The Different Aspects of Monads and Mixins

Bruno C. d. S. Oliveira

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford OX1 3QD, UK

bruno@comlab.ox.ac.uk

Abstract

Around twenty years ago two important developments hapbene
the areas of modularity and reuse in programming languages.
the one hand, Moggi showed how computational effects foand i
impure languages could be simulated using the notiomafiads
from category theory. Inspired by Moggi’'s work, Wadler sleolv
how monads could be used to structure (purely functionad} pr
grams. On the other hand, work by Cook showed how variations
of mixins could model different notions dhheritance(normally
found in object-oriented languages) in simple, elegantcmpo-
sitional ways, by using traditional techniques of fixedridheory.

Monads and mixins are helpful to handle different aspects of
modularity and reuse in programming languages, yet theg hav
been largely explored independently. In this paper we shaw t
the combination of monads and mixins leads to a singsieect-
oriented programming/AOP) style that can be used effectively
in purely functional programming languages to writééegant
reusableandmodularprograms.

1. Introduction

Pioneering work by Moggi [1989, 1991] showed how the catggor
theory notion ofmonadscould be used to model computational ef-
fects and structure the denotational semantics of progiagian-
guages. This inspired Wadler [1992] to apply monads in ¢disn
the same way, but to structure functional programs inst@gais-
ing monads, superficially different variations of purelyétional
programs that model similar impure programs become stredtu
using the same abstractions. This has important benefisrirstof
reuse and modularity.

Cook [1989] studied how variations ahixins could model
different notions ofinheritance—found in various object-oriented
(O0) languages—in simple, elegant and compositional ways,
using traditional techniques of fixed-point theory. He dotkat
these techniques are not only applicable to OO languagethdyu
can also be applied, for example, to functional languagefadt,
many of Cook’s models of inheritance are essentially nathirore
thansimple beautiful combinator-style functional prograntbat
can be translated rather directly into a language like Hejgkmes,
2003].

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright© ACM [to be supplied]. .. $5.00.

Monads and mixins are helpful to handle different aspects of
modularity and reuse in programming languages, but so &y th
have been largely explored independently. A noteworthyption
is the work by Brown and Cook [2007], which studied the appli-
cation of a simple variety of mixins in combination with maisa
to the problem ofmemoizatiojMichie, 1968] in purely functional
languages.

The purpose of this paper is to show that the combination of
monads and mixins yields significant modularity and reusefits
and leads to a simplspect-oriented programmiriiczales et al.,
1997] style, which can be used effectively in purely funcéb
programming languages to wrileganf reusableand modular
programs. The contributions of this paper are:

o A library of mixin combinators inspired by Cook [1989] and
some concepts from AOP.

e A technique consisting ofmonadification [Erwig and Ren,
2004] and mixinficatior! of purely functional programs that
can be used to write highly modular and reusable programs.
This technique is helpful to solve the modularity problems
discussed in Section 2.3.

e Several interesting examples illustrating the applicatiof the
technique.

Overview In Section 2 we review Wadler’s work on monads for
structuring functional programs, discuss the modularitybfem
that monads solve (in purely functional languages) and sooa:
ularity problems that remain unsolved. Section 3 introducenad
transformers which provide a standard way to combine different
monads together and that we will make extensive use latédnsn t
paper. Section 4 introducesixinsand their use to model inheri-
tance; and presents the base mixin library that we are goingé
throughout the paper. Section 5 discusses the applicafiamxe

ins and monads to modularly capture some aspects of interpre
Section 6 shows another application of mixins fecrapping boil-
erplate¢’ [Lammel and Peyton Jones, 2003] of traversal code. In
Section 7 we extend the mixin library with some combinators i
spired by ideas of AOP and exemplify their use to capturescoias
ting concerns likdéracing or step countingSection 8 discusses our
results and related work. Finally Section 9 concludes.

2. Monadsand Modularity

This section introduces monads and their use for strugutinc-
tional programs, improving the modularity of programs teritin
purely functional languages. Some remaining modulariopf@ms
are also discussed.

2.1 A Modularity Problem in Purely Functional L anguages

Wadler [1992, 1993] motivates the use of monads to structure
functional programs by discussing a dilemma that occursiielp
functional languages. On the one hand purely functionglages

have the advantage that all the flow of data is explicit, cqunsatly
substitution of equals by equals is always valid and reagpabout

programs becomes very easy. On the other hand making all flow

of data explicit can sometimes be painfully verbose and wigsc

instance Monad Id where
return x = Id x
x>=f =fS$runld z
Now we could defineeval; by instantiating the monad tfl and

the essential details of a program. Even worse, this canecaus extracting the value contained in that structure:

pernicious modularity problems. This is illustrated by \éadvith
a simple interpreter for expressions:
data Term = Con Int | Div Term Term

eval; i Term — Int

eval; (Con a) =a

eval; (Div t u) = eval; t ‘div‘ eval; u
The simple expressions that can be definedbym allow the def-
inition of integer expressions and division of two terms.ifgle
evaluator for expressions is given byal; . One interesting change
to this evaluator is to add division loyerror checks to make it more
robust. This can be achieved with the following program:

type Ezception = String

evalg :: Term — Fither Exception Int
evaly (Con a) = Right a
evaly (Div t u) = case (evalg t, evalz u) of
(Left e, -) — Left e
(Right x, Left) — Left e
(Right z, Right y) —
if y = 0 then Left "divide by zero"
else Right (z ‘div‘ y)
However, this entails entails modifying all the clauses muirsive
calls of the program to check and handle errors appropyiaféis
is in contrast with impure languages where no such restriagtu
would be necessary and only a relatively local change woeld b
needed.

2.2 Monadsto Structure Functional Programs

In order to avoid the excessive plumbing required to carrada
around and the global restructurings of programs in purehcf
tional languages, Wadler proposed to structure functipradrams
using monads, which were pioneered by Moggi [1989, 1991] to
simulate computational effects suchgisbal state exception han-
dling, output and non-determinismin a pure setting. In Haskell,
monads can be captured by the following type class.

class Monad m where

return :: a — m a

(>=) sma—(a—>mb)—>mb
The functionreturn lifts a value of typea into a (pure) computa-
tion of the same type. Thginding function = provides a way to
apply a function of types — m b to a computation of typen a.
Syntactic sugar for those operations is provided in Haskedlugh
thedo notation.

A monadic evaluator for expressions can be written as falow

meval; :: Monad m = Term — m Int

meval; (Con a) = return a

meval; (Div t u) = do z <« meval; ¢

y «— meval; u

return (z ‘div‘ y)
For integer terms we just return the integer denoted by tine; ter
divisions, we first compute the value of the dividend and birtd
z, then we compute the value of the divisor and bind igytand
finally we returnz ‘div* y.

To recover the simple evaluator given byal; we can use the
identity monad, which provides a trivial instance of monattie
return and>>= operations are, respectively, the identity function
and reverse application (modulo the isomorphisms for intb@ut
of the Id type constructor).

newtype Id a = Id{runld :: a}

eval; :: Term — Int
eval; = runld o meval;
A more compelling example is given by the error monad
instance Monad (Either ¢) where
return ¢ = Right z

z>=f = casez of
Left e — Left e
Right © — f x

throwError :: String — Fither Exception a

throwError = Left
which we can use to recovetvalz from the generic monadic
version, with a small local change oneval; to handle division

by 0 errors.
mevalg :: Term — Either Exception Int
mevaly (Con a) = return a

mevalz (Div t u) =
do z «— mevals t
y < mevaly u
if y = 0 then throwError "divide by zero"
else return (z ‘div‘ y)
The benefits of the monadic approach should be clear: a lot of
the plumbing needed for particular programs is abstraateani
instance of a monad and can be reused by other programs; and ne
orthogonal behaviour to the main functionality of the paogrcan
be added with much more local changes. This achieves Wadler’
goal of structuring programs in purely functional prograimgn
languages with essentially the same modularity benefitsiptire
languages.

2.3 Some Remaining Modularity Problems

Unfortunately, from a modularity and reuse perspectiverdtare
still a few of problems left.

The first problem (common to most impure languages) is that
(usually) there io true reusein order to adapt a program with
some new orthogonal behaviour we normally have to directigm
ify the original program (even though the change is now muorem
localized). For example, in order to adapt the monadic atatu
to handle errors, we still have to change part of the lastseau
of meval;. Moreover, to retain the two programsiéval; and
mevalg) around we essentially need to manually copy most of the
code and repeat it in both programs; this is the nemesis ofitand
reuse!

The second problem arises from the fact that monads make com-
putational effects explicit on the types of the functionkisTis not
a disadvantage on its own, much on the contrary: becauset®effe
are explicit on the types, much stronger properties are kratvout
the function. However, it is possible that adapting a progweill
break existing code—since adding new orthogonal behaviwayr
imply changing the type of the function.

A final problem is that it is not trivial to mix two different
kinds of computational effects in the monadic approach: adsn
are well-known to be problematic to compose. Nonethelésset
is a fairly standard way to solve this problem through the afse
monad transformerfLiang et al., 1995], which we will discuss in
Section 3.

3. Monad Transformers

This section introduces monad transformers, which willy pda
important role in this paper.

newtype ErrorT e m a = ErrorT{
runErrorT :: m (Either e a)

}

instance MonadTrans (ErrorT e) where
lift m = ErrorT $ do {a «— m; return (Right a)}

class Monad m = MonadError e m | m — e where
throwError :: e — m a
catchError ::m a — (e > ma) > m a

instance Monad m = MonadError e (ErrorT e m) where
throwError 1 = ErrorT $ return (Left 1)
m ‘catchError‘ h = ErrorT $ do
a «— runErrorT m
case g of
Left I — runErrorT (hl)
Right r — return (Right r)

instance Monad m = Monad (ErrorT e m) where
return a = ErrorT $§ return (Right a)
m>=k = ErrorT $do
a <« runErrorT m
case a of
Left I — return (Left 1)
Right r — runErrorT (k)

Figure 1. Error monad transformer machinery.

3.1 Heavy (But Handy) Machinery for Monad Transformers

The concept of a monad transformer [Liang et al., 1995] plewi

a way to define programs that use different monads. With nwonad
transformers, different kinds of monads can be layered profo
each other, offering a way to compose the functionality joled

by each monad. A monad transformer can be defined with the
following type class:

class MonadTrans t where
lift :: Monad m = m a —tma

Thelift operation takes some monadic computatioru, and lifts
it to the top-level monad m. Of course, we must makiem itself
an instance of a monad. Monad transformers involve the defini
of some machinery. In Figure 1 we show part of the machinet th
is required for handling the error monad transformer. Thetyjee
ErrorT e m a defines the type of the transformer; an instance of
MonadTrans for ErrorT e is also provided. With monad trans-
formers we can have multiple types that are actually errarads.
To better capture the notion of error monad&/anadError e m
type class with two method@irowError and catchError is pro-
vided; and an instance of that type class is defined for the er-
ror monad transformer type. Finally, we also need an instanfic
Monad for ErrorT e m. Note thatMonadError requiresmul-
tiple parameter type classes with functional dependendieses,
2000]; bothMonadError and MonadTrans as well as many other
monad transformers can be found in Glasgow Haskell Compiler
(GHC) monad transformer library

Suppose that we wanted to combine the functionality of asrerr
monad with a state monad. With monad transformers this i eas

transformer types (such @rorT e m a or StateT s m a) and
that there are type classes likonadError and MonadState that
abstract from particular implementations of error or statsads.
We shall introduce the monad transformer types and respdgfe
classes as we need them.

3.2 Using Monad Transformers

Despite the somewhat heavy machinery that is required foragho
transformers, their use is fairly easy and intuitive, aredgtogram-
mer does not need to be aware of most of the intricate dekails.
example, in order to use a state monad to count the number of di
visions, we can use the operations provided by MienadState
type class, without committing to a particular state moriEioe
state monad transformer type and th®nadState type classes
are defined as follows:

newtype StateT s m a = StateT{

runStateT :: s — m (a, s)

}

class Monad m = MonadState s m | m — s where
get ::m s
put s — m ()
We can now use thget andput operations to count the number of
divisions in the evaluator:

seval :: MonadState Int m = Term — m Int

seval (Con a) = return a

seval (Div t u) = do x «— seval t

y «— seval u

n <« get

put (n+ 1)

return (z ‘div‘ y)
Using seval we can easily define a program that given a term
returns a pair of integers that represents the value of the aad
the number of divisions performed in the process of evaigatie
term.

evalg :: Term — (Int, Int)

evals t = runld $ runStateT (seval t) 0
Here we instantiate the monad in seval to be StateT Int Id
and remove the monadic layers by running.StateT andrunld;
the second argument etinState T represents the initial number
of divisions.

Of course, the greatest advantage of monad transformersscom
when we want to use the functionality from different monaals t
gether. For example, if we wanted to combine the error cimecki
and division counting functionalities we could write théldaving
program:

smeval :: (MonadState Int m, MonadError Ezception m) =

Term — m Int
smeval (Con a) = return a
smeval (Div t u) =
do = « smeval t
y < smeval u
n «— get
put (n + 1)
if y = 0 then throwError "divide by zero!"
else return (x ‘div‘ y)
In this program both the state monad and the error monad oper-
ations are used, so the monadneeds to be both an instance of

Assuming that all the monad and monad transformer machinery MonadState and MonadError. There are actually a couple of in-

for the state monad is defined, what we would need to do is to
essentially define how a error monad transformer behaves whe
combined with state. However, we shall not bother the readtér

all the details required for this to work. For the reader ries¢ed

in the details, we suggest Liang et al. [1995]. For the pupos
of this paper it is enough to know that there are different atbn

teresting valid candidates for concrete instantiations.ofor ex-
ample, we could haver = StateT Int (ErrorT Exception Id)
orm = ErrorT Exception (StateT Int Id). We show two pro-
grams derived from these two instantiations next:

evaly :: Term — Either Exception (Int, Int)

eval; t = runld $ runErrorT $ runStateT (smeval t) 0

evals :: Term — (Either Exzception Int, Int)

evals t = runld $ runStateT (runErrorT (smeval t)) 0
These two programs have different behaviours (and thissiblei
from their types). Both programs will return the result ofkat-
ing the term and the number of divisions if no exception oscur
However, if an exception occurs thenal; will throw away all the
information apart from the exception. In contrast, the paogde-
fined by evals will also throw an exception, but it will retain the
numbers of divisions performed up to that point.

Monad transformers solve the problem of composing the func-
tionality of different monads, but they do not solve the tvihey
modularity problems discussed in Section 2.3.

4. Mixins

In this section we introducmixinsand their use to model inheri-
tance. We also present the basic mixin library that we aregytm
use throughout the paper.

4.1 Mixin Inheritance

Object-oriented languages generally provide powerfuteemech-
anisms based omheritance Cook [1989] studied those mecha-
nisms in detail and proposed a model for inheritance usiag tr
ditional techniques of fixed-point theory. Borrowing a slep
(slightly modified) example from Cook, we illustrate the exssal
idea next:

G = Athis.[value — 7, square — this.value * this.value]

Here G, defines a function that takes a recehds as argument
and returns another record. For the purposes of this pagecaw
think of the two records as having the same structure withldiel
value and square. Functions of this kind, taking parameters with
the same structure of the output (but not necessarily reyoade
essentially what we cathizins. G; is an instance of a simple type
of mixins that Cook calls generator The record returned bg;
assignsr to value and definessquare in terms of this. For the
reader familiar with object-oriented programming the iien of
this program should be cleathis is meant to represent the self-
reference to the record (or object). Howewugrs can be any other
record andsquare may or may not be9. In order to makehis the
self-reference we can use a fixpoint operation:

m; = fix G; = [value — T, square — 49]

In this case, the value afjuare for m; is indeed49. Now lets as-
sume that we would have another generatgrdefined as follows:

G2 = Athis.[value — 2]

We can think of the result record has having the same struc-
ture asG; but being only partly defined (without a definition for
square). We can combing7; with G2 using some form of com-
position. For example, if we use what Cook calls preferential
combination functiorfthat we represent here i) and then apply
the fixpoint operation we would obtain the following:

mg = fix (G; B G2) = [value — 2, square — 4]

The preferential combination function overrides any fiedfishe
second record that are already defined by the first recordrand
heritsthe remaining fields. Becausguare is defined in terms of
the self-reference, the value efuare will be computed in terms
of G; B G2 which will result in4.

This example shows the essence of the model of mixin inher-
itance: we can write our programs in terms of self-refererared
thencomposehose programs to override and reuse existing func-
tionality. In general, to handle all the aspects of inhedgin OO
languages, we need to account for the possibility of recbheding
different shapes and we may need combination functionsitbek
by examining the structure of records. However, as we sleall s
next, we can still enjoy from many of the benefits of inheritin
a functional language like Haskell without consideringsthonore
intricate aspects of OO inheritance.

type Mizin s =s — s — s

(®) :: Mizin s — Mizin s — Mixin s

1 ® g = Asuper this — f (g super this) this
zero :: Mizin s

zero super this = super

mizin :: Mizin s — s

mizin f = let m = mizin fin f m m

Figure 2. Basic mixin combinators.

4.2 A Small Mixin Library

In Figure 2 we define the basis of our mixin library. The tyidérin
specifies the type of functions that can be used as mixins ihi
just a more general version génerators which also accounts for
super references (in OO languagesper typically refers to the
object that we are inheriting from). The operati@rdefines mixin
composition. It is easy to show that this operation is asdive,
and that it has theero mixin as left and right units o5, forming
a monoid.

fBzero=f =zerod f

(fogoh=Ffa(gah)
The functionmizin is the fixpoint combinator used to “deploy” a
mixin (that is, given a mixin, it returns a function with therabined
mixin functionality). Provided with these combinators, weuld
encode Cook’s example in Haskell as follows:

data G = G{value :: Int, square :: Int}

g1 :» Mizin G

g1 super this =

G{value = 7, square = value this x value this}

gz :: Mizin G

g2 super this = super{value = 2}

my, mg :: G

mi; = MiTin gz

me = mizin (g2 ® g1)
The model of inheritance given by our mixin library is diféert
from that used in the example in Section 4.1 (which did not-con
sider super references), but the end result is the same. Note that
the use ofsuper in gz has the effect oinheriting all the function-
ality from the super reference, but overridingalue. This particu-
lar model of inheritance does not rely on a composition dpara
that needs to consider the structure of records and constyjise
a good model to be used in Haskell (which does not supporaeper
tions that inspect the structure of records).

4.3 Visualizing Super and Self References

It is helpful to visualize what happens when we calper and
this in a program that has a chain of mixins being composed. Self-
references provide the simplest case:

this

p = mizin (77*1 <) 77l,_g D..0 mnt] @ nln)

Regardless of which mixin we are afyis always points to the
beggining of the mixin chain. For super references the hiebav
is a bit more dynamic:

super

p = mizin (77%1 DSme®...dmp—1 D WJLn)

super super

and in the mixinm; the super reference is pointing tany (the
next mixin in the chain); in thene mixin super will point to the
next mixin in the chain and so on for the other mixins. Wherldse
mixin m,, is reached and there is no other mixin in the chaimer
just points back to the beggining of the mixin chain (effeely
behaving likethis in that last mixin).

4.4 Reation to Cook’'s Models of Inheritance

The mixin composition operatop is related to what Cook de-
scribes in his thesis as beibgxed applicationwhich (in our set-
ting) would correspond fo

type Gen s =s — s

(X) :: Mizin s — Gen s — Gen s

mRg=As—>m(gs)s
(Here the typeGen is just the type of generators.) Under Cook’s
own terminology® would correspond tboxed compositian

fib :: Monad m = Mizin (Int — m Int)
fib continue call n = case n of
0 — return 0
1 — return 1
_—doz«—call (n—1)
y — call (n —2)
return (z + y)
memo :: MonadState (Map Int Int) m = Mizin (Int — m Int)
memo continue call © =
do m « get
if member z m then return (m!)
else do y < continue z
m' «— get
put (insert x y m')
return y

Our treatment of theuper reference is, however, different from
Cook’s in two respects. The first difference is that the typthe
super and self references is the same and in Cook’s models they
are different (we also ignore subtyping issues). We shootd that
this is not a particularly significant difference thoughcéese we
could generalize the type dffizin to something like:

type Mizin st=s —t —t
and still be able to define all the operations above (thoughin
would require thats = t). We choose to stick with the simpler
type because it is easier to read and we have not encountered
that many applications that required the more general type.
second difference is more fundamental: in Cook’s and otkaal
treatments of inheritance thaiper reference does not normally
appear closed under the fixpoint and a standard definitioridvou

Figure 3. Memoization

data Fxpr where

Lit :: Int — Expr

Var :: String — Expr

Plus :: Fxpr — FExpr — Expr
Minus :: Bxpr — Expr — Expr
Assign i Expr — Ezpr — Expr

Sequence :: [Exzpr] — Exzpr
While :: Expr — Expr — FExpr

type Env = [(String, Int)]

be:

mixin :: Mizin Top s — s

mizin f = f top (mizin f)
where Top represents the supertype of all types aog is the
canonical value offop. The problem with this treatment efiper
is that it assumes the existence of subtyping in the lang(age
provided, for example, by Systef.. [Cardelli et al., 1994]), and
Haskell does not support this. We solve this problem by assum
thattop = mizin f.

45 Monadic Mixins

The technique that we promote in this paper consists on gontpi
monads with mixins to modularize orthogonal aspects of og.
One application of this technique tnemoizatiorfMichie, 1968]
was explored by Brown and Cook [2007], where they used gener-
ators to separate a program from the memoization aspecthallle s
use this as a first example of the technique, suitably garedaio

fit our mixins.

In Figure 3 we present a simple example of memoization mixins
using our library. The functionfb andmemo define, respectively,
mixins for the fibonacci sequence and memoization. The param
ters continue and call (used in bothfib and memo) are the two
arguments of the mixin. Here we use the convention of nantiag t
super and self references asitinue and call (rather thansuper
and this) because, for functional types, those names seem more
intuitive to us:call stands for recursive call; an@ntinue empha-
sizes the fact that the computation will continue befordqraring
the recursive call. The state monad transformer is useddapmo
mixin to read and update the cached values.

Using themizin function we can convert a mixin into a con-
ventional function. For example if we mixifib as follows

Figure 4. Datatype and environment type for expressions.

nfib :: Monad m = Int — m Int
nfib = mixin fib

then we obtain a functiomfib that is a monadic version of the
fibonacci function. Alternatively, we could have composeémo
andfib together in the following way

mfib :: MonadState (Map Int Int) m = Int — m Int
mfib = mizin (memo @ fib)

to obtain a memoized monadic version of the fibonacci functio
A fast fibonacci function could be defined by suitably insiatitg
the state monad:

fastFib :: Int — Int
fastFib = fst o flip runState empty o mfib

5. TheModular Aspectsof Interpreters

In this section we show how monads and mixins can be used
together to build interpreters that can be modularly retisektrive

new interpreters with same added orthogonal functionalitye
interpreter that we will use in this section is an Haskelhglation

of an interpreter implemented in ML by Laufer [2003]. We @se
monadic style instead of implicit side-effects. Note tha kind

of modularity that we are discussing heralifferentfrom what is
discussed by Liang et al. [1995], which is focused on extandi
interpreters with new language constructs.

5.1 A Classic Monadic Evaluator
In Figure 4 we present a datatype representing for a simpietiaa

tive language that can be used to compute numeric express$inen

1We should note that the observations in this subsectiorh@refationship
between our combinators and Cook’s own models of inherpare due to
Cook himself and were provided to us in personal commuminati

teger literals and variables can be built using, respdgtittee Lit
and Var constructors. Simple primitive operations for additio an
subtraction are available through tRéus and Minus constructors.

evaly :: MonadState Env m = Ezpr — m Int
eval; exp = case exp of

Lit x — return x
Var s — do e « get
case lookup s e of
Just x — return x
_ — error msq
Plus [r — do z «— eval; 1
y «— evaly 7
return (z + y)
Minus [r — do z «— eval; 1

y «— evaly 7

return (z — y)
— do e « get

y «— evaly 7

put ((z,y): e)

return y

Assign (Var z) r

Sequence] — return 0
Sequence (z : zs) — eval; x> eval; (Sequence xs)
While ¢ b — do z «+— eval; ¢
if (z = 0) then return 0
else (eval; b > eval; exp)
where msg = "Variable not found!"

beval :: MonadState Env m = Mizin (Ezpr — m Int)
beval continue call exp = case exp of

Lit x — return x
Var s — do e « get
case lookup s e of
Just x — return x
_ — error msg
Plus I r —do x «— call |
y «— call r
return (z + y)
Minus I r —do x «— call |

y «— call r
return (z — y)

Assign (Var z) r — do e «— get

Yy« callr

put (z,9) : €)

return y
Sequence |] — return 0
Sequence (¢ : zs) — call z > call (Sequence zs)
While c b —doz « call ¢

if (z = 0) then return 0

else (call b>> call exp)

where msg = "Variable not found!"

Figure5. A classic monadic evaluator.

evaly :: (MonadWriter String m, MonadState Env m) =
String — Expr — m Int
eval; v exp = case exp of

Assign (Var z) r |z =v — --new case
do e «— get
y<«— eval; v r
put ((,1) : €)
tell (z H#" =" H show y + "\n")
return y
Assign (Var z) r — ... -- old case
While ¢ b —
do n < eval; v ¢
if (n = 0) then (tell "done\n" > return 0)
else (tell "repeating\n" > eval; v b
> eval; v exp)

Figure 6. Modified evaluator with tracing and variable watching.

Mutable assignments to variables can be defined usinggn and
sequential composition and while loops can be constructéd w
Sequence and While. A simple environment type for expressions
is given by Env.

In Figure 5 we show a classic monadic evaluator for the expres
sions presented in Figure 4. The state monad transformese u
to pass the environment around and it is also used in therassig
ment clause to update the value of the variable being agkigine
evaluator is quite standard. Evaluating integer literatsinns the
integer denoted by the literal. The evaluation of varialdess up
the variable from the environment and returns its valuepif/alue
is found an error is raised. The primitive arithmetic opiera are
evaluated in a similar way: both arguments of the operatames

Figure7. A monadic evaluator with mixins.

evaluated and the corresponding arithmetic operationaapked

to the result of the evaluations. For assignments we needhta-e
ate the expression being assigned and update the variathl¢hei
new value. Sequential composition of an empty list of exqiEs
returns0, while the sequential composition of a list of expressions
is the result of evaluating the expression in the head anaxhe
pressions in the tail. Finally, while loops are evaluatedilsirly

to the C' programming language, with integers playing the role of
booleans: we first evaluate the condition, if that condii®f we
stop and returf, otherwise we evaluate the body of the while loop
and evaluate the original while loop expression again.

Suppose that, for debbuging reasons, we wanted to watch the
assignments of some variable and trace the execution of tiile w
loops. In order to achieve this with the monadic evaluatesented
in Figure 5, we would need to directly change the originabjpam
and adapt it with the extra functionality. We can see the sy
changes in Figure 6. We only show the parts of the program that
need to be modified. The modularity problems discussed in Sec
tion 2.3 should be evident. On the one hand we need to modify th
type signature of the program in two ways: we need stronger re
quirements about the monad transformer in use; and we need an
extra string argument, which is the variable to be watchdds T
can of course, break programs that were using the olderovecfi
eval;. On the other hand, we also need to change the main body of
the program in a couple of places: we need to add a new casefor t
assignment clause (or, alternatively, modify the existing with
anif expression) to add the code to watch the variabland we
need to decorate the code for evaluating the while loop witb-t
ing code. Note that we also need to change all the recursli® ca
of the program to account for the extra argument, but thiscche
avoided using a reader monad.

5.2 A Modular Monadic Evaluator with Mixins

There are significant reuse and modularity problems withaihe
proach in Section 5.1, but these can basically be solved fome-
bine monads with mixins. In Figure 7 we show the code for a

weval :: (Show a, MonadWriter String m) =
String — Mixin (Expr — m a)
weval y continue call exp = case exp of
Assign (Varz) r |z =y —
do n < continue exp
tell (x H" = " H show n + "\n")
return n
_ — continue exp

Figure 8. The watching variables aspect.

teval :: Monad Writer String m = Mizin (Expr — m Int)
teval continue call exp = case exp of
While ¢ b —
don « call ¢
if (n = 0) then (tell "done\n" > return 0)
else (tell "repeating\n" > call b > call exp)
— continue exp

Figure9. The tracing loops aspect.

monadic evaluator using mixins. Instead of directly makiagur-
sive calls, this evaluator uses thell parameter provided by the
mixin. Apart from this fairly easy change to the program, vidyo
need to change the type of the function (wrappiigrin around
the functional type) and add two arguments for thetinue and
call functions provided by the mixin. To recover the basic mooadi
evaluator presented in Figure 5 we apply theérin function to
beval as follows:

evalg :: MonadState Env m = Expr — m Int

evals = mixin beval

In Figure 8 we show how we could modularly define a watching
aspect for assignments. This aspect has one extra stringartdy,
which is the variable to watch. For all the other cases exasgign-
ment weinherit the functionality from thecontinue function. For
the Assign constructor we may do something differeverriding
the functionality provided byontinue. Since we want to watch
what happens in the assignmentsyofve have to compareg with
the variable being assigned and, if they represent the sariabie,
call the continue function to execute the assignment code as well
as add the extra watching code using the writer monad tremsfo

newtype WriterT w m a = WriterT{

runWriterT :: m (a, w)
}

class (Monoid w, Monad m) =
MonadWriter w m | m — w where
tell ::w — m ()
If y does not match the variable being assigned, then the guard
will fail and the execution will fallthrough the default agsjust
executing the standard assignment code providecbhyinue.

In Figure 9 we show how we could modularly define the code
for the tracing while loops using mixins. Like the watching- a
pect, we handle all cases excdptiile throughcontinue. For the
While constructor we make a recursive call usiagi. This has
the effect ofcompletely overridingll the code for handling while
loops. Consequently, we need to essentially repeat thethatiere
have inbeval, but this time decorated by some tracing code us-
ing the writer monad transformer. We could potentially hined
to achieve a bit more of reuse for the code handling Wikile
constructor. However the point here is that, just like ineabj
oriented languages, we may choose to completely overridé&rax

functionality, partly override some functionality addisgme extra
code, or just inherit the functionality unchanged.

Having created the different mixins for the interpreter, ves
combine them using thenizin function. For example, we can
define the following programs:

watchy :: (MonadWriter String m, MonadState Env m) =

Expr — m Int
watchy = mizin (weval "y" @ beval)

debug :: (MonadWriter String m, MonadState Env m) =
Expr — m Int
debug = mizin (weval "x" & weval "y" &
teval ® weval "r" @ beval)
The first program watches a variable “y”, while executing the
program; the second program watches the variables “x”, hyd a
“r" while tracing the while loops and executing the prograf.
suitableC-like program to be used witlvatchy and debug would
be the following:
int z = 2;int y = 3;int r = 0;
while (y){r=r+z;y=y—1;}
which would be represented by the expression:
= Var "x"
y — Var Ilyll
r= Var "r"
program = Sequence
[Assign = (Lit 2), Assign y (Lit 3), Assign r (Lit 0),
While y (Sequence |
Assign v (Plus r), Assign y (Minus y (Lit 1))])]
By suitably picking state and writer monads to run those pro-
grams with, we can write programs that return the string &smiit-
ing from the tracing and watching code. For examplat; and
tests apply watchy and debug to program and return the string
built during the execution of the program.
test; = snd o fst $
runState (runWriterT (watchy program)) []
tests = snd o fst $
runState (runWriterT (debug program)) []

We can see the logs by applying.tStr to test; and tests. For
test; we would get the following output:

y=3
y =2
y=1
y=0

which shows the different assignments to the variable “ybdtigh
the execution of the program. Foest, the following would be
obtained:

z=2
y=3
r=20
repeating
r=2
y =2
repeating
r=4
y=1
repeating
r==~6
y=0
done

This string shows all the assignments that occurred thrdabgh
execution of the program as well as the traces of the whilp.loo

As we have seen the changes from the traditional monadic ver-
sion into the version with mixins are fairly small and do not i
troduce any significant extra burden. Still, the benefitems of

composgzpr i: (Expr — Expr) — (Ezpr — Expr)
composgapr call e = case e of

Lit x — Lit x
Var s — Var s
Plus e; e2 — Plus (call e;) (call e2)

Minus e; es — Minus (call er) (call ez)
Assign e; es — Assign (call er) (call ez)
Sequence | — Sequence (map call 1)

While e ea — While (call er) (call ez)

rename :: Bxpr — Expr
rename e = case e of
Var s — Var ("_" +s)
— COMPOSEzpr TENAME €

Figure 10. Renaming and theompos operation for expressions.

reuse are very significant. In order to add a new orthogoreadepi
of the functionality we do not need to alter the original piaog or
manually copy the code and create a new function with theaextr
functionality. Instead, through the use of mixins, we cast gre-
ate new mixins that inherit the behaviour of the originalgreon
and override just the functionality that needs to be changed
thermore, the type of the original program does not needaog,
but the mixins around that program can refine the types anptada
themselves to the new functionality. Consequently the dnation

of monads and mixins solves the problems discussed in $€x80

6. Scrapping Boilerplate With Mixins

A different application of mixins comes from the area of &tgpe)
generic programming where some approaches [Lammel and Pey
ton Jones, 2003, Bringert and Ranta, 2008] have been prdpose
to “scrap your boilerplaté[Lammel and Peyton Jones, 2003] de-
rived from traversals of large data structures. Commonéedtap-
proaches is the use of ad-hoc techniques to achieve reusdéor
itance) of traversal code. We will look at the technique psaz

by Bringert and Ranta [2008] and show how mixins can be used to
generalize that technique in useful ways.

The key idea of Bringert and Ranta is that many traversals are
slight variations of a common scheme that they namepos.
Bringert and Ranta propose a generalizethpos operation using
of applicative functor{McBride and Paterson, 2008], which are
a structure that generalizes monads. However, for the pagof
this paper, the use of a simpler version (which does not dersi
effects) suffices to demonstrate the advantages of usinipsnitxa
Figure 10 we show the simple version of thempos operation
for the expressions in Figure 5. Essentially, this openatiould
define the identity traversal if all the occurrencesc@fl would be
replaced by a recursive call. However, this is not the casecali
can be something other than just the recursive catbtoposgqp: -

We can exploit this to define @name operation that renames all
the variables of an expression by appending_atd‘all names. For

all the other cases we caldmposg.,- parametrized withrename,
which as the effect of inheriting all the code frommposggpr
(except for theVar case). In essence, this is a simple ad-hoc
approach to inheritance.

One problem with the technique proposed by Bringert and
Ranta is that we can only inherit fronemposga,-. Functions that
are defined in terms ofomposgsy- (like rename) cannot them-
selves be inherited because the recursion knot has beeedclos
One way around this is to use mixins instead and create a re-
naming mixin. We illustrate the idea in Figure 11. The fuonti
composezpr IS SUitably generalized to use mixins; and we define a
renameMiz mixin with essentially the same definition aswame

CcOMPoSEzpr : Mizin (Exzpr — Expr)
cOmMposgapr continue call e = case e of

Lit x — Lit x
Var s — Var s
Plus e; e2 — Plus (call e;) (call e2)

Minus e; es — Minus (call er) (call ez)
Assign e; ez — Assign (call er) (call ez2)
Sequence | — Sequence (map call 1)

While e ea — While (call er) (call ez)

renameMiz :: Mizin (Ezpr — Ezpr)

renameMix continue call e = case e of
Var s — Var ("_" +s)

— continue e

rename :: Expr — Expr
rename = mizin (renameMiz @& composgzpr)

Figure 11. Generalization otompos and renaming using mixins.

except that the call teomposg.y- is replaced by aontinue call.
We can easily recovername by applying themizin operation to
renameMiz & COMPOSEzpr-

The advantage of making renaming a mixin is that we can now
combine it with other mixins. For example, we could define a
simple simplifier for expressions as follows:

stmplify :: Mizin (Expr — Ezpr)

simplify continue call e = case e of

Plus (Lit 0) 7 — continue r

Plus | (Lit 0) — continue 1

_ — continue e
and we could easily combine this with the renaming mixin tgto
mixin composition, obtaining a function that simplifies exgsions
and renames variables.

renSimpl :: Expr — Expr

renSimpl = mizin (simplify ® renameMiz & composgzpr)

7. Crosscutting Aspects

The aspects discussed in Section 5 are tightly coupled Wwittn:
terpreter functionality in the following sense: they addraXunc-
tionality in the context of that interpreter, but would nat in gen-
eral reusable by other programs. Some aspects are mor&iionte
dependent and can be used by many programs in different demai
In this section we shall see how we can define these crossgati
pects with our techniques and some additional mixin contbisa
inspired by AOP.

7.1 Yet MoreModularization Oportunities

Lets return to the simple interpreter example by Wadleryghim
Section 2.1). By applying mixins, and using essentially shene
approach that we have taken in Section 5, we could easilyesolv
the modularity problems discussed in Section 2.3. We shaw th
resulting code in Figure 12. Theweval mixin provides the ba-
sic monadic evaluator functionalitypuntEval is an aspect that
counts the number of divisionstrorEwval is an aspect that handles
divisions byO0 errors; and, finally, théraceEval mixin provides
some basic tracing functionality. We can combine all thecfiom-
ality through mixin composition as follows:

fullEval :: Term — FEither String ((Int, Int), String)

fullEval = unwrap o mix where

mix = mizin (traceEval ® countFval &
errorEval & meval)

meval :: Monad m = Mizin (Term — m Int)
meval continue call t = case t of
Con a — return a
Divtu—doz <« call t
y «— call u
return (z ‘div‘ y)
countEval :: MonadState Int m = Mizin (Term — m Int)
countEval continue call t = case t of
Div _ _ — do r + continue t
n <« get
put (n + 1)
return r
— continue t

errorEval :: MonadError String m = Mixzin (Term — m Int)
errorEval continue call e = case e of
Div t u — -- override

doz «— call t

y «— call u

if y = 0 then throwError "divide by zero"

else return (z ‘div y)
— continue e

traceEval :: MonadWriter String m = Mizin (Term — m Int)
traceEval continue call e =
do r < continue e
tell (line e)
return r

line :: (Show a, Show b) = a — b — String
linet a ="eval (" H show t ") <= " H show a + "\n"

Figure 12. Modular mixins for Wadler’s interpreters.

unwrap = runldentity o runErrorT o
runWriterT o flip runStateT 0

Of course, we could as well combine just some of the mixins or
compose them in a different order (which would give us a diffie
program).

Itis nice that all the functionality is separated and canchesed
independently, but there is still some room for improvemsaine
of the functionality provided by the aspects is not inhdsetied to
an evaluator. This is the case for tbeuntingandtracing aspects
which could be useful in different contexts.

7.2 Crosscutting Aspectswith Advices and Pointcuts

The countEval mixin is tightly bound to term expressions because
we are interested in counting only the number of divisionst, Y
there is nothing inherently dependent on expression tenms i
mixin that executes one step of the computation and incresnen
one counter by one. For example, the following mixin

count; :: MonadState Int m = Mizin (a — m b)

count; continue call = do r < continue x

n <« get

put (n + 1)

return T
can be used to count steps on any values on somedtyfpevould
be nicer if somehow the counting functionality would be sepsd
from the functionality specific to the evaluator.

In Figure 13, inspired by ideas from AOP, we show a small
library of combinators that can be used to providaVice to
existing mixins. Theadvises combinator is used to advise a set
of pointcuts with a given mixin. The set of pointcuts is esizdly
represented as a predicate, of which thg andnone predicates

advises :: Mizin (a — b) — (a — Bool) — Mizin (a — b)
advises m p continue call x
|px = m continue call =
| otherwise = continue z
any :: a — Bool
any = const True
none :: a — Bool
none = const False

(U) :: (a — Bool) — (a — Bool) — a — Bool
fUg=Xx—faxVgzx

Figure 13. Mixin advice and pointcuts.

represent, respectively, the set of all pointcuts and theteset;
and theJ combinator represents the union of two sets of pointcuts.
These combinators have a rich set of algebraic properties:

m ‘advises‘ any = m

m ‘advises‘ none = zero

anyUp = any = p U any

noneUp = p = pUnone

p1 Upz = p2 U p;

(1 Upz) Ups = pi U (p2 Ups)
which have fairly intuitive interpretations. The first peapy says
that if a mixinm advises any pointcut then that is equivalentto
The second property says that a mixin advising no pointcuts
is equivalent to thezero mixin. The third and fourth properties
mean thatany and none are, respectively, the zero and neutral
elements ofU. Finally, the last two properties are, respectively, the
commutativity and associativity af. Two examples of pointcuts
are given by:

division :: Term — Bool

division (Div — _) = True
division _ = False
con :: Term — Bool

con (Con _) = True
con _ = False

The division pointcut can be used when we want to trigger a piece
of advice on the division constructor; similarly we can ube t
con pointcut to trigger advice on integer terms. For example, to
recover the functionality provided bypuntEval we could define
the following mixin:

divCount; :: MonadState Int m = Mizin (Term — m a)

divCount; = count; ‘advises‘ division
The advantage ofivCount; over countEval is that the counting
mixin functionality is no longeentangledwith the evaluator code
for term expressions. This means that we could use the caunti
mixin, for example, to create a mixin to count the number of
arithmetic operations in the evaluator in Section 5:

plus :: Expr — Bool

plus (Plus _ _)

plus _

True
False

minus :: Bxpr — Bool
minus (Minus — _) = True
minus — = False

opCount :: MonadState Int m = Mizin (Expr — m a)
opCount = count; ‘advises‘ (plus U minus)
Of course, we could also us&unt; in programs that are not
evaluators. A potential use of the counting mixin would be fo
spotting functions that are good candidates to memoizafibe
following function:

before :: Monad m = (b — m a) — Mizin (b — m c)
before mf continue call x = do {mf z; continue = }
after :: Monad m = (b — ¢ — m a) — Mizin (b — m c)
after mf continue call x =

do {r < continue x; mf z r; return r}

Figure 14. Monadic advices

countFib :: Int — (Int, Int)
countFib = unwrap o mizin (count; ‘advises‘ (<4) @ fib)
where unwrap = flip runState 0

counts all calls to the (haive) fibonacci function that assliant.
If we run countFib a few times with some values we can get some
(experimental) evidence of whether or not computation isnde
repeated. For example, the resultofintFib 8 would be(21, 55)
and the result forcountFib 15 would be (610, 1597). The first
element in the outputed pair is the fibonacci value and thergkis
the number of recursive calls to input values less than 4ra$dts
given by countFib (together with some intuitive understanding of
how the fibonacci function works) suggest that computati@y m
be repeated and that the function could benefit from menioizat

7.3 Monadic Advices

For monadic mixins, there are two more combinators in Figdre
that are quite useful. Thigefore and after combinators (named af-
ter the well-known AOP notions of before and after advicgglya
a monadic computation respectively before and aftevr@inue
call. The argument t@ontinue is available tobefore; while both
the argument to and the result of calliagntinue are at the dis-
posal of after. With before and after we can create even more
fine-grained reusable functionality that does not commiivten
continue is called. For example, we could define a computation
countg that does not itself catlontinue and does not require the
use of mixins.

county :: MonadState Int m = a — m ()

counts — =do {n < get;put (n+1)}

divCounty :: MonadState Int m = Mizin (Term — m a)
divCounte = before counts ‘advises‘ division
With before we could create some very simple tracing facilities
using the primitive functiorprint :: a — 10 ()
condTrace :: Show a = (a — Bool) — Mizin (a — IO b)
condTrace p = before print ‘advises‘ p

trace :: Show a = Mizin (a — IO b)

trace = condTrace any
The condTrace is a conditional tracing function that takes a set of
pointcuts (or a predicate) and traces all calls that matobetipoint-
cuts; thetrace mixin unconditionally applies the tracing function-
ality to any pointcut. Withcond Trace we could trace all the calls
of the evaluator on divisions using the following program:

traceDivEval :: Term — 10 Int

traceDivEval = mizin (condTrace division ® meval)
With the after combinator we could, not only print the arguments,
but also the results of the calls:

fullTrace :: (Show a, Show b, MonadWriter String m) =

(a — Bool) — Mizin (a — m b)
fullTrace p = after debug ‘advises‘ p where
debug arg res = tell (
"Argument : " -H show arg +
"\nResult : "+ show res H "\n\n")

For fullTrace we use the writer monad transformer, which we can
compose with other monads. WiftullTrace we could do some
conditional tracing on the evaluator from Figure 7. Thedaiing
program:

traceBEval :: Expr — (Int, String)
traceBEval = unwrap o mizin (fullTrace points @ beval)
where points = — o (plus U minus)
unwrap = fst o flip runState [] o runWriterT

takes an expression and returns the result of evaluatingxpaes-
sion together with a trace created fyilTrace. We make use of
pointcuts to ensure that all calls are traced except thoske neethe
arithmetic operators. Note thatis the following function:

—:: Bool — Bool

- True = False

- False = True

8. Discussion and Related Work
8.1 Mixinsand Inheritancein Functional Programming

Many authors before us [Cook, 1989, McAdam, 1997, Garrigue,
2000, Laufer, 2003, Brown and Cook, 2007] argued about the
uses of inheritance in functional programming, employimgilar
techniques to ours. Unfortunately their work seems to haenb
largely under-appreciated by the functional programmiogu-
nity. We can think of two reasons for this. Firstly, some ofgh
works [McAdam, 1997, Garrigue, 2000, Laufer, 2003] tend to
employ open recursion rather directly to programs, withost
ing mixin abstractions like the ones introduced by us—sugh a
for example, thelizin type and mixin composition. Without this
“sugar’ the use of open recursion can lead to relatively complex
types and definitions and render the techniques impractssd-
ondly, these techniques have being mostly employed in impur
functional languages like ML and OCaml where side-effects a
implicit and monads are not used. While inheritance is adgta
valuable in those languages, their need is a bit less pgetsam in
pure languages because a local change to a program intngdaci
side-effect is unlikely to change the type of the functiorth/hon-
ads, this is usually not the case and a small local changkely li

to break existing code. Therefore, modularization (in pufenc-
tional languages) is not only useful for reuse but also fesprving
backwards compatibility.

Several other applications of mixins and inheritance tacfun
tional programming are discussed in the literature. MCA@E987]
shows how some effects can be simulated (without using n®nad
using mixins and he presents a type-inference algorithnreviine
treatment of error messages is modularly defined. Garrigo@d]
employs open recursion to emuladsgen functionsn his solu-
tion to the expression problem wigolymorphic variantsLaufer
[2003] shows how to apply mixins to interpreters and how to
define mutually-recursive functions using mixins. He alsguas
about the relation of his technique with the OQsSWoR pat-
tern [Gamma et al., 1995]. Th&trap your Boilerplatélike tech-
niques [Lammel and Peyton Jones, 2003, Bringert and R2008)
that appeared recently in the literature fundamentally ogl ad-
hoc approaches to inheritance to reuse traversal code.

Brown and Cook [2007] show how to approach the problem of
memoization in purely functional languages usingnadic memo-
ization mixinsusing a technique that is very close to what we use
in this paper. Their technique is more restricted in the sghat
only one type of calls is permitted in the mixin programs. ifyp
cally, in the base program that call plays the role of th& (or
call) argument, while in the wrapper programs it plays the role of
super (Or continue). In our approach both types of calls are avail-
able to any mixin, which allows additional flexibility (foxemple,
the use ofcall in a wrapper program, allows usdoerrideexisting
functionality). Of course, Brown and Cook were interestedalv-
ing a problem in the much more restricted domain of memanati
while we are focused on the more general problem of modirayiz

programs in an AOP-style. We believe that for memoizatioovBr
and Cook’s technique is enough.

8.2 Asgpect-Oriented Programming

Kiczales et al. [1997]'s aspect-oriented programming abraod-
ularizing concerns that cut across the components of a adftw
system. In AOP, programmers are able to modularize thess-cro
cutting concerns with locally defined aspects. Typical ienpénta-
tions of AOP (such as, for example, AspectJ [Eclipse-Fotioda
2000-2009]) usgointcutsto designate when and where to crosscut
using the names aflassesmethods modulesor any other entity
containing codeadvicesspecify what will happen when a pointcut
is reached.

The notions of pointcuts and advices inspired the combisato
presented in Section 7. However our combinators differiiign
cantly from pointcuts and advices found in most AOP langesage
in respect to their expressive power, implementation aadae-
ing properties. Because traditional pointcuts typicadlfer tosyn-
tactical entities showing up in a program, we need either a meta-
language (that can refer and manipulate the elements that g
in a program); or some form of runtime reflexive capabilifjsat
retains the meta-information and allows manipulation aigpams
at runtime). Our notion of pointcuts is based on predicatethe
inputs of programs. Advising functions (or other entitibased on
their names is simply not possible with our approach. Howes
we have seen, we can easily emulate pointcutslaia construc-
tors, by creating a simple predicate that tests whether or noigha
the constructor of interest. We believe that for functigmalgrams
this already provides some significant expressivenessg siata
constructors in functional languages play a similar rolm&thods
in object-oriented languages. The advantages of our catdim
are that they aréirst-classentities of the language; and they do not
endanger modular program understanding and reasoninghughi
a significant challenge in other implementations of AOP andra
rent hot research topic [Aldrich, 2005, Kiczales and MeZ0i05].
Furthermore, our approach does not rely on any kind of code or
bytecode weaving (which is common in many AOP technologies)
supporting full separate compilation.

8.3 Asgpect Oriented Programming and M onads

structure code. However, an interesting question is whetrere
are some additional modularity benefits in monads even fpunm
languages. One potential benefit (pointed out by WadlerJ[)99
is that monads are not just restricted to effects that shovinup
common impure languages lilstate or exceptionsMonads can
model other effects likmondeterminisnor continuations which
are not usually natively found in impure languages. Anothem-
efit arises from the use of monad transformers. Programsewrit
with monad transformers are usually more general than aimil
impure programs because the order on which effects areegppli
can be controlled by choosing different instantiationshefinonad
transformer. The choice of different monad transformerslead

to programs with different behaviours, and different tyfms (see
the eval; andevals examples at the end of Section 3.2). When im-
plicit effects are used, the order in which effects are auobis fixed
and cannot be controlled.

8.4 Beyond Monads

Although monads are (by far) the most popular abstractionddel
effects and structure programs, they are certainly not tig ane
and there are many other useful abstractidmswshave been in-
troduced by Hughes [2000] as a generalization of monadsérat
be useful in many libraries that have interfaces which areléd
mentally incompatible with monads. Somewhere in between th
notions of arrows and monads stands the noticapplicative func-
tors [McBride and Paterson, 2008], which provide a simpler inter
face than arrows but can still be used in many applicationsrevh
monads are not usabl®arametrized monadand parametrized
Freyd categories[Atkey, 2006] are two of the latest abstractions
proposed to capture computational effects, and they caiséde to
model some effects that do not quite fit the (unparametrized)
sions of the corresponding abstractions.

In this paper we have choosen to just use monads in comhinatio
with mixins, since this is the most familiar abstraction togram-
mers and there is a lot of useful infrastructure already @mgnted
in the Haskell hierarchical libraries. In particular, détmachinery
required by monad transformers is already implemented and c
be readily used. However, there is nothing fundamentalpéhopus
from using mixins with other kinds of effects. In fact therayrbe
some important benefits in doing so. For example, monads o no

The connection between AOP and monads is a recurring theme ofto compose well, although monad transformers help sigmifigén

discussion since De Meuter [1997] argued about the use oadson
as a theoretical foundation for AOP. Monads are clearly aunod
larization mechanism, but the question is whether they anedu-
larization mechanism aimed at the separation of crosggutbn-
cerns. In some sense it can be argued that this is indeed ke ca
as the plumbing necessary by the particular effects canpiareal

by a monad instance and reused by different programs. Howeve
the plumbing required for particular effects is just a vesgtricted
case of cross-cutting concerns. Hofer and Ostermann [209dEd
recently that fnonads and aspects have to be regarded as quite dif-
ferent mechanismsand we have to agree with their conclusion:
all the programs in this paper could be modularly implemeire
essentially the same way without monads (but still usingimsix

in an impure functional language like ML, OCaml or Scala gsin
implicit side-effects. So, the additional modularizatiointhe pro-
grams presented in this paper is due to mixins and not moirads.
fact, this should not be too surprising in the first place asmifain
motivation for using monads [Wadler, 1992] was to essdptia-
cover thesamemodularity properties of impure languages (see also
Section 2); and typical AOP implementations are aimedhatov-

ing the modularity of these same impure languages.

Modularity benefits of monads It is generally uncontested that
for purely functional languages there is a lot to be gainenfr
using monads, because of their ability to emulate sidestsffand

this respect. An interesting alternative that can (somesjrbe used
instead of monads and monad transformers are applicatiotdis,
which can always be composed [McBride and Paterson, 2088, Gi
bons and Oliveira, 2006]. Also, it is difficult to use two distt
monad transformers of the same kind in the same programxfor e
ample, we may want to keep different logs for tracing and hiatg
variables); with other technologies this may be easier hieze.

9. Conclusions

Monads are widely used in Haskell to model computationalat$f

and structure purely functional programs. Inheritance suzial
element of all modern object-oriented languages. Both m@sims
have been very successful at modularizing and reusingeliftes-
pects of programs, yet their combination has been largetierin
studied. This paper shows that the combination of the twcharec
nisms yields substantial modularity and reuse advantagescan

be used to develop programs in a simple and elegant AOP style
without compromising any of the beloved properties of puact
tional programming.

We hope that this paper has convinced the reader of the uses of
inheritance for functional programming. It seems clear $ahat
there are substantial advantages in the adoption of tecbsithat
exploit inheritance to modularize and reuse functionagpams.
Moreover, the mixin approach introduced in this paper seerbe

a perfect example gbure lazy functional programmingt makes
extensive use of higher-order functipitemploys arelegant com-
binator style with many interesting algebraic propertiesd it is
implemented in a very simple way under a lazy semantics

10. Acknowledgements

William Cook explained to us the connection between the mixi
composition operation presented in this paper and his owmmi
operators. Jeremy Gibbons commented an early version sf thi
paper. We are grateful to both of them.

References

Jonathan Aldrich. Open modules: Modular reasoning abotitad
In LNCS 3586: European Conference on Object-Oriented Pro-
gramming pages 144-168, 2005.

Robert Atkey. Parameterized notions of computation. MBFP
2006 July 2006.

Bjorn Bringert and Aarne Ranta. A pattern for almost compo-
sitional functions. Journal of Functional Programmingl8
(Special Double Issue 5-6):567-598, 2008.

Daniel Brown and William R. Cook. Monadic memoization mix-
ins. Technical Report TR-07-11, The University of Texadyrise
ary 2007.

Luca Cardelli, Simone Martini, John C. Mitchell, and AndreeS
drov. An extension of system f with subtyping. Iimformation
and Computationpages 750-770. Springer-Verlag, 1994.

William R. Cook. A Denotational Semantics of InheritancBhD
thesis, Brown University, 1989.

Wolfgang De Meuter. Monads as a theoretical foundation éqr. a
In International Workshop on Aspect-Oriented Programming at
ECOOP, 1997.

Eclipse-Foundation. Aspectj,
http://eclipse.org/aspectj/.

Martin Erwig and Deling Ren. Monadification of functionalopr
grams. Science of Computer Programming?2(1-3):101-129,
2004.

E. Gamma, R. Helm, R. Johnson, and J. Vlissid#ssign Patterns:
Elements of Reusable Object-Oriented Softwardddison-
Wesley, 1995.

Jacques Garrigue. Code reuse through polymorphic varidnts
Workshop on Foundations of Software Engineering, Sasaguri
Japan 2000.

Jeremy Gibbons and Bruno Oliveira. The essence of the lter-
ator pattern. In Tarmo Uustalu and Conor McBride, editors,
Mathematically-Structured Functional Programmijngolume
4014 of Lecture Notes in Computer Sciencgpringer-Verlag,
July 2006.

Christian Hofer and Klaus Ostermann. On the relation of etspe
and monads. IFOAL '07: Proceedings of the 6th workshop on
Foundations of aspect-oriented languagesges 27-33, New
York, NY, USA, 2007. ACM.

John Hughes. Generalising monads to arrd@egence of Computer
Programming 37:67-111, 2000.

Mark P. Jones. Type classes with functional dependencies. |
ESOP ’'00: Proceedings of the 9th European Symposium on
Programming Languages and Systepeges 230-244, London,
UK, 2000. Springer-Verlag.

Simon Peyton Jones, editdidaskell 98 Language and Libraries —
The Revised ReportCambridge University Press, Cambridge,
England, 2003.

2000-2009. See

Gregor Kiczales and Mira Mezini. Aspect-oriented programm
and modular reasoning. WCM: International Conference on
Software engineeringpages 49-58, 2005.

Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris
Maeda, Cristina Lopes, Jean-Marc Loingtier, and John Ir-
win. Aspect-oriented programming. In Mehmet Aksit and
Satoshi Matsuoka, editoreNCS 1241: European Conference
on Object-Oriented Programmingages 220-242, 1997.

Ralf Lammel and Simon Peyton Jones. Scrap your boilerpiate
practical design pattern for generic programmin§CM SIG-
PLAN Notices 38(3):26—37, March 2003. Proceedings of the
ACM SIGPLAN Workshop on Types in Language Design and
Implementation (TLDI 2003).

Konstantin Laufer. What functional programmers can learn
from the Visitor pattern. Technical report, Loyola Univer-
sity Chicago, March 2003. URhttp://www.cs.luc.edu/
~laufer/papers/mixins03.pdf.

Sheng Liang, Paul Hudak, and Mark Jones. Monad transform-
ers and modular interpreters. @onference record of POPL
'95, 22nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages: San Francisco, California, Jaryuar
22-25, 1995pages 333-343, New York, NY, USA, 1995. ACM
Press.

Bruce J. McAdam. That about wraps it up — using fix to handle
errors without exceptions, and other programming trickechF
nical report, Laboratory for Foundations of Computer Scén
The University of Edinburgh, 1997.

Conor McBride and Ross Paterson. Applicative programmiitly w
effects.Journal of Functional Programming008.

Donald Michie. Memo functions and machine learnirigature
218:19-22, 1968.

Eugenio Moggi. Computational lambda-calculus and monads.
In Logic in Computer Science, 1989. LICS '89, Proceedings.,
Fourth Annual Symposium ppages 14-23, 1989.

Eugenio Moggi. Notions of computation and monaladormation
and Computation93(1):55-92, July 1991.

Philip Wadler. The essence of functional programmingP®PL
'92: Proceedings of the 19th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languaggmges 1-14,
New York, NY, USA, 1992. ACM.

Philip Wadler. Monads for functional programming. In M. Bro
editor,Program Design Calculi: Proceedings of the 1992 Mark-
toberdorf International Summer Scho8lpringer-Verlag, 1993.

