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Abstract
Around twenty years ago two important developments happened in
the areas of modularity and reuse in programming languages.On
the one hand, Moggi showed how computational effects found in
impure languages could be simulated using the notion ofmonads
from category theory. Inspired by Moggi’s work, Wadler showed
how monads could be used to structure (purely functional) pro-
grams. On the other hand, work by Cook showed how variations
of mixinscould model different notions ofinheritance(normally
found in object-oriented languages) in simple, elegant andcompo-
sitional ways, by using traditional techniques of fixed-point theory.

Monads and mixins are helpful to handle different aspects of
modularity and reuse in programming languages, yet they have
been largely explored independently. In this paper we show that
the combination of monads and mixins leads to a simpleaspect-
oriented programming(AOP) style that can be used effectively
in purely functional programming languages to writeelegant,
reusableandmodularprograms.

1. Introduction
Pioneering work by Moggi [1989, 1991] showed how the category
theory notion ofmonadscould be used to model computational ef-
fects and structure the denotational semantics of programming lan-
guages. This inspired Wadler [1992] to apply monads in essentially
the same way, but to structure functional programs instead.By us-
ing monads, superficially different variations of purely functional
programs that model similar impure programs become structured
using the same abstractions. This has important benefits in terms of
reuse and modularity.

Cook [1989] studied how variations ofmixins could model
different notions ofinheritance—found in various object-oriented
(OO) languages—in simple, elegant and compositional ways,by
using traditional techniques of fixed-point theory. He noted that
these techniques are not only applicable to OO languages, but they
can also be applied, for example, to functional languages. In fact,
many of Cook’s models of inheritance are essentially nothing more
thansimple, beautiful, combinator-style functional programsthat
can be translated rather directly into a language like Haskell [Jones,
2003].
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Monads and mixins are helpful to handle different aspects of
modularity and reuse in programming languages, but so far they
have been largely explored independently. A noteworthy exception
is the work by Brown and Cook [2007], which studied the appli-
cation of a simple variety of mixins in combination with monads
to the problem ofmemoization[Michie, 1968] in purely functional
languages.

The purpose of this paper is to show that the combination of
monads and mixins yields significant modularity and reuse benefits
and leads to a simpleaspect-oriented programming[Kiczales et al.,
1997] style, which can be used effectively in purely functional
programming languages to writeelegant, reusableand modular
programs. The contributions of this paper are:

• A library of mixin combinators inspired by Cook [1989] and
some concepts from AOP.

• A technique consisting ofmonadification [Erwig and Ren,
2004] and “mixinfication” of purely functional programs that
can be used to write highly modular and reusable programs.
This technique is helpful to solve the modularity problems
discussed in Section 2.3.

• Several interesting examples illustrating the applications of the
technique.

Overview In Section 2 we review Wadler’s work on monads for
structuring functional programs, discuss the modularity problem
that monads solve (in purely functional languages) and somemod-
ularity problems that remain unsolved. Section 3 introducesmonad
transformers, which provide a standard way to combine different
monads together and that we will make extensive use later in this
paper. Section 4 introducesmixinsand their use to model inheri-
tance; and presents the base mixin library that we are going to use
throughout the paper. Section 5 discusses the application of mix-
ins and monads to modularly capture some aspects of interpreters.
Section 6 shows another application of mixins for “scrapping boil-
erplate” [Lämmel and Peyton Jones, 2003] of traversal code. In
Section 7 we extend the mixin library with some combinators in-
spired by ideas of AOP and exemplify their use to capture crosscut-
ting concerns liketracingor step counting. Section 8 discusses our
results and related work. Finally Section 9 concludes.

2. Monads and Modularity
This section introduces monads and their use for structuring func-
tional programs, improving the modularity of programs written in
purely functional languages. Some remaining modularity problems
are also discussed.

2.1 A Modularity Problem in Purely Functional Languages

Wadler [1992, 1993] motivates the use of monads to structure
functional programs by discussing a dilemma that occurs in purely
functional languages. On the one hand purely functional languages



have the advantage that all the flow of data is explicit, consequently
substitution of equals by equals is always valid and reasoning about
programs becomes very easy. On the other hand making all flow
of data explicit can sometimes be painfully verbose and obscure
the essential details of a program. Even worse, this can cause
pernicious modularity problems. This is illustrated by Wadler with
a simple interpreter for expressions:

data Term = Con Int | Div Term Term

eval1 :: Term → Int

eval1 (Con a) = a

eval1 (Div t u) = eval1 t ‘div ‘ eval1 u
The simple expressions that can be defined byTerm allow the def-
inition of integer expressions and division of two terms. A simple
evaluator for expressions is given byeval1 . One interesting change
to this evaluator is to add division by0 error checks to make it more
robust. This can be achieved with the following program:

type Exception = String

eval2 :: Term → Either Exception Int

eval2 (Con a) = Right a

eval2 (Div t u) = case (eval2 t , eval2 u) of

(Left e, ) → Left e

(Right x , Left e) → Left e

(Right x , Right y)→
if y ≡ 0 then Left "divide by zero"

else Right (x ‘div ‘ y)
However, this entails entails modifying all the clauses andrecursive
calls of the program to check and handle errors appropriately. This
is in contrast with impure languages where no such restructuring
would be necessary and only a relatively local change would be
needed.

2.2 Monads to Structure Functional Programs

In order to avoid the excessive plumbing required to carry data
around and the global restructurings of programs in purely func-
tional languages, Wadler proposed to structure functionalprograms
using monads, which were pioneered by Moggi [1989, 1991] to
simulate computational effects such asglobal state, exception han-
dling, output and non-determinismin a pure setting. In Haskell,
monads can be captured by the following type class.

class Monad m where

return :: a → m a

(>>=) :: m a → (a → m b)→ m b
The functionreturn lifts a value of typea into a (pure) computa-
tion of the same type. Thebinding function>>= provides a way to
apply a function of typea → m b to a computation of typem a.
Syntactic sugar for those operations is provided in Haskellthrough
thedo notation.

A monadic evaluator for expressions can be written as follows:
meval1 :: Monad m ⇒ Term → m Int

meval1 (Con a) = return a

meval1 (Div t u) = do x ← meval1 t

y ← meval1 u

return (x ‘div ‘ y)
For integer terms we just return the integer denoted by the term; for
divisions, we first compute the value of the dividend and bindit to
x , then we compute the value of the divisor and bind it toy , and
finally we returnx ‘div ‘ y .

To recover the simple evaluator given byeval1 we can use the
identity monad, which provides a trivial instance of monads; the
return and>>= operations are, respectively, the identity function
and reverse application (modulo the isomorphisms for into and out
of theId type constructor).

newtype Id a = Id{runId :: a }

instance Monad Id where

return x = Id x

x >>= f = f $ runId x
Now we could defineeval1 by instantiating the monad toId and
extracting the value contained in that structure:

eval1 :: Term → Int

eval1 = runId ◦meval1
A more compelling example is given by the error monad

instance Monad (Either e) where

return x = Right x

x >>= f = case x of

Left e → Left e

Right x → f x

throwError :: String → Either Exception a

throwError = Left
which we can use to recovereval2 from the generic monadic
version, with a small local change onmeval1 to handle division
by 0 errors.

meval2 :: Term → Either Exception Int

meval2 (Con a) = return a

meval2 (Div t u) =
do x ← meval2 t

y ← meval2 u

if y ≡ 0 then throwError "divide by zero"

else return (x ‘div ‘ y)
The benefits of the monadic approach should be clear: a lot of
the plumbing needed for particular programs is abstracted in an
instance of a monad and can be reused by other programs; and new
orthogonal behaviour to the main functionality of the program can
be added with much more local changes. This achieves Wadler’s
goal of structuring programs in purely functional programming
languages with essentially the same modularity benefits of impure
languages.

2.3 Some Remaining Modularity Problems

Unfortunately, from a modularity and reuse perspective, there are
still a few of problems left.

The first problem (common to most impure languages) is that
(usually) there isno true reuse: in order to adapt a program with
some new orthogonal behaviour we normally have to directly mod-
ify the original program (even though the change is now much more
localized). For example, in order to adapt the monadic evaluator
to handle errors, we still have to change part of the last clause
of meval1 . Moreover, to retain the two programs (meval1 and
meval2 ) around we essentially need to manually copy most of the
code and repeat it in both programs; this is the nemesis of modular
reuse!

The second problem arises from the fact that monads make com-
putational effects explicit on the types of the functions. This is not
a disadvantage on its own, much on the contrary: because effects
are explicit on the types, much stronger properties are known about
the function. However, it is possible that adapting a program will
break existing code—since adding new orthogonal behaviourmay
imply changing the type of the function.

A final problem is that it is not trivial to mix two different
kinds of computational effects in the monadic approach: monads
are well-known to be problematic to compose. Nonetheless, there
is a fairly standard way to solve this problem through the useof
monad transformers[Liang et al., 1995], which we will discuss in
Section 3.

3. Monad Transformers
This section introduces monad transformers, which will play an
important role in this paper.



newtype ErrorT e m a = ErrorT{
runErrorT :: m (Either e a)
}

instance MonadTrans (ErrorT e) where

lift m = ErrorT $ do {a ← m; return (Right a)}

class Monad m ⇒ MonadError e m | m → e where

throwError :: e → m a

catchError :: m a → (e → m a)→ m a

instance Monad m ⇒ MonadError e (ErrorT e m) where

throwError l = ErrorT $ return (Left l)
m ‘catchError ‘ h = ErrorT $ do

a ← runErrorT m

case a of

Left l → runErrorT (h l)
Right r → return (Right r)

instance Monad m ⇒ Monad (ErrorT e m) where

return a = ErrorT $ return (Right a)
m >>= k = ErrorT $ do

a ← runErrorT m

case a of

Left l → return (Left l)
Right r → runErrorT (k r)

Figure 1. Error monad transformer machinery.

3.1 Heavy (But Handy) Machinery for Monad Transformers

The concept of a monad transformer [Liang et al., 1995] provides
a way to define programs that use different monads. With monads
transformers, different kinds of monads can be layered on top of
each other, offering a way to compose the functionality provided
by each monad. A monad transformer can be defined with the
following type class:

class MonadTrans t where

lift :: Monad m ⇒ m a → t m a

The lift operation takes some monadic computationm a, and lifts
it to the top-level monadt m . Of course, we must maket m itself
an instance of a monad. Monad transformers involve the definition
of some machinery. In Figure 1 we show part of the machinery that
is required for handling the error monad transformer. The newtype
ErrorT e m a defines the type of the transformer; an instance of
MonadTrans for ErrorT e is also provided. With monad trans-
formers we can have multiple types that are actually error monads.
To better capture the notion of error monads aMonadError e m
type class with two methodsthrowError andcatchError is pro-
vided; and an instance of that type class is defined for the er-
ror monad transformer type. Finally, we also need an instance of
Monad for ErrorT e m. Note thatMonadError requiresmul-
tiple parameter type classes with functional dependencies[Jones,
2000]; bothMonadError andMonadTrans as well as many other
monad transformers can be found in theGlasgow Haskell Compiler
(GHC)monad transformer library.

Suppose that we wanted to combine the functionality of an error
monad with a state monad. With monad transformers this is easy.
Assuming that all the monad and monad transformer machinery
for the state monad is defined, what we would need to do is to
essentially define how a error monad transformer behaves when
combined with state. However, we shall not bother the readerwith
all the details required for this to work. For the reader interested
in the details, we suggest Liang et al. [1995]. For the purposes
of this paper it is enough to know that there are different monad

transformer types (such asErrorT e m a or StateT s m a) and
that there are type classes likeMonadError andMonadState that
abstract from particular implementations of error or statemonads.
We shall introduce the monad transformer types and respective type
classes as we need them.

3.2 Using Monad Transformers

Despite the somewhat heavy machinery that is required for monad
transformers, their use is fairly easy and intuitive, and the program-
mer does not need to be aware of most of the intricate details.For
example, in order to use a state monad to count the number of di-
visions, we can use the operations provided by theMonadState
type class, without committing to a particular state monad.The
state monad transformer type and theMonadState type classes
are defined as follows:

newtype StateT s m a = StateT {
runStateT :: s → m (a, s)
}

class Monad m ⇒ MonadState s m | m → s where

get :: m s

put :: s → m ()
We can now use theget andput operations to count the number of
divisions in the evaluator:

seval :: MonadState Int m ⇒ Term → m Int

seval (Con a) = return a

seval (Div t u) = do x ← seval t

y ← seval u

n ← get

put (n + 1)
return (x ‘div ‘ y)

Using seval we can easily define a program that given a term
returns a pair of integers that represents the value of the term and
the number of divisions performed in the process of evaluating the
term.

eval3 :: Term → (Int , Int)
eval3 t = runId $ runStateT (seval t) 0

Here we instantiate the monadm in seval to beStateT Int Id
and remove the monadic layers by runningrunStateT andrunId ;
the second argument ofrunStateT represents the initial number
of divisions.

Of course, the greatest advantage of monad transformers comes
when we want to use the functionality from different monads to-
gether. For example, if we wanted to combine the error checking
and division counting functionalities we could write the following
program:

smeval :: (MonadState Int m,MonadError Exception m)⇒
Term → m Int

smeval (Con a) = return a

smeval (Div t u) =
do x ← smeval t

y ← smeval u

n ← get

put (n + 1)
if y ≡ 0 then throwError "divide by zero!"

else return (x ‘div ‘ y)
In this program both the state monad and the error monad oper-
ations are used, so the monadm needs to be both an instance of
MonadState andMonadError . There are actually a couple of in-
teresting valid candidates for concrete instantiations ofm . For ex-
ample, we could havem = StateT Int (ErrorT Exception Id)
or m = ErrorT Exception (StateT Int Id). We show two pro-
grams derived from these two instantiations next:

eval4 :: Term → Either Exception (Int , Int)
eval4 t = runId $ runErrorT $ runStateT (smeval t) 0



eval5 :: Term → (Either Exception Int , Int)
eval5 t = runId $ runStateT (runErrorT (smeval t)) 0

These two programs have different behaviours (and this is visible
from their types). Both programs will return the result of evaluat-
ing the term and the number of divisions if no exception occurs.
However, if an exception occurs theneval4 will throw away all the
information apart from the exception. In contrast, the program de-
fined byeval5 will also throw an exception, but it will retain the
numbers of divisions performed up to that point.

Monad transformers solve the problem of composing the func-
tionality of different monads, but they do not solve the two other
modularity problems discussed in Section 2.3.

4. Mixins
In this section we introducemixinsand their use to model inheri-
tance. We also present the basic mixin library that we are going to
use throughout the paper.

4.1 Mixin Inheritance

Object-oriented languages generally provide powerful reuse mech-
anisms based oninheritance. Cook [1989] studied those mecha-
nisms in detail and proposed a model for inheritance using tra-
ditional techniques of fixed-point theory. Borrowing a simple
(slightly modified) example from Cook, we illustrate the essential
idea next:

G1 = λthis .[value 7→ 7, square 7→ this.value ∗ this .value ]
HereG1 defines a function that takes a recordthis as argument

and returns another record. For the purposes of this paper, we can
think of the two records as having the same structure with fields
value andsquare . Functions of this kind, taking parameters with
the same structure of the output (but not necessarily records), are
essentially what we callmixins. G1 is an instance of a simple type
of mixins that Cook calls agenerator. The record returned byG1

assigns7 to value and definessquare in terms of this . For the
reader familiar with object-oriented programming the intention of
this program should be clear;this is meant to represent the self-
reference to the record (or object). However,this can be any other
record andsquare may or may not be49. In order to makethis the
self-reference we can use a fixpoint operation:

m1 = fix G1 = [value 7→ 7, square 7→ 49]
In this case, the value ofsquare for m1 is indeed49. Now lets as-
sume that we would have another generatorG2 defined as follows:

G2 = λthis .[value 7→ 2]
We can think of the result record has having the same struc-

ture asG1 but being only partly defined (without a definition for
square). We can combineG1 with G2 using some form of com-
position. For example, if we use what Cook calls thepreferential
combination function(that we represent here by⊞) and then apply
the fixpoint operation we would obtain the following:

m2 = fix (G1 ⊞ G2 ) = [value 7→ 2, square 7→ 4]
The preferential combination function overrides any fieldsof the
second record that are already defined by the first record andin-
herits the remaining fields. Becausesquare is defined in terms of
the self-reference, the value ofsquare will be computed in terms
of G1 ⊞ G2 which will result in4.

This example shows the essence of the model of mixin inher-
itance: we can write our programs in terms of self-references and
thencomposethose programs to override and reuse existing func-
tionality. In general, to handle all the aspects of inheritance in OO
languages, we need to account for the possibility of recordshaving
different shapes and we may need combination functions thatwork
by examining the structure of records. However, as we shall see
next, we can still enjoy from many of the benefits of inheritance in
a functional language like Haskell without considering those more
intricate aspects of OO inheritance.

type Mixin s = s → s → s

(⊕) :: Mixin s → Mixin s → Mixin s

f ⊕ g = λsuper this → f (g super this) this

zero :: Mixin s

zero super this = super

mixin :: Mixin s → s

mixin f = let m = mixin f in f m m

Figure 2. Basic mixin combinators.

4.2 A Small Mixin Library

In Figure 2 we define the basis of our mixin library. The typeMixin
specifies the type of functions that can be used as mixins. This is
just a more general version ofgenerators, which also accounts for
super references (in OO languagessuper typically refers to the
object that we are inheriting from). The operation⊕ defines mixin
composition. It is easy to show that this operation is associative,
and that it has thezero mixin as left and right units of⊕, forming
a monoid.

f ⊕ zero = f = zero ⊕ f

(f ⊕ g)⊕ h = f ⊕ (g ⊕ h)
The functionmixin is the fixpoint combinator used to “deploy” a
mixin (that is, given a mixin, it returns a function with the combined
mixin functionality). Provided with these combinators, wecould
encode Cook’s example in Haskell as follows:

data G = G{value :: Int , square :: Int }

g1 :: Mixin G

g1 super this =
G{value = 7, square = value this ∗ value this }

g2 :: Mixin G

g2 super this = super{value = 2}

m1 ,m2 :: G
m1 = mixin g1

m2 = mixin (g2 ⊕ g1 )
The model of inheritance given by our mixin library is different
from that used in the example in Section 4.1 (which did not con-
sider super references), but the end result is the same. Note that
the use ofsuper in g2 has the effect ofinheriting all the function-
ality from thesuper reference, but overridingvalue. This particu-
lar model of inheritance does not rely on a composition operation
that needs to consider the structure of records and consequently is
a good model to be used in Haskell (which does not support opera-
tions that inspect the structure of records).

4.3 Visualizing Super and Self References

It is helpful to visualize what happens when we callsuper and
this in a program that has a chain of mixins being composed. Self-
references provide the simplest case:

p = mixin (m1 ⊕m2 ⊕ ...⊕mn−1 ⊕mn)

this

Regardless of which mixin we are at,this always points to the
beggining of the mixin chain. For super references the behaviour
is a bit more dynamic:

p = mixin (m1 ⊕m2 ⊕ ...⊕mn−1 ⊕mn)

super

super super



and in the mixinm1 the super reference is pointing tom2 (the
next mixin in the chain); in them2 mixin super will point to the
next mixin in the chain and so on for the other mixins. When thelast
mixin mn is reached and there is no other mixin in the chain,super
just points back to the beggining of the mixin chain (effectively
behaving likethis in that last mixin).

4.4 Relation to Cook’s Models of Inheritance

The mixin composition operator⊕ is related to what Cook de-
scribes in his thesis as beingboxed application, which (in our set-
ting) would correspond to1:

type Gen s = s → s

(⊠) :: Mixin s → Gen s → Gen s

m ⊠ g = λs → m (g s) s
(Here the typeGen is just the type of generators.) Under Cook’s
own terminology,⊕ would correspond toboxed composition.

Our treatment of thesuper reference is, however, different from
Cook’s in two respects. The first difference is that the type of the
super andself references is the same and in Cook’s models they
are different (we also ignore subtyping issues). We should note that
this is not a particularly significant difference though, because we
could generalize the type ofMixin to something like:

type Mixin s t = s → t → t
and still be able to define all the operations above (thoughmixin
would require thats = t). We choose to stick with the simpler
type because it is easier to read and we have not encountered
that many applications that required the more general type.The
second difference is more fundamental: in Cook’s and other usual
treatments of inheritance thesuper reference does not normally
appear closed under the fixpoint and a standard definition would
be:

mixin :: Mixin Top s → s

mixin f = f top (mixin f )
whereTop represents the supertype of all types andtop is the
canonical value ofTop. The problem with this treatment ofsuper
is that it assumes the existence of subtyping in the language(as
provided, for example, by SystemF<: [Cardelli et al., 1994]), and
Haskell does not support this. We solve this problem by assuming
thattop = mixin f .

4.5 Monadic Mixins

The technique that we promote in this paper consists on combining
monads with mixins to modularize orthogonal aspects of programs.
One application of this technique tomemoization[Michie, 1968]
was explored by Brown and Cook [2007], where they used gener-
ators to separate a program from the memoization aspect. We shall
use this as a first example of the technique, suitably generalized to
fit our mixins.

In Figure 3 we present a simple example of memoization mixins
using our library. The functionsfib andmemo define, respectively,
mixins for the fibonacci sequence and memoization. The parame-
terscontinue andcall (used in bothfib andmemo) are the two
arguments of the mixin. Here we use the convention of naming the
super and self references ascontinue andcall (rather thansuper
and this) because, for functional types, those names seem more
intuitive to us:call stands for recursive call; andcontinue empha-
sizes the fact that the computation will continue before performing
the recursive call. The state monad transformer is used by the memo
mixin to read and update the cached values.

Using themixin function we can convert a mixin into a con-
ventional function. For example if we mixinfib as follows

1 We should note that the observations in this subsection (on the relationship
between our combinators and Cook’s own models of inheritance) are due to
Cook himself and were provided to us in personal communication.

fib :: Monad m ⇒ Mixin (Int → m Int)
fib continue call n = case n of

0→ return 0
1→ return 1
→ do x ← call (n − 1)

y ← call (n − 2)
return (x + y)

memo :: MonadState (Map Int Int) m ⇒ Mixin (Int → m Int)
memo continue call x =

do m ← get

if member x m then return (m ! x)
else do y ← continue x

m ′ ← get

put (insert x y m ′)
return y

Figure 3. Memoization

data Expr where

Lit :: Int → Expr

Var :: String → Expr

Plus :: Expr → Expr → Expr

Minus :: Expr → Expr → Expr

Assign :: Expr → Expr → Expr

Sequence :: [Expr ]→ Expr

While :: Expr → Expr → Expr

type Env = [(String , Int)]

Figure 4. Datatype and environment type for expressions.

nfib :: Monad m ⇒ Int → m Int

nfib = mixin fib
then we obtain a functionnfib that is a monadic version of the
fibonacci function. Alternatively, we could have composedmemo
andfib together in the following way

mfib :: MonadState (Map Int Int) m ⇒ Int → m Int

mfib = mixin (memo ⊕ fib)
to obtain a memoized monadic version of the fibonacci function.
A fast fibonacci function could be defined by suitably instantiating
the state monad:

fastFib :: Int → Int

fastFib = fst ◦ flip runState empty ◦mfib

5. The Modular Aspects of Interpreters
In this section we show how monads and mixins can be used
together to build interpreters that can be modularly reusedto derive
new interpreters with same added orthogonal functionality. The
interpreter that we will use in this section is an Haskell translation
of an interpreter implemented in ML by Läufer [2003]. We usea
monadic style instead of implicit side-effects. Note that the kind
of modularity that we are discussing here isdifferent from what is
discussed by Liang et al. [1995], which is focused on extending
interpreters with new language constructs.

5.1 A Classic Monadic Evaluator

In Figure 4 we present a datatype representing for a simple impera-
tive language that can be used to compute numeric expressions. In-
teger literals and variables can be built using, respectively, theLit
andVar constructors. Simple primitive operations for addition and
subtraction are available through thePlus andMinus constructors.



eval1 :: MonadState Env m ⇒ Expr → m Int

eval1 exp = case exp of

Lit x → return x

Var s → do e ← get

case lookup s e of

Just x → return x

→ error msg

Plus l r → do x ← eval1 l

y ← eval1 r

return (x + y)
Minus l r → do x ← eval1 l

y ← eval1 r

return (x − y)
Assign (Var x) r → do e ← get

y ← eval1 r

put ((x , y) : e)
return y

Sequence [ ] → return 0
Sequence (x : xs) → eval1 x >> eval1 (Sequence xs)
While c b → do x ← eval1 c

if (x ≡ 0) then return 0
else (eval1 b >> eval1 exp)

where msg = "Variable not found!"

Figure 5. A classic monadic evaluator.

eval1 :: (MonadWriter String m,MonadState Env m)⇒
String → Expr → m Int

eval1 v exp = case exp of

. . .

Assign (Var x) r | x ≡ v → -- new case
do e ← get

y ← eval1 v r

put ((x , y) : e)
tell (x ++ " = " ++ show y ++ "\n")
return y

Assign (Var x) r → . . . -- old case
. . .

While c b →
do n ← eval1 v c

if (n ≡ 0) then (tell "done\n" >> return 0)
else (tell "repeating\n" >> eval1 v b

>> eval1 v exp)
. . .

Figure 6. Modified evaluator with tracing and variable watching.

Mutable assignments to variables can be defined usingAssign and
sequential composition and while loops can be constructed with
Sequence andWhile. A simple environment type for expressions
is given byEnv .

In Figure 5 we show a classic monadic evaluator for the expres-
sions presented in Figure 4. The state monad transformer is used
to pass the environment around and it is also used in the assign-
ment clause to update the value of the variable being assigned. The
evaluator is quite standard. Evaluating integer literals returns the
integer denoted by the literal. The evaluation of variableslooks up
the variable from the environment and returns its value; if no value
is found an error is raised. The primitive arithmetic operations are
evaluated in a similar way: both arguments of the operationsare

beval :: MonadState Env m ⇒ Mixin (Expr → m Int)
beval continue call exp = case exp of

Lit x → return x

Var s → do e ← get

case lookup s e of

Just x → return x

→ error msg

Plus l r → do x ← call l

y ← call r

return (x + y)
Minus l r → do x ← call l

y ← call r

return (x − y)
Assign (Var x) r → do e ← get

y ← call r

put ((x , y) : e)
return y

Sequence [ ] → return 0
Sequence (x : xs) → call x >> call (Sequence xs)
While c b → do x ← call c

if (x ≡ 0) then return 0
else (call b >> call exp)

where msg = "Variable not found!"

Figure 7. A monadic evaluator with mixins.

evaluated and the corresponding arithmetic operations areapplied
to the result of the evaluations. For assignments we need to evalu-
ate the expression being assigned and update the variable with the
new value. Sequential composition of an empty list of expressions
returns0, while the sequential composition of a list of expressions
is the result of evaluating the expression in the head and theex-
pressions in the tail. Finally, while loops are evaluated similarly
to theC programming language, with integers playing the role of
booleans: we first evaluate the condition, if that conditionis 0 we
stop and return0, otherwise we evaluate the body of the while loop
and evaluate the original while loop expression again.

Suppose that, for debbuging reasons, we wanted to watch the
assignments of some variable and trace the execution of the while
loops. In order to achieve this with the monadic evaluator presented
in Figure 5, we would need to directly change the original program
and adapt it with the extra functionality. We can see the necessary
changes in Figure 6. We only show the parts of the program that
need to be modified. The modularity problems discussed in Sec-
tion 2.3 should be evident. On the one hand we need to modify the
type signature of the program in two ways: we need stronger re-
quirements about the monad transformer in use; and we need an
extra string argument, which is the variable to be watched. This
can of course, break programs that were using the older version of
eval1 . On the other hand, we also need to change the main body of
the program in a couple of places: we need to add a new case for the
assignment clause (or, alternatively, modify the existingone with
an if expression) to add the code to watch the variablev ; and we
need to decorate the code for evaluating the while loop with trac-
ing code. Note that we also need to change all the recursive calls
of the program to account for the extra argument, but this could be
avoided using a reader monad.

5.2 A Modular Monadic Evaluator with Mixins

There are significant reuse and modularity problems with theap-
proach in Section 5.1, but these can basically be solved if wecom-
bine monads with mixins. In Figure 7 we show the code for a



weval :: (Show a, MonadWriter String m)⇒
String → Mixin (Expr → m a)

weval y continue call exp = case exp of

Assign (Var x) r | x ≡ y →
do n ← continue exp

tell (x ++ " = " ++ show n ++ "\n")
return n

→ continue exp

Figure 8. The watching variables aspect.

teval :: MonadWriter String m ⇒ Mixin (Expr → m Int)
teval continue call exp = case exp of

While c b →
do n ← call c

if (n ≡ 0) then (tell "done\n" >> return 0)
else (tell "repeating\n" >> call b >> call exp)
→ continue exp

Figure 9. The tracing loops aspect.

monadic evaluator using mixins. Instead of directly makingrecur-
sive calls, this evaluator uses thecall parameter provided by the
mixin. Apart from this fairly easy change to the program, we only
need to change the type of the function (wrappingMixin around
the functional type) and add two arguments for thecontinue and
call functions provided by the mixin. To recover the basic monadic
evaluator presented in Figure 5 we apply themixin function to
beval as follows:

eval2 :: MonadState Env m ⇒ Expr → m Int

eval2 = mixin beval

In Figure 8 we show how we could modularly define a watching
aspect for assignments. This aspect has one extra string argumenty ,
which is the variable to watch. For all the other cases exceptassign-
ment weinherit the functionality from thecontinue function. For
theAssign constructor we may do something differentoverriding
the functionality provided bycontinue . Since we want to watch
what happens in the assignments ofy we have to comparey with
the variable being assigned and, if they represent the same variable,
call thecontinue function to execute the assignment code as well
as add the extra watching code using the writer monad transformer:

newtype WriterT w m a = WriterT{
runWriterT :: m (a,w)
}

class (Monoid w ,Monad m)⇒
MonadWriter w m | m → w where

tell :: w → m ()
If y does not match the variable being assigned, then the guard
will fail and the execution will fallthrough the default case, just
executing the standard assignment code provided bycontinue .

In Figure 9 we show how we could modularly define the code
for the tracing while loops using mixins. Like the watching as-
pect, we handle all cases exceptWhile throughcontinue . For the
While constructor we make a recursive call usingcall . This has
the effect ofcompletely overridingall the code for handling while
loops. Consequently, we need to essentially repeat the codethat we
have inbeval , but this time decorated by some tracing code us-
ing the writer monad transformer. We could potentially havetried
to achieve a bit more of reuse for the code handling theWhile
constructor. However the point here is that, just like in object-
oriented languages, we may choose to completely override existing

functionality, partly override some functionality addingsome extra
code, or just inherit the functionality unchanged.

Having created the different mixins for the interpreter, wecan
combine them using themixin function. For example, we can
define the following programs:

watchy :: (MonadWriter String m,MonadState Env m)⇒
Expr → m Int

watchy = mixin (weval "y"⊕ beval )

debug :: (MonadWriter String m,MonadState Env m)⇒
Expr → m Int

debug = mixin (weval "x"⊕ weval "y"⊕
teval ⊕ weval "r"⊕ beval)

The first program watches a variable “y”, while executing the
program; the second program watches the variables “x”, “y” and
“r” while tracing the while loops and executing the program.A
suitableC -like program to be used withwatchy anddebug would
be the following:

int x = 2; int y = 3; int r = 0;
while (y){r = r + x ; y = y − 1; }

which would be represented by the expression:
x = Var "x"

y = Var "y"

r = Var "r"

program = Sequence

[Assign x (Lit 2), Assign y (Lit 3), Assign r (Lit 0),
While y (Sequence [

Assign r (Plus r x),Assign y (Minus y (Lit 1))])]
By suitably picking state and writer monads to run those pro-

grams with, we can write programs that return the string log result-
ing from the tracing and watching code. For example,test1 and
test2 apply watchy anddebug to program and return the string
built during the execution of the program.

test1 = snd ◦ fst $
runState (runWriterT (watchy program)) [ ]

test2 = snd ◦ fst $
runState (runWriterT (debug program)) [ ]

We can see the logs by applyingputStr to test1 and test2 . For
test1 we would get the following output:

y = 3
y = 2
y = 1
y = 0

which shows the different assignments to the variable “y” through
the execution of the program. Fortest2 the following would be
obtained:

x = 2
y = 3
r = 0
repeating

r = 2
y = 2
repeating

r = 4
y = 1
repeating

r = 6
y = 0
done

This string shows all the assignments that occurred throughthe
execution of the program as well as the traces of the while loop.

As we have seen the changes from the traditional monadic ver-
sion into the version with mixins are fairly small and do not in-
troduce any significant extra burden. Still, the benefits in terms of



composExpr :: (Expr → Expr)→ (Expr → Expr)
composExpr call e = case e of

Lit x → Lit x

Var s → Var s

Plus e1 e2 → Plus (call e1 ) (call e2 )
Minus e1 e2 → Minus (call e1 ) (call e2 )
Assign e1 e2 → Assign (call e1 ) (call e2 )
Sequence l → Sequence (map call l)
While e1 e2 →While (call e1 ) (call e2 )

rename :: Expr → Expr

rename e = case e of

Var s → Var ("_" ++ s)
→ composExpr rename e

Figure 10. Renaming and thecompos operation for expressions.

reuse are very significant. In order to add a new orthogonal piece
of the functionality we do not need to alter the original program or
manually copy the code and create a new function with the extra
functionality. Instead, through the use of mixins, we can just cre-
ate new mixins that inherit the behaviour of the original program
and override just the functionality that needs to be changed. Fur-
thermore, the type of the original program does not need to change,
but the mixins around that program can refine the types and adapt
themselves to the new functionality. Consequently the combination
of monads and mixins solves the problems discussed in Section 2.3.

6. Scrapping Boilerplate With Mixins
A different application of mixins comes from the area of (datatype)
generic programming where some approaches [Lämmel and Pey-
ton Jones, 2003, Bringert and Ranta, 2008] have been proposed
to “scrap your boilerplate” [Lämmel and Peyton Jones, 2003] de-
rived from traversals of large data structures. Common to these ap-
proaches is the use of ad-hoc techniques to achieve reuse (orinher-
itance) of traversal code. We will look at the technique proposed
by Bringert and Ranta [2008] and show how mixins can be used to
generalize that technique in useful ways.

The key idea of Bringert and Ranta is that many traversals are
slight variations of a common scheme that they namecompos .
Bringert and Ranta propose a generalizedcompos operation using
of applicative functors[McBride and Paterson, 2008], which are
a structure that generalizes monads. However, for the purposes of
this paper, the use of a simpler version (which does not considers
effects) suffices to demonstrate the advantages of using mixins. In
Figure 10 we show the simple version of thecompos operation
for the expressions in Figure 5. Essentially, this operation would
define the identity traversal if all the occurrences ofcall would be
replaced by a recursive call. However, this is not the case and call
can be something other than just the recursive call tocomposExpr .
We can exploit this to define arename operation that renames all
the variables of an expression by appending an “” to all names. For
all the other cases we callcomposExpr parametrized withrename ,
which as the effect of inheriting all the code fromcomposExpr

(except for theVar case). In essence, this is a simple ad-hoc
approach to inheritance.

One problem with the technique proposed by Bringert and
Ranta is that we can only inherit fromcomposExpr . Functions that
are defined in terms ofcomposExpr (like rename) cannot them-
selves be inherited because the recursion knot has been closed.
One way around this is to use mixins instead and create a re-
naming mixin. We illustrate the idea in Figure 11. The function
composExpr is suitably generalized to use mixins; and we define a
renameMix mixin with essentially the same definition asrename

composExpr :: Mixin (Expr → Expr)
composExpr continue call e = case e of

Lit x → Lit x

Var s → Var s

Plus e1 e2 → Plus (call e1 ) (call e2 )
Minus e1 e2 → Minus (call e1 ) (call e2 )
Assign e1 e2 → Assign (call e1 ) (call e2 )
Sequence l → Sequence (map call l)
While e1 e2 →While (call e1 ) (call e2 )

renameMix :: Mixin (Expr → Expr)
renameMix continue call e = case e of

Var s → Var ("_" ++ s)
→ continue e

rename :: Expr → Expr

rename = mixin (renameMix ⊕ composExpr )

Figure 11. Generalization ofcompos and renaming using mixins.

except that the call tocomposExpr is replaced by acontinue call.
We can easily recoverrename by applying themixin operation to
renameMix ⊕ composExpr .

The advantage of making renaming a mixin is that we can now
combine it with other mixins. For example, we could define a
simple simplifier for expressions as follows:

simplify :: Mixin (Expr → Expr)
simplify continue call e = case e of

Plus (Lit 0) r → continue r

Plus l (Lit 0) → continue l

→ continue e
and we could easily combine this with the renaming mixin through
mixin composition, obtaining a function that simplifies expressions
and renames variables.

renSimpl :: Expr → Expr

renSimpl = mixin (simplify ⊕ renameMix ⊕ composExpr )

7. Crosscutting Aspects
The aspects discussed in Section 5 are tightly coupled with the in-
terpreter functionality in the following sense: they add extra func-
tionality in the context of that interpreter, but would not be in gen-
eral reusable by other programs. Some aspects are more context in-
dependent and can be used by many programs in different domains.
In this section we shall see how we can define these crosscutting as-
pects with our techniques and some additional mixin combinators
inspired by AOP.

7.1 Yet More Modularization Oportunities

Lets return to the simple interpreter example by Wadler (shown in
Section 2.1). By applying mixins, and using essentially thesame
approach that we have taken in Section 5, we could easily solve
the modularity problems discussed in Section 2.3. We show the
resulting code in Figure 12. Themeval mixin provides the ba-
sic monadic evaluator functionality;countEval is an aspect that
counts the number of divisions;errorEval is an aspect that handles
divisions by0 errors; and, finally, thetraceEval mixin provides
some basic tracing functionality. We can combine all the function-
ality through mixin composition as follows:

fullEval :: Term → Either String ((Int , Int),String)
fullEval = unwrap ◦mix where

mix = mixin (traceEval ⊕ countEval ⊕
errorEval ⊕meval)



meval :: Monad m ⇒ Mixin (Term → m Int)
meval continue call t = case t of

Con a → return a

Div t u → do x ← call t

y ← call u

return (x ‘div ‘ y)

countEval :: MonadState Int m ⇒ Mixin (Term → m Int)
countEval continue call t = case t of

Div → do r ← continue t

n ← get

put (n + 1)
return r

→ continue t

errorEval :: MonadError String m ⇒ Mixin (Term → m Int)
errorEval continue call e = case e of

Div t u → -- override
do x ← call t

y ← call u

if y ≡ 0 then throwError "divide by zero"

else return (x ‘div ‘ y)
→ continue e

traceEval :: MonadWriter String m ⇒ Mixin (Term → m Int)
traceEval continue call e =

do r ← continue e

tell (line e r)
return r

line :: (Show a,Show b)⇒ a → b → String

line t a = "eval (" ++ show t ++ ") <= " ++ show a ++ "\n"

Figure 12. Modular mixins for Wadler’s interpreters.

unwrap = runIdentity ◦ runErrorT ◦
runWriterT ◦ flip runStateT 0

Of course, we could as well combine just some of the mixins or
compose them in a different order (which would give us a different
program).

It is nice that all the functionality is separated and can be reused
independently, but there is still some room for improvement: some
of the functionality provided by the aspects is not inherently tied to
an evaluator. This is the case for thecountingandtracing aspects,
which could be useful in different contexts.

7.2 Crosscutting Aspects with Advices and Pointcuts

ThecountEval mixin is tightly bound to term expressions because
we are interested in counting only the number of divisions. Yet,
there is nothing inherently dependent on expression terms in a
mixin that executes one step of the computation and increments
one counter by one. For example, the following mixin

count1 :: MonadState Int m ⇒ Mixin (a → m b)
count1 continue call x = do r ← continue x

n ← get

put (n + 1)
return r

can be used to count steps on any values on some typea. It would
be nicer if somehow the counting functionality would be separated
from the functionality specific to the evaluator.

In Figure 13, inspired by ideas from AOP, we show a small
library of combinators that can be used to provide “advice” to
existing mixins. Theadvises combinator is used to advise a set
of pointcuts with a given mixin. The set of pointcuts is essentially
represented as a predicate, of which theany andnone predicates

advises :: Mixin (a → b)→ (a → Bool)→ Mixin (a → b)
advises m p continue call x

| p x = m continue call x

| otherwise = continue x

any :: a → Bool

any = const True

none :: a → Bool

none = const False

(∪) :: (a → Bool)→ (a → Bool)→ a → Bool

f ∪ g = λx → f x ∨ g x

Figure 13. Mixin advice and pointcuts.

represent, respectively, the set of all pointcuts and the empty set;
and the∪ combinator represents the union of two sets of pointcuts.
These combinators have a rich set of algebraic properties:

m ‘advises ‘ any = m

m ‘advises ‘ none = zero

any ∪ p = any = p ∪ any

none ∪ p = p = p ∪ none

p1 ∪ p2 = p2 ∪ p1

(p1 ∪ p2 ) ∪ p3 = p1 ∪ (p2 ∪ p3 )
which have fairly intuitive interpretations. The first property says
that if a mixinm advises any pointcut then that is equivalent tom .
The second property says that a mixinm advising no pointcuts
is equivalent to thezero mixin. The third and fourth properties
mean thatany and none are, respectively, the zero and neutral
elements of∪. Finally, the last two properties are, respectively, the
commutativity and associativity of∪. Two examples of pointcuts
are given by:

division :: Term → Bool

division (Div ) = True

division = False

con :: Term → Bool

con (Con ) = True

con = False
Thedivision pointcut can be used when we want to trigger a piece
of advice on the division constructor; similarly we can use the
con pointcut to trigger advice on integer terms. For example, to
recover the functionality provided bycountEval we could define
the following mixin:

divCount1 :: MonadState Int m ⇒ Mixin (Term → m a)
divCount1 = count1 ‘advises ‘ division

The advantage ofdivCount1 overcountEval is that the counting
mixin functionality is no longerentangledwith the evaluator code
for term expressions. This means that we could use the counting
mixin, for example, to create a mixin to count the number of
arithmetic operations in the evaluator in Section 5:

plus :: Expr → Bool

plus (Plus ) = True

plus = False

minus :: Expr → Bool

minus (Minus ) = True

minus = False

opCount :: MonadState Int m ⇒ Mixin (Expr → m a)
opCount = count1 ‘advises ‘ (plus ∪minus)

Of course, we could also usecount1 in programs that are not
evaluators. A potential use of the counting mixin would be for
spotting functions that are good candidates to memoization. The
following function:



before :: Monad m ⇒ (b → m a)→ Mixin (b → m c)
before mf continue call x = do {mf x ; continue x }

after :: Monad m ⇒ (b → c → m a)→ Mixin (b → m c)
after mf continue call x =

do {r ← continue x ; mf x r ; return r }

Figure 14. Monadic advices

countFib :: Int → (Int , Int)
countFib = unwrap ◦mixin (count1 ‘advises ‘ (<4)⊕ fib)

where unwrap = flip runState 0
counts all calls to the (naive) fibonacci function that are less than4.
If we runcountFib a few times with some values we can get some
(experimental) evidence of whether or not computation is being
repeated. For example, the result ofcountFib 8 would be(21, 55)
and the result forcountFib 15 would be(610, 1597). The first
element in the outputed pair is the fibonacci value and the second is
the number of recursive calls to input values less than 4. Theresults
given bycountFib (together with some intuitive understanding of
how the fibonacci function works) suggest that computation may
be repeated and that the function could benefit from memoization.

7.3 Monadic Advices

For monadic mixins, there are two more combinators in Figure14
that are quite useful. Thebefore andafter combinators (named af-
ter the well-known AOP notions of before and after advices) apply
a monadic computation respectively before and after acontinue
call. The argument tocontinue is available tobefore ; while both
the argument to and the result of callingcontinue are at the dis-
posal ofafter . With before and after we can create even more
fine-grained reusable functionality that does not commit towhen
continue is called. For example, we could define a computation
count2 that does not itself callcontinue and does not require the
use of mixins.

count2 :: MonadState Int m ⇒ a → m ()
count2 = do {n ← get ; put (n + 1)}

divCount2 :: MonadState Int m ⇒ Mixin (Term → m a)
divCount2 = before count2 ‘advises ‘ division

With before we could create some very simple tracing facilities
using the primitive functionprint :: a → IO ()

condTrace :: Show a ⇒ (a → Bool)→ Mixin (a → IO b)
condTrace p = before print ‘advises ‘ p

trace :: Show a ⇒ Mixin (a → IO b)
trace = condTrace any

ThecondTrace is a conditional tracing function that takes a set of
pointcuts (or a predicate) and traces all calls that match those point-
cuts; thetrace mixin unconditionally applies the tracing function-
ality to any pointcut. WithcondTrace we could trace all the calls
of the evaluator on divisions using the following program:

traceDivEval :: Term → IO Int

traceDivEval = mixin (condTrace division ⊕meval)
With theafter combinator we could, not only print the arguments,
but also the results of the calls:

fullTrace :: (Show a,Show b,MonadWriter String m)⇒
(a → Bool)→ Mixin (a → m b)

fullTrace p = after debug ‘advises ‘ p where

debug arg res = tell (
"Argument : " ++ show arg ++
"\nResult : " ++ show res ++ "\n\n")

For fullTrace we use the writer monad transformer, which we can
compose with other monads. WithfullTrace we could do some
conditional tracing on the evaluator from Figure 7. The following
program:

traceBEval :: Expr → (Int ,String)
traceBEval = unwrap ◦mixin (fullTrace points ⊕ beval )

where points = ¬ ◦ (plus ∪minus)
unwrap = fst ◦ flip runState [ ] ◦ runWriterT

takes an expression and returns the result of evaluating that expres-
sion together with a trace created byfullTrace. We make use of
pointcuts to ensure that all calls are traced except those made to the
arithmetic operators. Note that¬ is the following function:
¬ :: Bool → Bool

¬ True = False

¬ False = True

8. Discussion and Related Work
8.1 Mixins and Inheritance in Functional Programming

Many authors before us [Cook, 1989, McAdam, 1997, Garrigue,
2000, Läufer, 2003, Brown and Cook, 2007] argued about the
uses of inheritance in functional programming, employing similar
techniques to ours. Unfortunately their work seems to have been
largely under-appreciated by the functional programming commu-
nity. We can think of two reasons for this. Firstly, some of these
works [McAdam, 1997, Garrigue, 2000, Läufer, 2003] tend to
employ open recursion rather directly to programs, withoutus-
ing mixin abstractions like the ones introduced by us—such as,
for example, theMixin type and mixin composition. Without this
“sugar” the use of open recursion can lead to relatively complex
types and definitions and render the techniques impractical. Sec-
ondly, these techniques have being mostly employed in impure
functional languages like ML and OCaml where side-effects are
implicit and monads are not used. While inheritance is certainly
valuable in those languages, their need is a bit less pressing than in
pure languages because a local change to a program introducing a
side-effect is unlikely to change the type of the function. With mon-
ads, this is usually not the case and a small local change is likely
to break existing code. Therefore, modularization (in purely func-
tional languages) is not only useful for reuse but also for preserving
backwards compatibility.

Several other applications of mixins and inheritance to func-
tional programming are discussed in the literature. McAdam[1997]
shows how some effects can be simulated (without using monads)
using mixins and he presents a type-inference algorithm where the
treatment of error messages is modularly defined. Garrigue [2000]
employs open recursion to emulateopen functionsin his solu-
tion to the expression problem withpolymorphic variants. Läufer
[2003] shows how to apply mixins to interpreters and how to
define mutually-recursive functions using mixins. He also argues
about the relation of his technique with the OO VISITOR pat-
tern [Gamma et al., 1995]. The “Scrap your Boilerplate”-like tech-
niques [Lämmel and Peyton Jones, 2003, Bringert and Ranta,2008]
that appeared recently in the literature fundamentally rely on ad-
hoc approaches to inheritance to reuse traversal code.

Brown and Cook [2007] show how to approach the problem of
memoization in purely functional languages usingmonadic memo-
ization mixinsusing a technique that is very close to what we use
in this paper. Their technique is more restricted in the sense that
only one type of calls is permitted in the mixin programs. Typi-
cally, in the base program that call plays the role of theself (or
call) argument, while in the wrapper programs it plays the role of
super (or continue). In our approach both types of calls are avail-
able to any mixin, which allows additional flexibility (for example,
the use ofcall in a wrapper program, allows us tooverrideexisting
functionality). Of course, Brown and Cook were interested in solv-
ing a problem in the much more restricted domain of memoization,
while we are focused on the more general problem of modularizing



programs in an AOP-style. We believe that for memoization Brown
and Cook’s technique is enough.

8.2 Aspect-Oriented Programming

Kiczales et al. [1997]’s aspect-oriented programming aimsat mod-
ularizing concerns that cut across the components of a software
system. In AOP, programmers are able to modularize these cross-
cutting concerns with locally defined aspects. Typical implementa-
tions of AOP (such as, for example, AspectJ [Eclipse-Foundation,
2000-2009]) usepointcutsto designate when and where to crosscut
using the names ofclasses, methods, modulesor any other entity
containing code;advicesspecify what will happen when a pointcut
is reached.

The notions of pointcuts and advices inspired the combinators
presented in Section 7. However our combinators differ signifi-
cantly from pointcuts and advices found in most AOP languages
in respect to their expressive power, implementation and reason-
ing properties. Because traditional pointcuts typically refer tosyn-
tactical entities showing up in a program, we need either a meta-
language (that can refer and manipulate the elements that show up
in a program); or some form of runtime reflexive capabilities(that
retains the meta-information and allows manipulation of programs
at runtime). Our notion of pointcuts is based on predicates on the
inputs of programs. Advising functions (or other entities)based on
their names is simply not possible with our approach. However, as
we have seen, we can easily emulate pointcuts ondata construc-
tors, by creating a simple predicate that tests whether or not that is
the constructor of interest. We believe that for functionalprograms
this already provides some significant expressiveness, since data
constructors in functional languages play a similar role tomethods
in object-oriented languages. The advantages of our combinators
are that they arefirst-classentities of the language; and they do not
endanger modular program understanding and reasoning, which is
a significant challenge in other implementations of AOP and acur-
rent hot research topic [Aldrich, 2005, Kiczales and Mezini, 2005].
Furthermore, our approach does not rely on any kind of code or
bytecode weaving (which is common in many AOP technologies)
supporting full separate compilation.

8.3 Aspect Oriented Programming and Monads

The connection between AOP and monads is a recurring theme of
discussion since De Meuter [1997] argued about the use of monads
as a theoretical foundation for AOP. Monads are clearly a modu-
larization mechanism, but the question is whether they are amodu-
larization mechanism aimed at the separation of cross-cutting con-
cerns. In some sense it can be argued that this is indeed the case
as the plumbing necessary by the particular effects can be captured
by a monad instance and reused by different programs. However,
the plumbing required for particular effects is just a very restricted
case of cross-cutting concerns. Hofer and Ostermann [2007]argued
recently that “monads and aspects have to be regarded as quite dif-
ferent mechanisms” and we have to agree with their conclusion:
all the programs in this paper could be modularly implemented in
essentially the same way without monads (but still using mixins)
in an impure functional language like ML, OCaml or Scala using
implicit side-effects. So, the additional modularizationof the pro-
grams presented in this paper is due to mixins and not monads.In
fact, this should not be too surprising in the first place as the main
motivation for using monads [Wadler, 1992] was to essentially re-
cover thesamemodularity properties of impure languages (see also
Section 2); and typical AOP implementations are aimed atimprov-
ing the modularity of these same impure languages.

Modularity benefits of monads It is generally uncontested that
for purely functional languages there is a lot to be gained from
using monads, because of their ability to emulate side-effects and

structure code. However, an interesting question is whether there
are some additional modularity benefits in monads even for impure
languages. One potential benefit (pointed out by Wadler [1992])
is that monads are not just restricted to effects that show upin
common impure languages likestate, or exceptions. Monads can
model other effects likenondeterminismor continuations, which
are not usually natively found in impure languages. Anotherben-
efit arises from the use of monad transformers. Programs written
with monad transformers are usually more general than similar
impure programs because the order on which effects are applied
can be controlled by choosing different instantiations of the monad
transformer. The choice of different monad transformers can lead
to programs with different behaviours, and different typestoo (see
theeval4 andeval5 examples at the end of Section 3.2). When im-
plicit effects are used, the order in which effects are applied is fixed
and cannot be controlled.

8.4 Beyond Monads

Although monads are (by far) the most popular abstraction tomodel
effects and structure programs, they are certainly not the only one
and there are many other useful abstractions.Arrowshave been in-
troduced by Hughes [2000] as a generalization of monads thatcan
be useful in many libraries that have interfaces which are funda-
mentally incompatible with monads. Somewhere in between the
notions of arrows and monads stands the notion ofapplicative func-
tors [McBride and Paterson, 2008], which provide a simpler inter-
face than arrows but can still be used in many applications where
monads are not usable.Parametrized monadsand parametrized
Freyd categories[Atkey, 2006] are two of the latest abstractions
proposed to capture computational effects, and they can be used to
model some effects that do not quite fit the (unparametrized)ver-
sions of the corresponding abstractions.

In this paper we have choosen to just use monads in combination
with mixins, since this is the most familiar abstraction to program-
mers and there is a lot of useful infrastructure already implemented
in the Haskell hierarchical libraries. In particular, all the machinery
required by monad transformers is already implemented and can
be readily used. However, there is nothing fundamental stopping us
from using mixins with other kinds of effects. In fact there may be
some important benefits in doing so. For example, monads do not
to compose well, although monad transformers help significantly in
this respect. An interesting alternative that can (sometimes) be used
instead of monads and monad transformers are applicative functors,
which can always be composed [McBride and Paterson, 2008, Gib-
bons and Oliveira, 2006]. Also, it is difficult to use two distinct
monad transformers of the same kind in the same program (for ex-
ample, we may want to keep different logs for tracing and watching
variables); with other technologies this may be easier to achieve.

9. Conclusions
Monads are widely used in Haskell to model computational effects
and structure purely functional programs. Inheritance is acrucial
element of all modern object-oriented languages. Both mechanisms
have been very successful at modularizing and reusing different as-
pects of programs, yet their combination has been largely under-
studied. This paper shows that the combination of the two mecha-
nisms yields substantial modularity and reuse advantages,and can
be used to develop programs in a simple and elegant AOP style
without compromising any of the beloved properties of pure func-
tional programming.

We hope that this paper has convinced the reader of the uses of
inheritance for functional programming. It seems clear to us that
there are substantial advantages in the adoption of techniques that
exploit inheritance to modularize and reuse functional programs.
Moreover, the mixin approach introduced in this paper seemsto be



a perfect example ofpure lazy functional programming: it makes
extensive use of higher-order functions; it employs anelegant com-
binator style with many interesting algebraic properties; and it is
implemented in a very simple way under a lazy semantics.
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