
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

�anti�ed Class Constraints
Gert-Jan Bo�u

KU Leuven
gertjan.bo�u@student.kuleuven.be

Georgios Karachalias
KU Leuven

georgios.karachalias@cs.kuleuven.be

Tom Schrijvers
KU Leuven

tom.schrijvers@cs.kuleuven.be

Bruno C. d. S. Oliveira
�e University of Hong Kong

bruno@cs.hku.hk

Philip Wadler
University of Edinburgh
wadler@inf.ed.ac.uk

Abstract
�anti�ed class constraints have been proposed many years ago
to raise the expressive power of type classes from Horn clauses
to �rst-order logic. Yet, while it has been much asked for over
the years, the feature was never implemented or studied in depth.
Instead, several workarounds have been proposed, all of which are
ultimately stopgap measures.

�is paper revisits the idea of quanti�ed class constraints and
elaborates it into a practical language design. We show the merit
of quanti�ed class constraints in terms of more expressive modeling
and in terms of terminating type class resolution. In addition, we
provide a declarative speci�cation of the type system as well as a
type inference algorithm that elaborates into System F. Moreover,
we discuss termination conditions of our system and also provide a
prototype implementation.

CCS Concepts •�eory of computation →Type structures;
•So�ware and its engineering→Functional languages;

Keywords Haskell, type classes, type inference
ACM Reference format:
Gert-Jan Bo�u, Georgios Karachalias, Tom Schrijvers, BrunoC. d. S. Oliveira,
and Philip Wadler. 2017. �anti�ed Class Constraints. In Proceedings of
ACM SIGPLAN Haskell Symposium 2017, Oxford, UK, September 7 – 8, 2017
(Haskell’17), 14 pages.
DOI: 10.475/123 4

1 Introduction
Since Wadler and Blo� [38] originally proposed type classes as a
means to make adhoc polymorphism less adhoc, the feature has
become one of Haskell’s cornerstone features. Over the years type
classes have been the subject of many language extensions that
increase their expressive power and enable new applications. Exam-
ples of such extensions include: multi-parameter type classes [19];
functional dependencies [18]; or associated types [4].

Several of these implemented extensions were inspired by the
analogy between type classes and predicates in Horn clauses. Yet,
Horn clauses have their limitations. As a small side-product of
their work on derivable type classes, Hinze and Peyton Jones [12]
have proposed to raise the expressive power of type classes to
essentially �rst-order logic with what they call quanti�ed class
constraints. �eir motivation was to deal with higher-kinded types

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
Haskell’17, Oxford, UK
© 2017 Copyright held by the owner/author(s). 123-4567-24-567/08/06. . . $15.00
DOI: 10.475/123 4

which seemed to require instance declarations that were impossible
to express in the type-class system of Haskell at that time.

Unfortunately, Hinze and Peyton Jones never did elaborate on
quanti�ed class constraints. Later, Lämmel and Peyton Jones [21]
found a workaround for the particular problem of the derivable
type classes work that did not involve quanti�ed class constraints.
Nevertheless the idea of quanti�ed class constraints has whet the
appetite of many researchers and developers. GHC ticket #28931,
requesting for quanti�ed lass constraints, was opened in 2008 and
is still open today. Commenting on this ticket in 2009, Peyton
Jones states that “their lack is clearly a wart, and one that may
become more pressing”, yet clari�es in 2014 that “(t)he trouble is that
I don’t know how to do type inference in the presence of polymorphic
constraints.” In 2010, 10 years a�er the original idea, Hinze [10]
rues that the feature has not been implemented yet. As recently as
2016, Chauhan et al. [5] regret that “Haskell does not allow the use
of universally quanti�ed constraints” and now in 2017 Spivey [34]
has to use pseudo-Haskell when modeling with quanti�ed class
constraints. While various workarounds have been proposed and
are used in practice [20, 31, 36], none has stopped the clamor for
proper quanti�ed class constraints.

�is paper �nally elaborates the original idea of quanti�ed class
constraints into a fully �edged language design.

Speci�cally, the contributions of this paper are:

• We provide an overview of the two main advantages of quanti-
�ed class constraints (Section 2):
1. they provide a natural way to express more of a type class’s

speci�cation, and
2. they enable terminating type class resolution for a larger

class of applications.
• We elaborate the type system sketch of Hinze and Peyton Jones

[12] for quanti�ed type class constraints into a full-�edged for-
malization (Section 3). Our formalization borrows the idea of
focusing from C����� [32], a calculus for Scala-style implic-
its [26, 27], and adapts it to the Haskell se�ing. We account
for two notable di�erences: a global set of non-overlapping
instances and support for superclasses.

• We present a type inference algorithm that conservatively ex-
tends that of Haskell 98 (Section 4) and comes with a dictionary-
passing elaboration into System F (Section 5).

• We discuss the termination conditions on a system with quanti-
�ed class constraints (Section 6).

• We provide a prototype implementation, which incorporates
higher-kinded datatypes and accepts all2 examples in this paper,
at h�ps://github.com/gkaracha/quantcs-impl.

1h�ps://ghc.haskell.org/trac/ghc/ticket/2893
2except for the HFunctor example (Section 2.1), which needs higher-rank types [28].

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

Haskell’17, September 7 – 8, 2017, Oxford, UK Bo�u et al.

2 Motivation
�is section illustrates the expressive power a�orded by quanti�ed
class constraints to capture several requirements of type class in-
stances more succinctly, and to provide terminating resolution for
a larger group of applications.

2.1 Precise and Succinct Speci�cations
Monad Transformers Consider the MTL type class for monad
transformers [15]:

class Trans t where
li� :: Monad m ⇒m a → (t m) a

What is not formally expressed in the above type class declaration,
but implicitly expected, is that for any typeT that instantiates Trans
there should also be a Monad instance of the form:

instance Monad m ⇒ Monad (T m) where . . .

Because the type checker is not told about this requirement, it will
not accept the following de�nition of monad transformer composi-
tion.

newtype (t1 ∗ t2)m a = C { runC :: t1 (t2 m) a }
instance (Trans t1,Trans t2) ⇒ Trans (t1 ∗ t2) where

li� = C · li� · li�
�e idea of this code is to li� from monadm to (t2 m) and then to
li� from (t2m) to t1 (t2m). However, the second li� is only valid if
(t2 m) is a monad and the type checker has no way of establishing
that this fact holds for all monad transformers t2. Workarounds
for this problem do exist in current Haskell [13, 31, 36], but they
clu�er the code with heavy encodings.

�anti�ed class constraints allow us to state this requirement
explicitly as part of the Trans class declaration:

class (∀m.Monad m ⇒ Monad (t m)) ⇒ Trans t where
li� :: Monad m ⇒m a → (t m) a

�e instance for transformer composition t1 ∗ t2 now typechecks.

Second-Order Functors Another example can be found in the
work of Hinze [11]. He represents parameterized datatypes, like
polymorphic lists and trees, as the �xpoint Mu of a second-order
functor :

data Mu h a = In { out :: h (Mu h) a }
data List2 f a = Nil | Cons a (f a)

type List = Mu List2
A second-order functor h is a type constructor that sends functors
to functors. �is can be concisely expressed with the quanti�ed
class constraint ∀f .Functor f ⇒ Functor (h f), for example in the
Functor instance of Mu:
instance (∀f .Functor f ⇒ Functor (h f)) ⇒ Functor (Mu h)

where fmap f (In x) = In (fmap f x)

Although this is Hinze’s preferred formulation he remarks that:
Unfortunately, the extension has not been implemented
yet. It can be simulated within Haskell 98 [36], but
the resulting code is somewhat clumsy.

Johann and Ghani use essentially the same data-generic represen-
tation, the �xpoint of second-order functors, to represent so-called

nested datatypes [3]. For instance, Hinze [10] represents perfect
binary trees with the nested datatype

data Perfect a = Zero a | Succ (Perfect (a,a))
�is can be expressed with the generic representation asMu HPerf ,
the �xpoint of the second-order functor HPerf , de�ned as

data HPerf f a = HZero a | HSucc (f (a,a))

Johann and Ghani’s notion of second-order functor di�ers slightly
from Hinze’s.3 Ideally, their notion would be captured by the fol-
lowing class declaration:

class (∀f .Functor f ⇒ Functor (h f)) ⇒ HFunctor h where
hfmap :: (Functor f ,Functor д)

⇒ (∀x . f x → д x) → (∀x .h f x → h д x)

Like in Hinze’s case, the quanti�ed class constraint expresses that
a second-order functor takes �rst-order functors to �rst-order func-
tors. Additionally, second-order functors provide a second-order
fmap, called hfmap, which replaces replaces f by д, to take values
of type h f x to type h д x . Yet, in the absence of actual support for
quanti�ed class constraints, Johann and Ghani provide the follow-
ing declaration instead:

class HFunctor h where
�map :: Functor f ⇒ (a → b) → (h f a → h f b)
hfmap :: (Functor f ,Functor д)

⇒ (∀x . f x → д x) → (∀x .h f x → h д x)

In essence, they inline the fmap method provided by the quanti�ed
class constraint in the HFunctor class. �is is unfortunate because
it duplicates the Functor class’s functionality.

2.2 Terminating Corecursive Resolution
�anti�ed class constraints were �rst proposed by Hinze and Pey-
ton Jones [12] as a solution to a problem of diverging type class
resolution. Consider their generalized rose tree datatype

data GRose f a = GBranch a (f (GRose f a))

and its Show instance
instance (Show a,Show (f (GRose f a))) ⇒ Show (GRose f a)
where show (GBranch x xs) = unwords [show x ,�−�, show xs]

Notice the two constraints in the instance context which are due
to the two show invocations in the method de�nition. Standard
recursive type class resolution would diverge when faced with the
constraint (Show (GRose [] Bool)). Indeed, it would recursively
resolve the instance context: Show Bool is easily dismissed, but
Show [GRose [] a] requires resolving Show (GRose [] Bool) again.
Clearly this process loops.

To solve this problem, Hinze and Peyton Jones proposed to write
the GRose instance with a quanti�ed type class constraint as:
instance (Show a,∀x .Show x ⇒ Show (f x)) ⇒ Show (GRose f a)
where show (GBranch x xs) = unwords [show x ,�−�, show xs]

�is would avoid the diverging loop in the type system extension
they sketch, because the two recursive resolvents, Show Bool and
∀x .Show x ⇒ Show [x] are readily discharged with the available
Bool and [a] instances.

When faced with the same looping issue in their Scrap Your
Boilerplate work, Lämmel and Peyton Jones [22] implemented a
3 It is more in line with the category theoretical notion of endofunctors over the
category of endofunctors.

2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

�antified Class Constraints Haskell’17, September 7 – 8, 2017, Oxford, UK

di�erent solution: cycle-aware constraint resolution. �is approach
detects that a recursive resolvent is identical to one of its ancestors
and then ties the (co-)recursive knot at the level of the underlying
type class dictionaries.

Unfortunately, cycle-aware resolution is not a panacea. It only
deals with a particular class of diverging resolutions, those that
cycle. �e �xpoint of the second-order functor HPerf presented
above is beyond its capabilities.
instance (Show (h (Mu h) a)) ⇒ Show (Mu h a) where

show (In x) = show x

instance (Show a,Show (f (a,a))) ⇒ Show (HPerf f a) where
show (HZero a) = �(Z � ++ show a ++ �)�
show (HSucc xs) = �(S � ++ show xs ++ �)�

Resolving Show (Mu HPerf Int) diverges without cycling back to
the original constraint due to the nestedness of the perfect tree
type:

Show (Mu HPerf Int)
� Show (HPerf (Mu HPerf) Int)
� Show Int,Show (Mu HPerf (Int, Int))
� Show (HPerf (Mu HPerf) (Int, Int))
� Show (Int, Int),Show (Mu HPerf ((Int, Int), (Int, Int)))
� . . .

In contrast, with quanti�ed type class constraints we can formulate
the instances in a way that resolution does terminate.
instance (Show a,
∀f x .(Show x ,∀y.Showy ⇒ Show (f y)) ⇒ Show (h f x))
⇒ Show (Muh a) where show (Inx) = show x

instance (Show a,∀x .Show x ⇒ Show (f x)) ⇒ Show (HPerf f a)
where show (HZero a) = �(Z � ++ show a ++ �)�

show (HSucc xs)= �(S � ++ show xs ++ �)�

2.3 Summary
In summary, quanti�ed type class constraints enable 1) expressing
more of a type class’s speci�cation in a natural and succinct man-
ner, and 2) terminating type class resolution for a larger group of
applications.

In the remainder of this paper we provide a declarative type
system for a Haskell-like calculus with quanti�ed class constraints
(Section 3). Type inference is shown in Section 4 and Section 5 pro-
vides an elaboration into System F. Section 6 presents the conditions
we require to ensure termination in the presence of quanti�ed class
constraints. Finally, Section 7 discusses related work and Section 8
concludes.

3 Declarative Type System
�is section provides the declarative type system speci�cation for
our core Haskell calculus with quanti�ed class constraints.

3.1 Syntax
Figure 1 presents the, mostly standard, syntax of our source lan-
guage. A program pgm consists of class declarations cls, instance
declarations inst and a top-level expression e . For simplicity, each
class has a single parameter and a single method.

Terms e comprise a λ-calculus extended with let-bindings. By
convention, we use f to denote a method name and x ,y, z to denote
any kind of term variable name.

x ,y,z, f ::= �term variable name�
a,b,c ::= �type variable name�
TC ::= �class name�

pgm ::= e | cls; pgm | inst; pgm program
cls ::= class A⇒ TC a where { f :: σ } class decl.
inst ::= instance A⇒ TC τ where { f = e } instance decl.

e ::= x | λx .e | e1 e2 | let x = e1 in e2 term

τ ::= a | τ1 → τ2 monotype
ρ ::= τ | C ⇒ ρ quali�ed type
σ ::= ρ | ∀a.σ type scheme

A ::= • | A,C axiom set
C ::= Q | C1 ⇒ C2 | ∀a.C constraint
Q ::= TC τ class constraint

Γ ::= • | Γ,x : σ | Γ,a typing environment
P ::= �AS ,AI ,AL� program theory

Figure 1. Source Syntax

Types also appear in Figure 1. Like all extensions of the Damas-
Milner system [6] with quali�ed types [14], we discriminate be-
tween monotypes τ , quali�ed types ρ and type schemes σ . Note
that, to avoid clu�er, our formalization does not feature higher-
kinded types, but our prototype implementation does.

Our calculus di�ers from Haskell’98 in that it conservatively gen-
eralizes the language of constraints. In Haskell’98 the constraints
that can appear in type signatures and in class and instance contexts
are basic class constraints Q of the form TC τ . As a consequence,
the constraint schemes or axioms that are derived from instances
(and for superclasses) are Horn clauses of the form:

∀a.Q1 ∧ . . . ∧ Qn ⇒ Q0

�ese axioms are similar to rank-1 polymorphic types in the sense
that the quanti�ers (and the implication) only occur on the outside.
We allow a more general form of constraints C where, in analogy
with higher-rank types, quanti�ers and implications occur in nested
positions. �is more expressive form of constraints can occur in
signatures and class/instance contexts. Consequently, the syntactic
sort C of constraints and axioms is one and the same.

Note that constraint schemes of the form ∀ā.(Q1 ∧ . . . ∧Qn) ⇒
Q0, used in earlier formalizations of type classes (e.g., [25]), are
not valid syntax for our constraints C because we do not provide a
notation for conjunction. Yet, we can easily see the scheme notation
as syntactic sugar for a curried representation:

∀ā.(Q1 ∧ · · · ∧ Qn) ⇒ Q0 ≡ ∀ā.Q1 ⇒ (. . . (Qn ⇒ Q0) . . .)

We denote a list of C-constraints as A, short for axiom set as we
use them to represent, among others, axioms given through type
class instances.

Finally, Figure 1 presents typing environments Γ, which are
entirely standard, and the program theory P . �e la�er is a triple
of three axiom sets: the superclass axioms AS , the instance axioms
AI and local axioms AL . We use the notation P,LC to denote that
we extend the local component of the triple, and similar notation

3

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

Haskell’17, September 7 – 8, 2017, Oxford, UK Bo�u et al.

P ; Γ �tm e : σ Term Typing
(x : σ) ∈ Γ
P ; Γ �tm x : σ

T�V��
P ; Γ,x : τ �tm e1 : τ P ; Γ,x : τ �tm e2 : σ

P ; Γ �tm (let x = e1 in e2) : σ
T�L��

P ; Γ,a �tm e : σ
P ; Γ �tm e : ∀a.σ

(∀I)

Γ �ty τ1
P ; Γ,x : τ1 �tm e : τ2

P ; Γ �tm λx .e : τ1 → τ2
(→I)

P ; Γ �tm e1 : τ1 → τ2
P ; Γ �tm e2 : τ1

P ; Γ �tm e1 e2 : τ2
(→E)

Γ �ct C
P ,L C; Γ �tm e : ρ
P ; Γ �tm e : C ⇒ ρ

(⇒I)

P ; Γ �tm e : C ⇒ ρ
P ; Γ |= C

P ; Γ �tm e : ρ
(⇒E)

P ; Γ �tm e : ∀a.σ
Γ �ty τ

P ; Γ �tm e : [a �→ τ]σ
(∀E)

Γ �cls cls : AS ; Γc Class Declaration Typing
Γ,a �ct Ci Γ,a �ty σ

Γ �cls class (C1, . . . ,Cn) ⇒ TC a where { f :: σ } : [∀a.TC a ⇒ Ci]; [f : ∀a.TC a ⇒ σ]
C����

P ; Γ �inst inst : AI Class Instance Typing

b = fv (τ) Γ,b �ax A
class (C1, . . . ,Cn) ⇒ TC a where { f :: σ } P,L A; Γ,b |= [τ/a]Ci P ,L A,L TC τ ; Γ,b �tm e : [τ/a]σ

P ; Γ �inst instance A⇒ TC τ where { f = e } : [∀b .A⇒ TC τ]
I�������

Figure 2. Declarative Type System (Selected Rules)

for the other components. In earlier type class formalizations these
separate kinds of axioms are typically con�ated into a single axiom
set. However, in this paper it is convenient to distinguish them
for accurately stating the di�erent restrictions imposed on them.
Moreover, it is instructive for contrasting with regular Haskell. In
our se�ing, all three components support the same general form of
axioms. In contrast, in Haskell, the local constraints are basic type
class constraints Q only, while the instance and superclass axioms
have the more expressive Horn clause form.

3.2 �e Type System
Figure 2 presents the main judgments of our declarative type system
for the language of Figure 1, namely term typing and typing of
class and instance declarations.

Type & Constraint Well-Scopedness �e judgments for well-
scopeness of types, constraints and axiom sets are denoted Γ �ty σ ,
Γ �ct C and Γ �ax A respectively. �eir de�nitions are straightforward
and can be found in Appendix A.

Term Typing Term typing takes the form P ; Γ �tm e : σ and can be
read as “under program theory P and typing environment Γ, expres-
sion e has typeσ ”. �e rules are almost literally those of Chakravarty
et al. [4]. �ere are only two di�erences, which are simpli�cations
for the sake of convenience. Firstly we adopt the Barendregt con-
vention [2], that variables in binders are distinct, throughout this
paper. �is allows us to omit explicit freshness conditions. Sec-
ondly, following Vytiniotis et al. [37] we have opted for recursive
let-bindings that are not generalized.

Apart from that, there are no noticeable di�erences with con-
ventional Haskell in the typing rules. All the interesting di�erences
are concentrated in the de�nition of the constraint entailment judg-
ment P ; Γ |= C, which is used in the constraint elimination Rule
(⇒E).�e de�nition of this auxiliary judgment is discussed in detail
in Section 3.3.

Class Declaration Typing Typing for class declarations takes
the form Γ �cls cls : AS ; Γc and is given by Rule C����, presented in
Figure 2.

In addition to checking the well-formedness of the method type,
we ensure that the class context (C1, . . . ,Cn) is also well-formed,
extending the environment with the local variable a. In turn, this
implies that fv (Ci) ⊆ {a}, in line with the Haskell standard.

As usual, typing a class declaration extends the typing environ-
ment with the method typing, and the program’s theory with the
superclass axioms. For instance, the extended monad transformer
class yields the superclass axiom:

∀t .Trans t ⇒ (∀m.Monad m ⇒ Monad (t m))

Class Instance Typing Instance typing takes the form P ; Γ �inst
inst : AI and is given by Rule I�������, also presented in Figure 2.

We check the well-formedness of the instance context A un-
der the extended typing environment, and that each superclass
constraint Ci is entailed by the instance context.

Finally, we check that the method implementation e has the type
indicated by the class declaration, appropriately instantiated for
the instance in question.

Program Typing �e judgment for program typing ties every-
thing together and takes the form P ; Γ �pgm pgm : σ . Its de�nition is
straightforward and can be found in Appendix A.

3.3 Constraint Entailment
Following the approach of Schrijvers et al. [32] for their C�����
calculus, we present constraint entailment in two steps. First, we
provide an easy-to-understand and expressive, yet also highly am-
biguous, speci�cation. �en we present a syntax-directed, semi-
algorithmic variant that takes the ambiguity away, but has a more
complicated formulation inspired by the focusing technique used
in proof search [1, 23, 24].

Declarative Speci�cation Constraint entailment takes the form
P ; Γ |= C, and its high-level declarative speci�cation is given by the

4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

�antified Class Constraints Haskell’17, September 7 – 8, 2017, Oxford, UK

following rules:

C ∈ P
P ; Γ |= C

(S���C)
P ; Γ,a |= C

P ; Γ |= ∀a.C (∀IC)

P ; Γ |= ∀a.C
Γ �ty τ

P ; Γ |= [τ/a]C
(∀EC)

P,L C1; Γ |= C2
P ; Γ |= C1 ⇒ C2

(⇒IC)

P ; Γ |= C1 ⇒ C2
P ; Γ |= C1
P ; Γ |= C2

(⇒EC)

If we interpret constraints C as logical formulas, the above rules
are nothing more than the rules of �rst-order predicate logic. Rule
(S���C) is the standard axiom rule. Rules (⇒IC) and (⇒EC) cor-
respond to implication introduction and elimination, respectively.
Similarly, Rules (∀IC) and (∀EC) correspond to introduction and
elimination of universal quanti�cation, respectively. �ese are also
essentially the rules Hinze and Peyton Jones [12] propose.

While compact and elegant, there is a serious downside to these
rules: �ey are highly ambiguous and give rise to many trivially
di�erent proofs for the same constraint. For instance, assuming
Γ = •,a and P = �•,•,Eq a�, here are only two of the in�nitely
many proofs of P ; Γ |= Eq a:

Eq a ∈ P
P ; Γ |= Eq a

(S���C)

versus
Eq a ∈ P �

P �; Γ |= Eq a
(S���C)

P ; Γ |= Eq a ⇒ Eq a
(⇒IC)

Eq a ∈ P
P ; Γ |= Eq a

(S���C)

P ; Γ |= Eq a
(⇒EC)

where P � = P,L Eq a. Observe that the la�er proof makes an unnec-
essary appeal to implication introduction.

Type-Directed Speci�cation To avoid the trivial forms of ambi-
guity like in the example, we adopt a solution from proof search
known as focusing [1]. �is solution was already adopted by the
C����� calculus, for the same reason. �e key idea of focusing is to
provide a syntax-directed de�nition of constraint entailment where
only one inference rule applies at any given time.

Figure 3 presents our de�nition of constraint entailment with
focusing. �e main judgment P ; Γ |= C is de�ned in terms of two
auxiliary judgments, P ; Γ |= [C] and Γ; [C] |= Q � A, each of
which is de�ned by structural induction on the constraint enclosed
in square brackets.

�e main entailment judgment is equivalent to the �rst auxiliary
judgment P ; Γ |= [C]. �is auxiliary judgment focuses on the
constraint C whose entailment is checked – we call this constraint
the “goal”. �ere are three rules, for the three possible syntactic
forms of C. Rules (⇒R) and (∀R) decompose the goal by applying
implication and quanti�er introductions respectively. Once the
goal is stripped down to a simple class constraint Q, Rule (QR)
selects an axiom C from the theory P to discharge it. �e selected
axiom must match the goal, a notion that is captured by the second
auxiliary judgment. Matching gives rise to a sequenceA of new (and
hopefully simpler) goals whose entailment is checked recursively.

�e second auxiliary judgment Γ; [C] |= Q� A focuses on the
axiom C and checks whether it matches the simple goal Q. Again,
there are three rules for the three possible forms the axiom can take.
Rule (QL) expresses the base case where the axiom is identical to the

P ; Γ |= C Constraint Entailment
P ; Γ |= [C]
P ; Γ |= C

P ; Γ |= [C] Constraint Resolution

P,L C1; Γ |= [C2]
P ; Γ |= [C1 ⇒ C2]

(⇒R)
P ; Γ,b |= [C]
P ; Γ |= [∀b .C] (∀R)

C ∈ P : Γ; [C] |= Q� A ∀Ci ∈ A : P ; Γ |= [Ci]
P ; Γ |= [Q]

(QR)

Γ; [C] |= Q� A Constraint Matching

Γ; [C2] |= Q� A

Γ; [C1 ⇒ C2] |= Q� A,C1
(⇒L)

Γ; [[τ/b]C] |= Q� A Γ �ty τ
Γ; [∀b .C] |= Q� A

(∀L)
Γ; [Q] |= Q� • (QL)

Figure 3. Tractable Constraint Entailment

goal and there are no new goals. Rule (⇒L) handles an implication
axiom C1 ⇒ C2 by recursively checking whether C2 matches the
goal. At the same time it yields a new goal C1 which needs to be
entailed in order for the axiom to apply. Finally, Rule (∀L) handles
universal quanti�cation by instantiating the quanti�ed variable in
a way that recursively yields a match.

It is not di�cult to see that this type-directed formulation of
entailment greatly reduces the number of proofs for given goal.4
For instance, for the example above there is only one proof:

Eq a ∈ P Γ; [Eq a] |= Eq a� • (QL)
P ; Γ |= [Eq a]

(QR)

P ; Γ |= Eq a

3.4 Remaining Nondeterminism
While focusing makes the de�nition of constraint entailment type-
directed, there are still two sources of nondeterminism. As a conse-
quence, the speci�cation is still ambiguous and not an algorithm.

Overlapping Axioms �e �rst source of non-determinism is that
in Rule (QR) there may be multiple matching axioms that make the
entailment go through. For applications of logic where proofs are
irrelevant this is not a problem, but in Haskell where the proofs have
computational content (namely the method implementations) this
is a cause for concern. Haskell’98 also faces this problem. Consider
two instances for the same type:

class Default a where { default :: a }
instance Default Bool where { default = True }
instance Default Bool where { default = False }

�e two instances give rise to two di�erent proofs for Default Bool,
with distinct computational content (True vs. False). We steer away
from this problem in the same was as Haskell’98, by requiring that
instance declarations do not overlap. �is does not rule out the
possibility of distinct proofs for the same goal, but at least distinct

4Without loss of expressive power. See for example [30].
5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

Haskell’17, September 7 – 8, 2017, Oxford, UK Bo�u et al.

proofs have the same computational content. Consider a class
hierarchy where C is the superclass of both D and E.

class C a where { . . . }
class C a ⇒ D a where { . . . }
class C a ⇒ E a where { . . . }

�is gives rise to the superclass axioms ∀a.D a ⇒ C a and ∀a.E a ⇒
C a. Given additionally two local constraints D τ and E τ , we have
two ways to establish C τ . �e proofs are distinct, yet ultimately
the computational content is the same. �is is easy to see as only
instances supply the computational content and there can be at
most one instance for any given type τ .

In summary, non-overlap of instances is su�cient to ensure
coherence.

Guessing Polymorphic Instantiation A second source of am-
biguity is that Rule (∀L) requires guessing an appropriate type τ for
substituting the type variable b. Guessing is problematic because
there are an in�nite number of types to choose from and more than
one of those choices can make the entailment work out. Choosing
an appropriate type is a problem for the type inference algorithm
in the next section. Di�erent choices leading to di�erent proofs is a
more fundamental problem that also manifests itself in Haskell’98.
Consider the following instances.

instance C Char where { . . . }
instance C Bool where { . . . }
instance C a ⇒ D Int where { . . . }

�e third instance gives rise to the axiom ∀a.C a ⇒ D Int. When
resolving D Int with this axiom we can choose a to be either Char
or Bool and thus select a di�erent C instance.

Haskell’98 avoids this problem by requiring that all quanti�ed
type variables, like a in the example, appear in the head of the
axiom. Because our axioms have a more general, recursively nested
form, we generalize this requirement in a recursively nested fashion.
�e predicate unamb(C) in Figure 4 formalizes the requirement
in terms of the auxiliary judgment a �unamb C, where a are type
variables that need to be determined by the head of C. Rule (QU)
constitutes the base case where Q is the head and contains the
determinable type variables a. Rule (∀U) processes a quanti�er
by adding the new type variable to the list of determinable type
variables a. Finally, Rule (⇒U) checks whether the head C2 of the
implication determines the type variables a. It also recursively
checks whether C1 is unambiguous on its own. �e la�er check is
necessary because le�-hand sides of implications are themselves
added as axioms to the theory in Rule (⇒R); hence they must be
well-behaved on their own.

�e predicate unamb(C) must be imposed on all constraints that
are added to the theory. �is happens in four places: the instance
axioms added in Rule I�������, the superclass axioms added in
Rule C����, the local axioms added when checking against a given
signature in Rule (⇒I) and the local axioms added during constraint
entailment checking in Rule (⇒R). �ese four places can be traced
back to three places in the syntax: class and instance heads, and
(method) signatures.

4 Type Inference
We provide a type inference algorithmwith elaboration into System
F [8]. To simplify the presentation, this section focuses solely on

unamb(C) Unambiguity

• �unamb C
unamb(C)

U����

a �unamb C Unambiguity

a ⊆ fv (Q)

a �unamb Q
(QU)

a,a �unamb C
a �unamb ∀a.C

(∀U)

unamb(C1)
a �unamb C2

a �unamb C1 ⇒ C2
(⇒U)

Figure 4. Unambiguity

type inference. �e parts of the rules highlighted in gray concern
elaboration and are discussed in Section 5.

To make the connection to the relations of the declarative spec-
i�cation (Section 3.2) more clear, corresponding rules share the
same name.

4.1 Preliminaries
Before diving into the details of the algorithm, we �rst introduce
some additional notation and constructs.

Variable-Annotated Constraints & Type Equalities Since our
goal is to perform type inference and elaboration to System F si-
multaneously, we annotate all constraints with their corresponding
System F evidence term (dictionary variable d). We keep the nota-
tional burden minimal by reusing the same le�ers as in Figure 1,
yet with a calligraphic font:
P ::= �AS ,AI ,AL� variable-annotated theory
A ::= • | A,C variable-annotated axiom set
C ::= d : C variable-annotated constraint
Q ::= d : Q variable-annotated class constraint

Additionally, like every HM(X)-based system, our type-inference
algorithm proceeds by �rst generating type constraints from the
program text (constraint generation) and then solving these con-
straints independently of the program text (constraint solving).

During constraint generation, our algorithm gives rise to both
(variable-annotated) constraints A, as well as type equalities E:
E ::= • | E,τ1 ∼ τ2 type equalities

Type & Evidence Substitutions Furthermore, we introduce two
kinds of substitutions: type substitutions θ and dictionary substitu-
tions η:
θ ::= • | θ · [τ/a] type substitution
η ::= • | η · [t/d] evidence substitution

A type substitution θ maps type variables to monotypes, while an
evidence substitution η maps dictionary variables d to System F
terms t (see Section 5.1 for the formal syntax of System F terms).

4.2 Constraint Generation For Terms
Figure 5 presents constraint generation for terms. �e relation takes
the form Γ �tm e : τ � t | A; E. Given a typing environment Γ and
a term e we infer (1) a monotype τ , (2) a set of wanted constraints
A, and (3) a set of wanted equalities E. Its de�nition is standard.

Rule T�V�� handles variables. We instantiate the polymorphic
type ∀a.C ⇒ τ of a term variable x with fresh uni�cation vari-
ables b, introducing C as wanted constraints, instantiated likewise.
Rule T�A�� assigns a fresh uni�cation variable to the abstracted

6

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

�antified Class Constraints Haskell’17, September 7 – 8, 2017, Oxford, UK

Γ �tm e : τ � t | A; E Term Typing

b, d fresh (x : ∀a.C ⇒ τ) ∈ Γ
Γ �tm x : [b/a]τ � x b d | (d : [b/a]C); •

T�V��

a fresh Γ,x : a �tm e1 : τ1� t1 | A1; E1
Γ,x : τ1 �tm e2 : τ2� t2 | A2; E2 �ty τ1 � υ1

Γ �tm let x = e1 in e2 : τ2� let x : υ1 = t1 in t2 | (A1,A2); (E1,E2,a ∼ τ1)
T�L��

a fresh Γ,x : a �tm e : τ � t | A; E
Γ �tm λx .e : a → τ � λ(x : a).t | A; E

T�A��
a fresh Γ �tm e1 : τ1� t1 | A1; E1 Γ �tm e2 : τ2� t2 | A2; E2

Γ �tm e1 e2 : a� t1 t2 | (A1,A2); (E1,E2,τ1 ∼ τ2 → a)
T�A��

Figure 5. Constraint Generation for Terms with Elaboration

term variable x , and adds it to the context for checking the body
of the abstraction. Rule T�A�� handles applications (e1 e2). We
collect wanted class and equality constraints from each subterm,
we generate a fresh type variable a for the result and record that
the type of e1 is a function type (τ1 ∼ τ2 → a). Rule T�L�� handles
(possibly recursive) let bindings.

4.3 Constraint Solving
�e type class and equality constraints derived from terms are
solved with the following two algorithms.

Solving Equality Constraints We solve a set of equality con-
straints E by means of uni�cation. �e function unify (a; E) = θ⊥
takes the set of equalities and a set of “untouchable” type variables,
and returns either the most general uni�er θ of the equalities or fails
if none exists. �e untouchable type variables a originate from type
signatures; all other type variables are uni�cation variables. �e
uni�er is of course only allowed to substitute uni�cation variables.

�e de�nition of this uni�cation function is folklore, following
Damas and Milner [6] and accounting for signatures; it can be
found in Appendix A.

Solving Type Class Constraints Figure 6 de�nes the judgment
for solving type class constraints; it takes the form a;P |= A1 �
A2; η . Given a set of untouchable type variables a and a theory
P, it (exhaustively) replaces a set of constraints A1 with a set
of simpler, residual constraints A2, via the auxiliary judgment
a;P |= [C]� A ;η , explained below.

�is form di�ers from the speci�cation in Figure 3: we allow con-
straints to be partially entailed, which in turn allows us to perform
simpli�cation [17] of top-level signatures. �is is standard practice
in Haskell when inferring types. For instance, when inferring the
signature for

f x = [x] == [x]

Haskell simpli�es the derived constraint Eq [a] to Eq a, yielding
the signature ∀a.Eq a ⇒ a → Bool.

Simpli�cation Auxiliary judgment a;P |= [C] � A ;η uses
the theory P to simplify a single constraint C to a set of simpler
constraints without instantiating any of the untouchable type vari-
ables a. Following the focusing approach, the judgment is de�ned
by three rules, one for each of the syntactic forms of the goal C.

Rules (⇒R) and (∀R) recursively simplify the head of the goal.
Observe that we add the bound variable b to the untouchables a
when going under a binder in Rule (∀R). Once the goal is stripped
down to a simple class constraint Q, Rule (QR) selects an axiom
C whose head matches the goal, and uses it to replace the goal
with a set of simpler constraints A (a process known as context

a; P |= A1 � A2; η Constraint Solving Algorithm

�C ∈ A1 : a;P |= [C]� A2 ;η
a;P |= A1 � A1; •

S���

a;P |= [C]� A2 ;η1 a;P |= A1,A2 � A3; η2
a;P |= A1,C� A3; (η2 · η1)

S���

a; P |= [C]� A ;η Constraint Simpli�cation

�ct C1 � υ1 a;P,L (d1 : C1) |= [d2 : C2]� (d : C) ;η
d
�
,d1,d2 fresh η� = [λ(d1 : υ1).[d � d1/d](η(d2))/d0]

a;P |= [d0 : C1 ⇒ C2]� (d � : C1 ⇒ C) ;η�
(⇒R)

d
�
,dC fresh a,b;P |= [dC : C0]� (d : C) ;η

η� = [Λb .[d � b/d](η(dC))/d0]

a;P |= [d0 : ∀b .C0]� (d � : ∀b .C) ;η�
(∀R)

C ∈ P : a; [C] |= Q � A;θ ;η
a;P |= [Q]� A ;η

(QR)

a; [C] |= Q � A; θ ;η Constraint Matching

d1,d2 fresh a; [d2 : C2] |= Q � A;θ ;η

a; [d : C1 ⇒ C2] |= Q � A, d1 : θ (C1);θ ; [d d1/d2] · η
(⇒L)

d � fresh a; [d � : C] |= Q � A;θ ;η

a; [d : ∀b .C] |= Q � A;θ ; [d (θ (b))/d �] · η
(∀L)

θ = unify (a;τ1 ∼ τ2)
a; [d � : TC τ1] |= d : TC τ2 � •;θ ; [d �/d]

(QL)

Figure 6. Constraint Entailment with Dictionary Construction

reduction [16]). Goal matching is performed by judgment a; [C] |=
Q � A;θ ;η , discussed below.

Matching Auxiliary judgment a; [C] |= Q � A;θ ;η focuses
on the axiom C and checks whether it matches the simple goal
Q. �e main di�erence between this algorithmic relation and its
declarative speci�cation in Figure 3 lies in the type substitution θ .
Instead of guessing a type for instantiating a polymorphic axiom
in Rule (∀L) (top-down), we defer the choice until the head of the
axiom is met, in Rule (QL) (bo�om-up). Observe that Rule (∀L) does
not record b as untouchable, e�ectively turning it into a uni�cation
variable. �us, by unifying the head of the axiom with the goal we

7

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

Haskell’17, September 7 – 8, 2017, Oxford, UK Bo�u et al.

Γ �cls cls : AS ; Γc � fdata; fval Class Declaration Typing

Γ,a �ty σ �ty σ � υ Γ,a �ct Ci �ct Ci � υi d ,d
n fresh fdata = data TTC a = KTC υn υ

fval1 = let f : (∀a.TTC a → υ) = Λa.λ(d : TTC a).projn+1TC (d) fvali2 = let di : (∀a.TTC a → υi) = Λa.λ(d : TTC a).projiTC (d)

Γ �cls (class (C1, . . . ,Cn) ⇒ TC a where { f :: σ }) : [di : ∀a.TC a ⇒ Ci
n
]; [f : ∀a.TC a ⇒ σ]� fdata; fval1, fval2

n
C����

P; Γ �inst inst : AI � fval Class Instance Typing

class (C �1, . . . ,C
�
m) ⇒ TC a where { f :: σ } b = fv (τ) d,d

�
,dI fresh PI = P,L d : C ΓI = Γ,b

ΓI �ct Ci b;PI ,L (dI : ∀b .Cn ⇒ TC τ); ΓI �tm e : [τ/a]σ � t �ct Ci � υi b;PI |= d � : [τ/a]C �� •; η I�������

P; Γ �inst (instance (C1, . . . ,Cn) ⇒ TC τ where { f = e }) : [dI : ∀b .C ⇒ TC τ]� let dI : (∀b .υ → TTC τ) = Λb .λ(d : υ).KTC τ η(d �) t

Figure 7. Declaration Elaboration

can determine without guessing an instantiation for all top-level
quanti�ers, captured by the type substitution θ .

As an example, consider the derivation of one-step simpli�cation
of ∀b .Eq b ⇒ Eq [b], when (∀a.Eq a ⇒ Eq [a]) ∈ P:5

unify (b;a ∼ b) = θ = [b/a]
b; [Eq [a]] |= Eq [b]� •;θ (QL)

b; [Eq a ⇒ Eq [a]] |= Eq [b]� Eq b;θ
(⇒L)

b; [∀a.Eq a ⇒ Eq [a]] |= Eq [b]� Eq b;θ
b;P,Eq b |= [Eq [b]]� Eq b

(QR)

b;P |= [Eq b ⇒ Eq [b]]� (Eq b ⇒ Eq b)

•;P |= [∀b .Eq b ⇒ Eq [b]]� (∀b .Eq b ⇒ Eq b)
(∀R)

(⇒R)

(∀L)

Search As Section 3.4 has remarked, there may be multiple match-
ing axioms, e.g., due to overlapping superclass axioms. �e straight-
forward algorithmic approach to the involved nondeterminism is
search, possibly implemented by backtracking. �e GHC Haskell
implementation can employ a heuristic to keep this search shal-
low. It does so by using the superclass constraints very selectively:
whenever a new local constraint is added to the theory, it pro-
actively derives all its superclasses and adds them as additional
local axioms. When looking for a match, it does not consider the
superclass axioms and prefers the local axioms over the instance
axioms. If a matching local axiom exists, it immediately discharges
the entire goal without further recursive resolution. �is is the case
because in regular Haskell local axioms are always simple class
constraints Q.

In our se�ing, we can also implement a (modi�ed version) of
GHC’s heuristic, but this does not obviate the need for deep search.
�e reason is that our local axioms are not necessarily simple ax-
ioms, and matching against them may leave residual goals that
require further recursive resolution. When that recursive resolu-
tion gets stuck, we have to backtrack over the choice of axiom.
Consider the following example.

class (E a ⇒ C a) ⇒ D a
class (G a ⇒ C a) ⇒ F a

Given local axioms D a, F a and G a, consider what happens when
we resolve the goal C a. �e superclasses E a ⇒ C a and G a ⇒ C a
of respectively D a and F a both match this goal. If we pick the �rst

5We omit the evidence substitutions for brevity.

a; P; Γ �tm e : σ � t Explicitly Annotated Term Typing

Γ �tm e : τ1� t | Ae ; Ee
d fresh θ = unify (a,b; Ee ,τ1 ∼ τ2)

�ct Ci � υi a,b;P,L d : C |= θ (Ae)� •; η
a;P; Γ �tm e : (∀b .C ⇒ τ2)� Λb .λ(d : υ).η(θ (t))

(�)

Figure 8. Subsumption Rule

one, we get stuck when recursively resolving E a. However, if we
backtrack and consider the second one instead, we can recursively
resolve G a against the given local constraint.

In summary, because we do not see a general way to avoid search,
our prototype implementation uses backtracking for choosing be-
tween the di�erent axioms.

Implementation Our prototype implementation is available at
h�ps://github.com/gkaracha/quantcs-impl. It incorporates higher-
kinded datatypes and performs type inference, elaboration into
System F (as explained in the next section), and type checking of
the generated code.

�e examples we have tested with the prototype provide con-
�dence that our system is sound and that the elaboration is type
preserving. �e formal proof of the metatheory is future work.

4.4 Checking Declarations
Figure 7 de�nes type checking of class and instance declarations.

Class Declaration Typing Typing for class declarations is given
by Rule C����. For the purposes of type inference, Rule C����
is identical to the corresponding rule of Figure 2, so we defer its
analysis to Section 5.5 which discusses elaboration.

Instance Declaration Typing Typing for instance declarations
takes the form P; Γ �inst inst : AI � fval and is given by Rule I��
������. For the most part it is identical to the corresponding rule
of Figure 2.

�e most notable di�erence is the handling of the method im-
plementation e: method implementations have their type imposed
by the method signature in the class declaration. Hence, we need
to check rather than infer their type.

8

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

�antified Class Constraints Haskell’17, September 7 – 8, 2017, Oxford, UK

fpgm ::= t | fval; fpgm | fdata; fpgm program
fval ::= let x : υ = t value binding
fdata ::= data T a = K υ datatype

t ::= x | K | λ(x : υ).t | t1 t2 | Λa.t | t υ term
| let x : υ = t1 in t2 | case t1 of K x → t2

υ ::= a | υ1 → υ2 | ∀a.υ | T υ type

Figure 9. System F Syntax

�is operation is expressed succinctly by relation a;P; Γ �tm e :
σ � t , presented in Figure 8. Essentially, it ensures that the in-
ferred type for e subsumes the expected type σ . A type σ1 is said
to subsume type σ2 if any expression that can be assigned type σ1
can also be assigned type σ2.

Rule (�) performs type inference and type subsumption checking
simultaneously: First, it infers a monotype τ1 for expression e ,
as well as wanted constraints Ae and type equalities Ee . Type
equalities Ee should have a uni�er and the inferred type τ1 should
also be uni�able with the expected type τ2. Finally, the given
constraints C should completely entail the wanted constraints Ae .

4.5 Program Typing
Type inference and elaboration for programs is straightforward
and can be found in Appendix A.

5 Translation to System F
�is section discusses the elaboration aspect of the algorithm pre-
sented in Section 4.

5.1 Target Language: System F
Syntax �e syntax of System F [8] – extended with data types
and recursive let-bindings – is presented in Figure 9 and is entirely
standard. Like in the source language, we elide all mention of kinds.
Without loss of generality, we simplify ma�ers by allowing only
data types with a single type parameter and a single data construc-
tor and case expressions with a single branch; this is su�cient for
our dictionary-passing translation of type classes.

Semantics & Typing Since the operational semantics and typing
for System F with data types are entirely standard and do not
contribute to the novelty of this paper, we omit them from our
main presentation. �ey can be found in Appendix B.

5.2 Elaboration of Types & Constraints
Our system follows the traditional approach of translating source
type class constraints into explicitly-passed System F terms, the
so-called dictionaries [9, 38]. �is transition is re�ected in the
translation of types, performed by judgment �ty σ � υ:

�ty a� a
T�V��

�ty τ1 � υ1 �ty τ2 � υ2

�ty τ1 → τ2 � υ1 → υ2
T�A��

�ct C � υ1 �ty ρ � υ2

�ty C ⇒ ρ � υ1 → υ2
T����

�ty σ � υ

�ty ∀a.σ � ∀a.υ
T�A��

Rules T�V��, T�A�� and T�A�� are straightforward. Rule T����
elaborates a quali�ed type into a System F arrow type: the con-
straint C is translated into the dictionary type υ1, via relation
�ct C � υ which performs elaboration of constraints:

�ty τ � υ

�ct TC τ � TTC υ
(CQ)

�ct C � υ

�ct ∀a.C � ∀a.υ
(C∀)

�ct C1 � υ1 �ct C2 � υ2

�ct C1 ⇒ C2 � υ1 → υ2
(C⇒)

Rule (CQ) elaborates a class constraint (TC τ) into a type construc-
tor application (TTC υ), which corresponds to the type of dictionar-
ies that witness (TC τ). Rule (C∀) is straightforward. Rule (C⇒)
elaborates implication constraints of the form (C1 ⇒ C2) into
System F arrow types (υ1 → υ2), that is, types of dictionary trans-
formers. As a concrete example, the constraint corresponding to
the Show instance for type HPerf (Section 2.2):

∀f a.Show a ⇒ (∀x .Show x ⇒ Show (f x)) ⇒ Show (HPerf f a)

is elaborated into the type

∀f a.TShow a → (∀x .TShow x → TShow (f x)) → TShow (HPerf f a)

5.3 Elaboration of Terms
Term elaboration is straightforward. Rule T�V�� handles term
variables. �e instantiation of the type scheme ∀a.C ⇒ τ to [b/a]τ
becomes explicit in the System F representation, by the application
of x to type variables b, as well as the fresh dictionary variables d ,
corresponding one-to-one to the implicit constraintsC. Rule T�A��
elaborates λ-abstractions. Since in System F all bindings are ex-
plicitly typed, in the elaborated term we annotate the binding of
x with its type a. Similarly, Rule T�L�� elaborates let bindings,
again explicitly annotating x with its type υ1 in the elaborated term.
Rule T�A�� is straightforward.

5.4 Dictionary Construction
�e entailment algorithm of Figure 6 constructs explicit witness
proofs (in the form of dictionary substitutions) while entailing a
constraint.

Simpli�cation �e evidence substitution η in the simpli�cation
relation shows how to construct a witness for the wanted constraint
C from the simpler constraints A � and program theory P.

�e goal of Rule (⇒R) is to build an evidence substitution η�,
which constructs a proof for (d0 : C1 ⇒ C2) from the proofs d � for
the simpler constraints C1 ⇒ C. It is instructive to consider the
generated evidence substitution in parts, also taking the types into
account:
1. η illustrates how to generate a proof for (d2 : C2), from the local

assumption (d1 : C1) and local residual constraints (d : C).
2. [d � d1/d] generates proofs for the (local) residual constraints

(d : C), by applying the residual constraints (d � : C1 ⇒ C) to
the local assumption (d1 : C1).

3. ([d � d1/d] ·η) (d2) is a proof for C2, under assumptions (d1 : C1)
and (d � : C1 ⇒ C).

4. Finally, we construct the proof for (d0 : C1 ⇒ C2) by explicitly
abstracting over d1: λ(d1 : υ1).[d � d1/d](η(d2))

Rule (∀R) proceeds similarly. Finally, Rule (QR) generates the evi-
dence substitution via constraint matching, which we discuss next.

9

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

Haskell’17, September 7 – 8, 2017, Oxford, UK Bo�u et al.

Matching Similarly, the evidence substitution η in the matching
relation shows how to construct a witness for the wanted constraint
Q from the simpler constraints A and program theory P.

Rule (⇒L) generates two fresh dictionary variables, d1 for the
residual constraint θ (C1), and d2 for the local assumption C2. Fi-
nally, dictionary d2 is replaced by the application of the dictionary
transformer d to the residual dictionary d1. Rule (∀L) behaves simi-
larly. �e instantiation of the axiom d becomes explicit, by applying
it to the chosen type θ (b). Finally, Rule (QL) is straightforward:
since the wanted and the given constraints are identical (given that
they unify), the wanted dictionary d is replaced by the given d �.

5.5 Declaration Elaboration
Figure 7 presents the elaboration of both class and instance decla-
rations into System F.

Elaboration of Class Declarations A declaration for a class TC
is encoded in System F as a dictionary type TTC , with a single
data constructor KTC and n + 1 arguments: n arguments for the
superclass dictionaries (of type υn) and one more for the method
implementation (of type υ). For example, the Trans declaration of
Section 2.1 gives rise to the following dictionary type:

data TTrans t = KTrans (∀m.TMonad m → TMonad (t m))
(∀m a.TMonad m →m a → (t m) a)

Accordingly, we generate n + 1 projection functions that extract
each of the arguments (di extracts the i-th superclass dictionary
and f the method implementation). We use projiTC (d) to denote
pa�ern matching against d and extracting the i-th argument:

projiTC (d) ≡ case d of KTC xk → xi ,xk fresh

where k denotes the arity of data constructor KTC . E.g., the super-
class projection function for class Trans takes the form:

dsc : ∀t .TTrans t → (∀m.TMonad m → TMonad (t m))
dsc = Λt .λ(d : TTrans t). case d of { KTrans d

� → d � }
Elaboration of Class Instances A class instance is elaborated
into a System F dictionary transformer dI :

let dI : (∀b .υ → TTC τ) = Λb .λ(d : υ).KTC τ η(d �) t

Given dictionaries d – corresponding to the given context con-
straints – we need to provide all arguments of the data constructor
KTC : (a) the instantiation of the class type parameter, (b) the su-
perclass dictionaries, and (c) the method implementation. �e �rst
argument is trivial. We obtain the superclass dictionaries by ap-
plying the evidence substitution η on the dictionary variables d �

that abstract over the required superclass constraints. �e method
implementation t is elaborated via premise

b;PI ; ΓI �tm e : [τ/a]σ � t

which elaborates type subsumption in a similar manner.

6 Termination of Resolution
Termination of resolution is the cornerstone of the overall termi-
nation of type inference. �is section discusses how to enforce
termination by means of syntactic conditions on the axioms. �ese
conditions are adapted from those of C����� [32] and generalize
the earlier conditions for Haskell by Sulzmann et al. [35].

Overall Strategy We show termination by characterising the res-
olution process as a (resolution) tree with goals in the nodes and
axioms on the (multi-)edges. �e initial goal sits at the root of the
tree. A multi-edge from a parent node to its children presents an
axiom that matches the parent node’s goal and its children are the
residual goals. Resolution terminates i� the tree is �nite. Hence, if
it does not terminate, there is an in�nite path from the root in the
tree, that denotes an in�nite sequence of axiom applications.

To show that there cannot be such an in�nite path, we use a
norm �·� that maps the head 6 of every goal C to a natural number,
its size. �e size of a class constraint TC τ is the size of its type
parameter τ , which is given by the following equations:

�a� = 1
�τ1 → τ2� = 1 + �τ1� + �τ2�

If we can show that this size strictly decreases from any parent
goal to its children, then we know that, because the order on the
natural numbers is well-founded, on any path from the root there
is evantually a goal that has no children.

Termination Condition It is trivial to show that the size strictly
decreases, if we require that every axiom makes it so. �is re-
quirement is formalised as the termination condition of axioms
term(C):

term(Q)
(QT)

term(C)

term(∀a.C) (∀T)

term(C1) term(C2)
Q1 = head (C1) Q2 = head (C2) �Q1� < �Q2�
∀a ∈ fv (C1) ∪ fv (C2) : occa (Q1) ≤ occa (Q2)

term(C1 ⇒ C2)
(⇒T)

Rule (⇒T) for C1 ⇒ C2 enforces the main condition, that the size
of the residual constraint’s head Q1 is strictly smaller than the
head Q2 of C2. In addition, the rule ensures that this property is
stable under type substitution. Consider for instance the axiom
∀a.C (a → a) ⇒ C (a → Int → Int). �e head’s size 5 is strictly
greater than the context constraint’s size 3. Yet, if we instantiate
a to (Int → Int → Int), then the head’s size becomes 10 while
the context constraint’s size becomes 11. Declaratively, we can
formulate stability as:

∀θ .dom(θ) ⊆ fv (C1) ∪ fv (C2) ⇒ �θ (Q1)� < �θ (Q2)�
�e rule uses instead an equivalent algorithmic formulation which
states that the number of occurrences of any free type variable a
may not be larger in Q1 than in Q2. Here the number of occur-
rences of a type variable a in a class constraint TC τ (denoted as
occa (TC τ)) is the same as the number of free occurrences of a in
the parameter τ , where function occa (τ) is de�ned as:

occa (b) =

�
1 , if a = b
0 , if a � b

occa (τ1 → τ2) = occa (τ1) + occa (τ2)

Finally, as the constraints have a recursive structure whereby their
components are themselves used as axioms, the rules also enforce
the termination condition recursively on the components.

6 �e head of a constraint is de�ned as: head (Q) = Q; head (∀a .C) = head (C); and
head (C1 ⇒ C2) = head (C2).

10

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

�antified Class Constraints Haskell’17, September 7 – 8, 2017, Oxford, UK

Superclass Condition If we could impose the termination con-
dition above on all axioms in the theory P , we would be set. Un-
fortunately, this condition is too strong for the superclass axioms.
Consider the superclass axiom ∀a.Ord a ⇒ Eq a of the standard
Haskell’98 Ord type class. Here both Ord a and Eq a have size 1; in
other words, the size does not strictly decrease and so the axiom
does not satisfy the termination condition.

To accommodate this and other examples, we impose an alter-
native condition for superclass axioms. �is superclass condition
relaxes the strict size decrease to a non-strict size decrease and
makes up for it by requiring that the superclass relation forms a
directed acyclic graph (DAG).�e superclass relation is de�ned as
follows on type classes.

De�nition 6.1 (Superclass Relation). Given a class declaration

class (C1, . . . ,Cn) ⇒ TC a where { f :: σ }

each type class TCi is a superclass of TC, where head (Ci) = TCi τi .

Observe that the DAG induces a well-founded partial order on
type classes. Hence, on any path in the resolution tree, any uninter-
rupted sequence of superclass axiom applications has to be �nite.
For the length of such a sequence, the size of the goal does not
increase (but might not decrease either). Yet, a�er a �nite number
of steps the sequence has to come to an end. If the path still goes
on at that point, it must be due to the application of an instance or
local axiom, which strictly decreases the goal size. Hence, overall
we have preserved the variant that the goal size decreases a�er a
bounded number7 of steps.

7 Related Work
�is section discusses related work, focusing mostly on comparing
our approach with existing encodings/workarounds in Haskell. �e
history of quanti�ed class constraints and their demand in previous
research was already discussed in Section 1.

The Coq Proof Assistant Coq provides very �exible support for
type classes [33] and allows for arbitrary formulas in class and
instance contexts – actually the contexts are just parameters. For
instance, we can model the Trans class as:

Class Trans (T : (Type -> Type) -> Type -> Type)
�{forall M, �{Monad M} -> Monad (T M)} :=
{ lift : forall A M, �{Monad M} -> M A -> (T M) A }.

�e downside of Coq’s �exibility is that resolution can be ambigu-
ous and non-terminating. �e accepted workaround is for the
programmer to perform resolution manually when necessary. �is
is acceptable in the context of Coq’s interactive approach to proving,
but would mean a great departure from Haskell’s non-interactive
type inference.

Trifonov’s Workaround and Monatron Trifonov [36] gives an
encoding of quanti�ed class constraints in terms of regular class
constraints. �e encoding introduces a new type class that encapsu-
lates the quanti�ed constraint, e.g. Monad t t for ∀m.Monadm ⇒
Monad (t m), and that provides the implied methods under a new

7bounded by the height of the superclass DAG

name. �is expresses the Trans problem as follows:

class Monad t t where
treturn :: Monad m ⇒ a → t m a
tbind :: Monad m ⇒ t m a → (a → t m b) → t m b

class Monad t t ⇒ Trans t where
li� :: Monad m ⇒m a → t m a

While this approach captures the intention of the quanti�ed con-
straint, it does not enable the type checker to see that Monad (t m)
holds for any transformer t and monadm. While the monad meth-
ods are available for t m, they do not have the usual name.

For this reason, Trifonov presents a further (non-Haskell’98) re-
�nement of the encoding, which was adopted by the Monatron [13]
library8 among others. A non-essential di�erence is that Monatron
merges the above Monad t and Trans into a single class:

class MonadT t where
li� :: Monad m ⇒m a → t m a
treturn :: Monad m ⇒ a → t m a
tbind :: Monad m ⇒ t m a → (a → t m b) → t m b

�e key novelty is that it also makes the methods treturn and tbind
available under their usual name with a single Monad instance for
all monad transformers.

instance (Monad m,MonadT t) ⇒ Monad (t m) where
return = treturn
(>>=) = tbind

With these de�nitions the monad transformer composition does
type check. Unfortunately, the head of the Monad (t m) instance is
highly generic and easily overlaps with other instances.

The MonadZipper Because they found Monatron’s overlapping
instances untenable, Schrijvers and Oliveira [31] presented a dif-
ferent workaround for this problem in the context of their monad
zipper datatype, which is an extended form of transformer compo-
sition. �eir solution adds a method mw to the Trans type class:

class Trans t where
li� :: Monad m ⇒m a → t m a
mw :: Monad m ⇒ MonadWitness t m

For any monadm this method returns a GADT [29] witness for the
fact that t m is a monad. �is is possible because with GADTs, type
class instances can be stored in the data constructors.

data MonadWitness (t :: (∗ → ∗) → (∗ → ∗))m where
MW :: Monad (t m) ⇒ MonadWitness t m

By pa�ern matching on the witness of the appropriate type the
programmer can bring the required Monad (t2 m) constraint into
scope to satisfy the type checker.

instance (Trans t1,Trans t2) ⇒ Trans (t1 ∗ t2) where
li� :: ∀m a.Monad m ⇒m a → (t1 ∗ t2)m a
li� = case (mw :: MonadWitness t2 m) of

MW → C · li� · li�
mw = . . .

�e downside of this approach is that it o�oads part of the type
checker’s work on the programmer. As a consequence the code
becomes clu�ered with witness manipulation.

8For the implementation see h�ps://hackage.haskell.org/package/Monatron

11

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

Haskell’17, September 7 – 8, 2017, Oxford, UK Bo�u et al.

The constraint Library Kme�’s constraint library [20] provides
generic infrastructure for reifying quanti�ed constraints in terms
of GADTs, not unlike in the MonadZipper solution above. While
not impossible, encoding the Trans problem with this library is a
daunting task indeed.

Corecursive Resolution Fu et al. [7] address the divergence prob-
lem that arises for generic nested datatypes. �ey turn the diverging
resolution with user-supplied instances into a terminating resolu-
tion in terms of automatically derived instances. �ese auxiliary
instances are derived speci�cally to deal with the query at hand;
they shi� the pa�ern of divergence to the term-level in the form
of co-recursively de�ned dictionaries. �e authors do point out
that the class of divergent cases they support is limited and that
deriving quanti�ed instances would be bene�cial.

C����� �e calculus of coherent implicits, C����� [32], and its
focusing-based resolution in particular, have been a major inspira-
tion of this work. Just like this work, C����� supports recursive
resolution of quanti�ed constraints. Yet, there are a number of
signi�cant di�erences. Firstly, C����� does not feature a separate
syntactic sort for type classes, but implicitly resolves regular terms
in the Scala tradition. As a consequence, it does not distinguish
between instance and superclass axioms, e.g., for the sake of en-
forcing termination and coherence. Perhaps more signi�cantly,
C����� features local “instances” as opposed to our globally scoped
instances. Local instances may overlap with one another and coher-
ence is obtained by prioritizing those instances that are introduced
in the innermost scope. �is way C�����’s resolution is entirely
deterministic, while ours is non- deterministic (yet coherent) due
to overlapping local and superclass axioms.

8 Conclusion
�is paper has presented a fully �edged design of quanti�ed class
constraints. We have shown that this feature signi�cantly increases
the modelling power of type classes, while at the same enables a
terminating type class resolution for a larger class of applications.
Interesting future work we aim to pursue includes (a) establishing
the metatheory, (b) extending the system with quanti�cation over
predicates9, raising the power of type classes to (a fragment of)
second-order logic, and (c) studying the interaction of quanti�ed
class constraints with commonly used type-level features like func-
tional dependencies [18] or associated type families [4], allowing us
to integrate the new feature in Haskell’s ecosystem.

References
[1] Jean-marc Andreoli. 1992. Logic Programming with Focusing Proofs in Linear

Logic. Journal of Logic and Computation 2 (1992), 297–347.
[2] H. Barendregt. 1981. �e Lambda Calculus: its Syntax and Semantics, volume 103

of Studies in Logic and the Foundations of Mathematics. North-Holland.
[3] Richard S. Bird and Lambert G. L. T. Meertens. 1998. Nested Datatypes. In

Proceedings of the Mathematics of Program Construction (MPC ’98). Springer-
Verlag, London, UK, 52–67.

[4] Manuel M. T. Chakravarty, Gabriele Keller, and Simon Peyton Jones. 2005. Asso-
ciated Type Synonyms. SIGPLAN Not. 40, 9 (Sept. 2005), 241–253.

[5] Satvik Chauhan, Piyush P. Kurur, and Brent A. Yorgey. 2016. How to Twist Point-
ers Without Breaking�em. In Proceedings of the 9th International Symposium
on Haskell (Haskell 2016). ACM, New York, NY, USA, 51–61.

[6] Luis Damas and Robin Milner. 1982. Principal Type-schemes for Functional Pro-
grams. In Proceedings of the 9th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL ’82). ACM, New York, NY, USA, 207–212.

[7] Peng Fu, Ekaterina Komendantskaya, Tom Schrijvers, and Andrew Pond. 2016.
Proof Relevant Corecursive Resolution. In Functional and Logic Programming:

9See GHC feature request #5927.

13th International Symposium, Proceedings (FLOPS 2016), Oleg Kiselyov and Andy
King (Eds.). Springer International Publishing, 126–143.

[8] Jean-Yves Girard, Paul Taylor, and Yves Lafont. 1989. Proofs and Types. Cambridge
University Press, New York, NY, USA.

[9] Cordelia V. Hall, Kevin Hammond, Simon L. Peyton Jones, and Philip L. Wadler.
1996. Type Classes in Haskell. ACM Trans. Program. Lang. Syst. 18, 2 (March
1996), 109–138.

[10] Ralf Hinze. 2000. Perfect trees and bit-reversal permutations. J. Funct. Program.
10, 3 (2000), 305–317.

[11] Ralf Hinze. 2010. Adjoint Folds and Unfolds: Or: Scything �rough the �icket
of Morphisms. In Proceedings of the 10th International Conference on Mathematics
of Program Construction (MPC’10). Springer-Verlag, Berlin, Heidelberg, 195–228.

[12] Ralf Hinze and Simon Peyton Jones. 2000. Derivable Type Classes. In Proceedings
of the Fourth Haskell Workshop. Elsevier Science, 227–236.

[13] Mauro Jaskelio�. 2011. Monatron: an extensible monad transformer library. In
Proceedings of the 20th international conference on Implementation and application
of functional languages (IFL’08). Springer-Verlag, Berlin, Heidelberg, 233–248.

[14] Mark P. Jones. 1992. A theory of quali�ed types. In ESOP ’92, Bernd Krieg-
Brückner (Ed.). LNCS, Vol. 582. Springer Berlin Heidelberg, 287–306.

[15] Mark P. Jones. 1995. Functional Programming with Overloading and Higher-
Order Polymorphism. In Advanced Functional Programming, First International
Spring School on Advanced Functional Programming Techniques-Tutorial Text.
Springer-Verlag, London, UK, UK, 97–136.

[16] Mark P. Jones. 1995. �ali�ed Types: �eory and Practice. Cambridge University
Press, New York, NY, USA.

[17] Mark P. Jones. 1995. Simplifying and Improving �ali�ed Types. In Proceedings
of the Seventh International Conference on Functional Programming Languages
and Computer Architecture (FPCA ’95). ACM, New York, NY, USA, 160–169.

[18] Mark P. Jones. 2000. Type Classes with Functional Dependencies. In Programming
Languages and Systems, Gert Smolka (Ed.). LNCS, Vol. 1782. Springer Berlin
Heidelberg, 230–244.

[19] Simon Peyton Jones, Mark Jones, and Erik Meijer. 1997. Type classes: an explo-
ration of the design space. In Proceedings of the 1997 Haskell Workshop. ACM.

[20] Edward A. Kme�. 2017. �e constraint package. (2017). h�ps://hackage.haskell.
org/package/constraints-0.9.1.

[21] Ralf Lämmel and Simon Peyton Jones. 2003. Scrap Your Boilerplate: A Practical
Design Pa�ern for Generic Programming. SIGPLAN Not. 38, 3 (Jan. 2003), 26–37.

[22] Ralf Lämmel and Simon Peyton Jones. 2005. Scrap Your Boilerplate with Class:
Extensible Generic Functions. SIGPLAN Not. 40, 9 (Sept. 2005), 204–215.

[23] Chuck Liang and Dale Miller. 2009. Focusing and Polarization in Linear, Intuition-
istic, and Classical Logics. �eor. Comput. Sci. 410, 46 (Nov. 2009), 4747–4768.

[24] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. 1989. Uni-
form Proofs As a Foundation for Logic Programming. Technical Report. Durham,
NC, USA.

[25] J. Garre�Morris. 2014. A Simple Semantics for Haskell Overloading. SIGPLAN
Not. 49, 12 (Sept. 2014), 107–118.

[26] Bruno C.d.S. Oliveira, Adriaan Moors, and Martin Odersky. 2010. Type Classes
As Objects and Implicits. SIGPLAN Not. 45, 10 (Oct. 2010), 341–360.

[27] Bruno C.d.S. Oliveira, Tom Schrijvers, Wontae Choi, Wonchan Lee, and
Kwangkeun Yi. 2012. �e Implicit Calculus: A New Foundation for Generic
Programming. SIGPLAN Not. 47, 6 (June 2012), 35–44.

[28] Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Mark Shields.
2007. Practical Type Inference for Arbitrary-rank Types. J. Funct. Program. 17, 1
(Jan. 2007).

[29] Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Geo�rey
Washburn. 2006. Simple Uni�cation-based Type Inference for GADTs. SIGPLAN
Not. 41, 9 (Sept. 2006), 50–61.

[30] Frank Pfenning. 2010. Lecture Notes on Focusing. (2010). h�ps://www.cs.cmu.
edu/∼fp/courses/oregon-m10/04-focusing.pdf.

[31] Tom Schrijvers and Bruno C.d.S. Oliveira. 2011. Monads, Zippers and Views:
Virtualizing the Monad Stack. SIGPLAN Not. 46, 9 (Sept. 2011), 32–44.

[32] Tom Schrijvers, Bruno C. d. S. Oliveira, and Philip Wadler. 2017. Cochis: De-
terministic and Coherent Implicits. Report CW 705. KU Leuven, Department of
Computer Science.

[33] Ma�hieu Sozeau and Nicolas Oury. 2008. First-Class Type Classes. In �eo-
rem Proving in Higher Order Logics, 21st International Conference, TPHOLs 2008.
Proceedings (LNCS), Vol. 5170. Springer, 278–293.

[34] Mike Spivey. 2017. Faster Coroutine Pipelines. In International Conference on
Functional Programming (ICFP). accepted.

[35] Martin Sulzmann, Gregory J. Duck, Simon Peyton-Jones, and Peter J. Stuckey.
2007. Understanding Functional Dependencies via Constraint Handling Rules. J.
Funct. Program. 17, 1 (Jan. 2007), 83–129.

[36] Valery Trifonov. 2003. Simulating�anti�ed Class Constraints. In Proceedings
of the 2003 ACM SIGPLAN Workshop on Haskell (Haskell ’03). ACM, New York,
NY, USA, 98–102.

[37] Dimitrios Vytiniotis, Simon Peyton Jones, and Tom Schrijvers. 2010. Let Should
Not Be Generalized. In Proceedings of the 5th ACM SIGPLAN Workshop on Types
in Language Design and Implementation (TLDI ’10). ACM, NY, USA, 39–50.

[38] P. Wadler and S. Blo�. 1989. How to Make Ad-hoc Polymorphism Less Ad Hoc.
In Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL ’89). ACM, New York, NY, USA, 60–76.

12

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

�antified Class Constraints Haskell’17, September 7 – 8, 2017, Oxford, UK

A Additional Judgments
A.1 Well-formedness of Types & Constraints
Well-formedness of types takes the form Γ �ty σ and is given by the
following rules:

a ∈ Γ
Γ �ty a

T�V��
Γ �ty τ1 Γ �ty τ2

Γ �ty τ1 → τ2
T�A��

Γ �ct C Γ �ty ρ
Γ �ty C ⇒ ρ

T����
Γ,a �ty σ
Γ �ty ∀a.σ

T�A��

It is entirely straightforward and ensures that type terms are well-
scoped. Rule T���� requires checking the well-formedness of
our new form of constraints C, via relation Γ �ct C, given by the
following rules:

Γ �ty τ
Γ �ct TC τ

(CQ)
Γ �ct C1 Γ �ct C2

Γ �ct C1 ⇒ C2
(C⇒)

Γ,a �ct C
Γ �ct ∀a.C

(C∀)

Finally, an axiom set A is well-formed if all constraints it contains
are well-formed:

Γ �ax •
A�N��

Γ �ax A Γ �ct C
Γ �ax A,C

A�C���

A.2 Program Typing
�e judgment for program typing takes the form P ; Γ �pgm pgm : σ
and is given by the following rules:

Γ �cls cls : AS ; Γc P,S AS ; Γ,Γc �pgm pgm : σ
P ; Γ �pgm (cls; pgm) : σ

P��C��

P ; Γ �inst inst : AI P,I AI ; Γ �pgm pgm : σ
P ; Γ �pgm (inst; pgm) : σ

P��I���

P ; Γ �tm e : σ
P ; Γ �pgm e : σ

P��E���

For brevity, if P = • and Γ = • we denote program typing as
�pgm pgm : σ .

A.3 Uni�cation Algorithm
�e uni�cation algorithm takes the form unify (a; E) = θ⊥ and is
given by the following equations:

unify (a; •) = •
unify (a; E,b ∼ b) = unify (a; E)
unify (a; E,b ∼ τ) = unify (a;θ (E)) · θ

where b � a ∧ b � fv (τ) ∧ θ = [τ/b]
unify (a; E,τ ∼ b) = unify (a;θ (E)) · θ

where b � a ∧ b � fv (τ) ∧ θ = [τ/b]
unify (a; E, (τ1 → τ2) ∼ (τ3 → τ4)) = unify (a; E,τ1 ∼ τ3,τ2 ∼ τ4)
Function unify is a straightforward extension of the standard �rst-
order uni�cation algorithm [6]. �e only di�erence between the
two lies in the additional argument: the untouchable variables a.
�ese variables are treated by the algorithm as skolem constants
and therefore can not be substituted (they can be uni�ed with
themselves though).

A.4 Elaboration of Programs
Elaboration of programs is given by judgment P; Γ �pgm pgm :
σ � fpgm :

P; Γ �pgm pgm : σ � fpgm Program Elaboration

Γ �cls cls : AS ; Γc � fdata; fval
P,SAS ; Γ,Γc �pgm pgm : σ � fpgm

P; Γ �pgm (cls; pgm) : σ � fdata; fval; fpgm
PC��

P; Γ �inst inst : AI � fval
P,IAI ; Γ �pgm pgm : σ � fpgm

P; Γ �pgm (inst; pgm) : σ � fval; fpgm
PI��

Γ �tm e : τ � t | A; E
θ = unify (•; E) a = fv (θ (A)) ∪ fv (θ (τ))

a; �•,AI ,AL� |= θ (A)� d : C; η �ct Ci � υi

�AS ,AI ,AL�; Γ �pgm e : ∀a.C ⇒ θ (τ)� Λa.λ(d : υ).η(θ (t))
PE��

Rules PC�� and PI�� handle class and instance declarations, respec-
tively, and they are entirely standard. Rule PE�� performs standard
type-inference, simpli�cation [17] and generalization for a top-level
expression e . For simplicity, we do not utilize interaction rules (e.g.
we do not simplify the constraints {Eq a,Ord a} to {Ord a}), but
it is straightforward to do so. Finally, observe that superclass ax-
ioms AS are not used for the simpli�cation of wanted constraints.
�is is standard practice for Haskell but our distinction between
the axioms within the program theory allows us to express this
explicitly.

B System F Semantics
Both the typing rules and call-by-name operational semantics for
System F are entirely standard and can be found elsewhere, we
include them here to keep the presentation self-contained. In the
following, we denote System F typing environments by Δ:

Δ ::= • | Δ,T | Δ,K : υ | Δ,a | Δ,x : υ typing environment

B.1 Term Typing

Δ �Ftm t : υ Term Typing

(x : υ) ∈ Δ
Δ �Ftm x : υ

T�V��
Δ,x : υ1 �Ftm t : υ2 Δ �Fty υ1
Δ �Ftm λ(x : υ1).t : υ1 → υ2

(→I)

(K : υ) ∈ Δ
Δ �Ftm K : υ

T�C��
Δ �Ftm t1 : υ1 → υ2 Δ �Ftm t2 : υ1

Δ �Ftm t1 t2 : υ2
(→E)

Δ,a �Ftm t : υ
Δ �Ftm Λa.t : ∀a.υ

(∀I)
Δ �Ftm t : ∀a.υ Δ �Fty υ1

Δ �Ftm t υ1 : [υ1/a]υ
(∀E)

Δ,x : υ1 �Ftm t1 : υ1 Δ �Fty υ1 Δ,x : υ1 �Ftm t2 : υ2
Δ �Ftm (let x : υ1 = t1 in t2) : υ2

T�L��

Δ �Ftm t1 : T υ

(K : ∀a.υ → T a) ∈ Δ Δ,x : [υ/a]υ �Ftm t2 : υ2
Δ �Ftm (case t1 of K x → t2) : υ2

T�C���

B.2 Well-formedness of Types

Δ �Fty υ Type Well-formedness
13

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

Haskell’17, September 7 – 8, 2017, Oxford, UK Bo�u et al.

a ∈ Δ
Δ �Fty a

T�V��
T ∈ Δ
Δ �Fty T

T�C��
Δ �Fty υ1 Δ �Fty υ2

Δ �Fty υ1 → υ2
T�A��

Δ,a �Fty υ
Δ �Fty ∀a.υ

T�A��
Δ �Fty υ1 Δ �Fty υ2

Δ �Fty υ1 υ2
T�A��

B.3 Value Binding Typing

Δ �Fval fval : Δfval Value Binding Typing

Δ,x : υ �Ftm t : υ Δ �Fty υ
Δ �Fval (let x : υ = t) : [x : υ]

V��

B.4 Datatype Declaration Typing

Δ �Fdata fdata : Δfdata Datatype Declaration Typing

Δ,a �Fty υ
Δ �Fval (data T a = K υ) : [T ,K : ∀a.υ → T a]

D���

B.5 Program Typing

Δ �Fpgm fpgm : υ Program Typing

Δ �Ftm t : υ
Δ �Fpgm t : υ

P��E���

Δ �Fval fval : Δv Δ,Δv �Fpgm fpgm : υ
Δ �Fpgm (fval; fpgm) : υ

P��V��

Δ �Fdata fdata : Δd Δ,Δd �Fpgm fpgm : υ
Δ �Fpgm (fdata; fpgm) : υ

P��D���

For brevity, if Δ = • we denote System F program typing as �Fpgm
fpgm : υ.

B.6 Call-by-name Operational Semantics
�e small-step, call-by-name operational semantics of System F are
presented below:

t −→ t � Operational Semantics (Small-step)

(Λa.t) υ −→ [υ/a]t
T�B���

(λ(x : υ).t) t � −→ [t �/x]t
T�B���

t1 −→ t �1
(case t1 of K x → t2) −→ (case t �1 of K x → t2)

C���S���

(case K t of K x → t) −→ [t/x]t
C���B���

(let x : υ = t1 in t2) −→ [let x : υ = t1 in t1/x]t2
L��B���

14

