and their complete reference genomes are downloaded from 

the NCBI reference genomes database: ftp.ncbi.nih.gov/genomes/ 

to generate 1080 test datasets. These 120 pairs of genomes are 

equally divided into 3 major testing categories according to differ-

ent taxonomic differentia levels. (1) Family: DNA fragments from 

the same Order but different Families, (2) Order: DNA fragments 

from the same Class but different Orders, and (3) >= Class: DNA 

fragments from different Classes. For each pair of bacteria ge-

nomes, 9 synthetic metagenomic datasets are generated with se-

quencing fragments sampled from these two genomes of different 

relative abundance ratios, as 1:1, 1:2, 1:4, 1:6, 1:8, 1:10, 1:14, 1:18 

and 1:24. The lengths of these DNA fragments is 1,000 nt and the 

sequencing error rate is 1% which is the sequencing error rate of 

major next generation sequencing platform, i.e. Roche 454, Illu-

mina Solexa and Applied Biosystems SOLiD. This dataset is used 

to estimate the performance of MetaCluster 3.0 under different 

species similarity. Another set of 40 multi-species test datasets 

containing 3 and 4 genomes are also generated similarly. The de-

tails of these datasets and the binning performance will be dis-

cussed in the following. 

For each dataset, MetaCluster 2.0, MetaCluster 3.0 and Abun-

danceBin were used to cluster the DNA fragments. Each cluster 

was assigned to the species with the largest number of fragments in 

the cluster. The binning accuracy, following other approaches (Wu 

and Ye, 2010; Yang et al., 2009; Yang et al., 2010), is defined as 

the total number of true positive fragments divided by the total 

number of fragments in the clusters. The performance of the algo-

rithms is measured by the average accuracy among all datasets. 

Since our approach is unsupervised, no information about the spe-

cies is needed to be given to MetaCluster, while most existing 

binning algorithms require the number of species as input parame-

ter. However, in order to have a fair evaluation and comparison, 

the exact number of species in the dataset was given to the binning 

algorithms including MetaCluster 3.0 for the experimental results 

described in Sections 3.2 and 3.3. The performance of MetaCluster 

3.0 on determining the number of species k in the sample will be 

shown in Section 3.4, whereas in these experiments, the value of k 

is not given to the tools. 

3.2 Experiments on different abundance ratio 

For all the unsupervised binning methods, relative abundance ratio 

of species is a major factor affecting the performance of binning 

algorithms. We first use the typical datasets with two species for 

evaluation. We compare the performance of MetaCluster 3.0 with 

AbundanceBin and MetaCluster 2.0 using abundance ratio of 1:1, 

1:2, 1:4, 1:6, 1:8, 1:10, 1:14, 1:18 and 1:24, where the minority 

genome’s DNA fragments are about 50% to only 4% of the total 

B A 

Figure 3. Comparison of accuracy among MetaCluster 3.0, MetaCluster 2.0 and AbundanceBin. (A) Overall performance of all data-

sets. (B) Performance for Class, Order and Family datasets. 
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content. The performances of these three methods are shown in 

Figure 3A. The performance of MetaCluster 2.0 significantly dete-

riorates when the abundance ratio is larger than 1:8. On the other 

hand, the performance of AbundanceBin is very good when abun-

dance ratio is larger than 1:10, but not acceptable when the abun-

dance ratio is less than 1:8. In contrast with these two methods, the 

binning accuracy of MetaCluster 3.0 is consistently high for com-

plex species abundance ratio from exactly equal situation, say 1:1, 

to the extremely unbalance situation, say 1:24. 

We also compare the performance of these three methods based 

on three different taxonomic levels described in Section 3.1, i.e., (1) 

Family, (2) Order, and (3) Class. Figure 3B shows the binning 

accuracy of MetaCluster 3.0, MetaCluster 2.0 and AbunanceBin 

based on these three testing categories. MetaCluster 3.0 performs 

consistently well (over 90% accuracy) even the taxonomic level is 

as low as Family. 

3.3 Experiments on multi-species test datasets 

Increasing the number of species in the datasets will significantly 

increase the difficulty for binning algorithms. With more species, 

the species abundance distribution becomes more complicated. The 

most common situation is when the abundance ratio between the 

majority species and minority species is very large with other spe-

cies having more or less the same abundance ratios. We generate 2 

categories of multi-species test datasets. One category contains 20 

3-species combinations, where for each combination, we generate 

one dataset of balanced abundance ratio say, 1:1:1 and one dataset 

of abundance ratio is 1:3:9. The other category contains 20 4-

species combinations. For each combination, we generate one 

dataset of balanced abundance ratio say, 1:1:1:1 and one dataset of 

abundance ratio is 1:3:3:9. These latter unbalanced datasets could 

be considered as the simplified simulated model for practical 

multi-species cases with arbitrary abundance ratios. 

The binning performances of MetaCluster 3.0 and Abundance-

Bin are shown in Table 1. AbundanceBin performs much better for 

the case when the species have quite different abundance ratios, 

but the accuracy drops substantially when the species have the 

same abundance ratios. This result matches our observation and 

indicates that the AbundanceBin relies heavily on the very unbal-

anced abundance ratio among species to do the clustering. On the 

other hand, the performance of MetaCluster 3.0 is quite consistent 

in both cases although there is a drop in the accuracy for the unbal-

anced case. It seems that MetaCluster 3.0 may be more suitable for 

practical applications. 

3.4 Unknown number of species 

We compare the performance of MetaCluster 3.0 and Abundance-

Bin when the numbers of species in the samples are unknown. 

Recall that we set a threshold α = 0.8 for determining the stopping 

condition in the merging phase in MetaCluster 3.0. The average 

accuracy of the resulting clusters can be found in Table 2 and are 

consistent with all other experiments. MetaCluster 3.0 performs 

better than AbundanceBin, in particular for the case of balanced 

species abundance ratios. Note that the accuracy of MetaCluster 

3.0 drops about 2% when k is unknown. However, the accuracy of 

AbundanceBin drops 10% for the datasets of 3 species with abun-

dance ratio 1:3:9 and 2% for other datasets.   

In addition to the average accuracy of the resulting clusters, we 

also compare the number of clusters reported by the tools. For each 

test case of fixed number of species and abundance ratios, we have 

repeated the experiments 20 times. In Table 2, we record the num-

ber of clusters reported in each case and the percentage of cases 

that the tools report correctly. Note that if the case has 3 species, 

the perfect answer should be 3 resulting clusters. In general, Meta-

Cluster 3.0 can predict the number of species in the datasets more 

accurately than AbundanceBin which usually underestimates the 

Table 1. The binning performance of MetaCluster 3.0 and AbundanceBin based on the multi-species test datasets. 

1:1:1 1:3:9 
3 Species 

Avg Max Min Avg Max Min 

MetaCluster 3.0 97.36% 99.97% 83.24% 95.89% 99.96% 87.52% 

AbundanceBin 33.63% 35.53% 33.33% 81.44% 91.30% 69.23% 

1:1:1:1 1:3:3:9 
4 Species 

Avg Max Min Avg Max Min 

MetaCluster 3.0 97.12% 99.80% 77.23% 90.49% 99.90% 72.55% 

AbundanceBin 25.4% 26.71% 25.00% 69.39% 75.04% 56.25% 

Table 2. The predicted number of species in a sample by MetaCluster 3.0 and AbundanceBin based on the multi-species test datasets. 

The average accuracy is the overall performance of the algorithms and the number of clusters is the number of times the algorithms 

estimate the number of clusters in the dataset as the corresponding number. 

1:1:1 1:3:9 

Number of clusters Number of clusters 3 Species 
Avg Acc. 

1 2 3 4 
Avg Acc. 

1 2 3 4 

MetaCluster 3.0 95.53% - 10% 90% - 97.78% - 5% 95% - 

AbundanceBin 33% 100% - - - 68.55% 30% 70% - - 

1:1:1:1 1:3:3:9 

Number of clusters Number of clusters 4 Species 
Avg Acc. 

1 2 3 4 5 
Avg Acc. 

1 2 3 4 5 6 

MetaCluster 3.0 96.74 - - - 95% 5% 96.45 5% - - 50% 35% 10% 

AbundanceBin 25% 100% - - - - 67.68% 25% 75% - - - - 
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number of species in a sample. For the dataset of 4 species with 

abundance ratio 1:3:3:9, MetaCluster 3.0 performs not as well with 

35% of the dataset clustered into 5 groups, instead of 4. It is be-

cause MetaCluster 3.0 separates the reads in the species with the 

highest abundance ratio into two parts, one with the normal frag-

ments and the other with fragments from special region, say the 

coding regions, which have a different k-mer distribution as other 

regions in the genome. It may be solved by lowering the threshold 

α for those data with extremely unbalanced abundance ratios. 

However, lowering the threshold α may introduce some false posi-

tive merging and further study is required for solving this problem. 

Although MetaCluster 3.0 does not perform very well in this data-

set, it can still out-perform AbundanceBin which fails to estimate 

the correct number of clusters (4 clusters) in all cases. 

3.5 Comparison on Running Time and Memory Con-

sumption 

Table 3 shows the running time and memory consumption of 

MetaCluster 3.0, MetaCluster 2.0 and AbundanceBin for different 

dataset sizes. The running times of the three algorithms increase 

with the input sizes. The running time of MetaCluster 3.0 and 

MetaCluster 2.0 are similar and much shorter than the running time 

of AbundanceBin, as AbundanceBin is required to construct a 

model for the distribution of reads and to repeat clustering the 

reads to estimate the number of clusters. The memory consumption 

of the three algorithms also increases with the input size but Meta-

Cluster 3.0 consumes the least amount of memory. 

4 CONCLUSIONS 

In this paper, we propose a 2-phase (top-down separation and bot-

tom-up merging) unsupervised binning algorithm to bin metage-

nomic fragments with mixed species abundance ratios. Based on 

the differences in the distribution of a distance measure between 

fragments of the same species and fragments from different species, 

our approach can guarantee the quality of our resulting clusters. 

The performance of our approach, MetaCluster 3.0, is shown to be 

better than all existing unsupervised algorithms. However, binning 

metagenomic fragments remains a challenging problem. All exist-

ing algorithms (including MetaCluster 3.0) can only handle data-

sets with not too many species and the accuracy decrease sharply 

when the number of species over ten. In the practical situations, a 

sample may contain genomes of thousands of kinds of species for 

which all existing binning tools fail. 

There is another limitation of MetaCluster 3.0, which only 

works on fragments with length at least 500 nt. As the current 

high-throughput sequencing technology can only produce reads 

with lengths from 50 nt to 150 nt only, MetaCluster 3.0 relies on 

assembly tools for producing high-quality contigs with longer 

lengths. However, some binning algorithms, e.g. AbundanceBin, 

can work directly on short reads. Further research is required to 

come up with an effective tool for binning short reads directly with 

mixed species abundance ratio or assembling reads in metage-

nomic data accurately. 
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