
The Expression Problem, Trivially!

Yanlin Wang Bruno C. d. S. Oliveira
The University of Hong Kong, Pokfulam, Hong Kong, China

{ylwang,bruno}@cs.hku.hk

Abstract
This paper presents a novel and simple solution to Wadler’s
Expression Problem that works in conventional object-
oriented languages. Unlike all existing solutions in Java-like
languages, this new solution does not use any kind of gener-
ics: it relies only on subtyping. The key to the solution is the
use of covariant type refinement of return types (or fields): a
simple feature available in many object-oriented languages,
but not as widely known or used as it should be. We believe
that our results present valuable insights for researchers and
programming language designers interested in extensibil-
ity. Furthermore our results have immediate applicability as
practical design patterns for improving the extensibility of
programs.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features

General Terms Languages, Patterns

Keywords Expression problem, Object-oriented program-
ming, Design patterns, Modularity, Extensibility

1. Introduction
Solutions to Wadler’s Expression Problem (EP) [17] have
been a hot topic in programming languages for almost twenty
years. Today we know of various solutions to the EP that
either rely on new programming language features [3, 4,
6, 8], or can be used as design patterns [9] in existing
languages [12, 13, 15, 16]. The non-triviality of the EP is
associated with the fact that existing solutions either require
languages with specially crafted type systems, or encodings
in existing languages using several techniques to overcome
the limitations of the type system. So far, solutions that
work in existing languages (such as Java, Scala or Haskell)

have employed various techniques and a combination of two
different mechanisms: type-parametrization and subtyping.

This paper shows that conventional subtyping (as found in
Scala and Java) is enough to solve Wadler’s EP. We present a
Scala solution, which is essentially the same code that pro-
grammers usually write in a typical (failed) attempt to solve
the EP. The only minimal difference is a simple type annota-
tion. The annotation serves the purpose of covariantly refining
the extended types. This shows, somewhat surprisingly, that
the Wadler’s EP can be (almost) trivially solved. We also
present a Java solution, which is slightly more involved due
to the use of covariant return types to simulate covariant
type-refinement in fields. Nevertheless, the Java solution is
still quite simple and uses no generics either. The code for
the solutions presented in this paper is online1.

We should point out that while the solutions presented
here do solve Wadler’s original formulation of the EP, they
do not immediately scale to harder extensibility problems.
For instance the techniques presented here are insufficient to
deal with family polymorphism [6] in its full generality. The
limitations are discussed in Section 6.

2. Wadler’s Expression Problem
The Expression Problem has been widely discussed [5, 11,
14] and was coined by Wadler [17] to illustrate modular
extensibility issues in software evolution, especially when
involving recursive data structures. Wadler set a simple
programming exercise: implementing a language for a very
simple form of arithmetic expressions (for example: 1 + 2
or 3). There is an initial set of features consisting of two
types of expressions (integer literals and addition); and one
operation (evaluation of expressions). Later, two features,
which represent possible evolutions of the original system,
are added:
• New variant: a new type of expressions, e.g., subtraction.
• New operation: a new method, e.g., pretty printing.

It is usually easy to extend the system in one dimension
(either new variants or new operations). In particular, extend-
ing the system with new operations in functional languages is
easy, but adding new data variants is difficult. While in com-
mon object-oriented languages, the dual problem appears:

1 https://bitbucket.org/yanlinwang/ep_trivially

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

MODULARITY’16, March 14–17, 2016, Málaga, Spain
c© 2016 ACM. 978-1-4503-3995-7/16/03...

http://dx.doi.org/10.1145/2889443.2889448

37



trait Exp { def eval() : Int }
trait Lit extends Exp {
val x:Int
def eval() = x

}
trait Add extends Exp {
val e1, e2 : Exp
def eval() = e1.eval + e2.eval

}

Figure 1. Initial code in the Scala solution.

adding new data variants is easy, but adding new operations
is more difficult. Although design patterns like VISITOR pat-
tern [9] allow operations to be added easily, adding new data
variants becomes difficult. So the traditional VISITOR pattern
does not solve the EP: it merely swaps the dimension of ex-
tensibility. The challenge is how to design a programming
technique that supports software evolution in both dimen-
sions in a modular way, without modifying the code that has
been written previously. The requirements of solutions to the
EP are stated more precisely next:
• Extensibility in both dimensions: A solution must allow

the addition of new data variants and new operations and
support extending existing operations.

• Strong static type safety: A solution must prevent applying
an operation to a data variant which it cannot handle using
static checks.

• No modification or duplication: Existing code must not
be modified nor duplicated.

• Separate compilation and type-checking: Safety checks
or compilation steps must not be deferred until link or
runtime.

There is also a common 5th requirement which is proposed
by Zenger and Odersky [18]:
• Independent extensibility: It should be possible to combine

independently developed extensions, so that they can be
used jointly.

3. A Trivial Solution in Scala
This section presents a solution to the EP in Scala. The main
Scala feature used here is the support for type refinement of
(immutable) fields. This simple feature allows us to write the
solution to the EP very directly and compactly.

Initial System The initial system shown in Figure 1 defines
a trait Exp with the evaluation (eval) operation. Traits Lit
and Add extend Exp with corresponding implementations of
eval. Note that e1 and e2 are immutable member fields,
declared as vals.

Adding a New Variant It is easy to add new data variants
to the initial system in Figure 1, while satisfying all the
requirements for a solution. For example, trait Sub illustrates
the addition of new variants, and is almost the same as the
definition of trait Add.

trait ExpP extends Exp { def print():String}
trait LitP extends Lit with ExpP {
def print() = "" + x

}
trait AddP extends Add with ExpP {
val e1, e2 : ExpP // type refined!
def print() = "("+ e1.print + "+" + e2.print +")"

}

Figure 2. Adding an operation print in the Scala solution.

trait Sub extends Exp {
val e1, e2:Exp
def eval() = e1.eval - e2.eval

}

Adding a New Operation Figure 2 shows an example of
extending the initial system with a pretty printing operation.
The basic idea is to extend traits Exp, Lit and Add with traits
ExpP, LitP and AddP, respectively. Note that the type of
member fields e1 and e2 in AddP is refined! That is, instead
of keeping the type of e1 and e2 as Exp, we change it to
a subtype (ExpP). Changing the type is allowed in Scala
because it is just a form of covariant type refinement of types
in positive positions, which is well-understood in the theory
of object-oriented languages [2].

Importantly, note that it is the lack of this type-refinement
that is to blame for typical naive attempts to solve the EP. In
a naive attempt, the trait AddP would be defined as:

// Incorrect: typical code in naive non-solution!
trait AddP extends Add with ExpP {
// method does not type-check!
def print() = "("+ e1.print + "+" + e2.print +")"

}

The problem is that, because the type of e1 and e2 is not
refined, the call to the method print fails to type-check: the
trait Exp does not support a print method.

Instantiation The Scala solution is easy and concise to use:

// Initial system
val l1 = new Lit{val x=4}
val l2 = new Lit{val x=3}
val a = new Add{val e1=l1; val e2=l2}
println("a.eval = " + a.eval)

// Subtraction feature
val s = new Sub{val e1=l1; val e2=l2}
println("s.eval = " + s.eval)

// Print feature
val le1 = new LitP{val x=4}
val le2 = new LitP{val x=3}
val ae = new AddP{val e1=le1; val e2=le2}
println(ae.print + " = " + ae.eval)

Here, various objects are created from traits in Figures 1 and 2.
The first block of code illustrates how to use the initial system,
building a simple expression and evaluating it. The second
block shows how to use the subtraction feature. Finally, the

38



trait ExpC extends Exp {
def collectLit(): List[Int]

}
trait LitC extends Lit with ExpC {
def collectLit() : List[Int] = x :: List()

}
trait AddC extends Add with ExpC {
val e1, e2 : ExpC
def collectLit() : List[Int] = e1.collectLit :::

e2.collectLit
}

Figure 3. Adding an operation collectLit.

last block shows how to build expressions and use both pretty
printing and evaluation.

4. Independent Extensibility
Systems that satisfy independent extensibility should be able
to combine multiple independently developed extensions eas-
ily. In this way, programmers can merge several extensions
into a single compound one. In a trait-based language like
Scala, it is easy to obtain independent extensibility by sim-
ply relying on multiple trait-inheritance [18]. To illustrate
independent extensibility, we extend the initial system with a
new operation collectLit (which collects all literal compo-
nents in an expression) in Figure 3. The code to combine two
extensions (with print and collectLit respectively) is:

trait ExpPC extends ExpP with ExpC
trait LitPC extends LitP with LitC with ExpPC
trait AddPC extends AddP with AddC with ExpPC {
val e1, e2 : ExpPC

}

ExpPC is the new expression interface supporting print and
collectLit operations; LitPC and AddPC are the extended
variants. Notice that except for the routine of extend clauses,
we only need to refine the type of e1,e2 in AddPC. Instanti-
ation code is essentially the same as the instantiation code
presented in Section 3, thus we omit it here.

5. A Java Solution
This section presents a solution to the EP in Java. Since Java
does not support type-refinement of fields, we use covariant
return types instead to allow refinements of the types of
recursive sub-expressions. Figure 4 shows a class diagram
summarizing our Java solution.

Initial System The initial system shown in Figure 5 is
almost the same as the Scala code presented in Figure 1.
The difference is that old member fields e1 and e2 in trait
Add are now replaced by abstract functions getE1() and
getE2(). Therefore the class Add becomes an abstract class
correspondingly. These abstract getter methods will enable
future extensions of the initial system to covariantly refine
the return types of these methods.

Figure 4. The Java solution overview.

interface Exp { int eval(); }
class Lit implements Exp {

int x;
Lit(int x) { this.x = x; }
public int eval() { return x; }

}
abstract class Add implements Exp {

abstract Exp getE1(); //refinable return type!
abstract Exp getE2(); //refinable return type!
public int eval() {

return getE1().eval() + getE2().eval();
}

}

Figure 5. Initial code in the Java solution.

Adding a New Variant Extending the initial system with a
new data variant Sub is easy, as shown here:

abstract class Sub implements Exp {
abstract Exp getE1();
abstract Exp getE2();
public int eval() {

return getE1().eval() - getE2().eval();
}

}

Adding a New Operation Figure 6 shows an example of
extending the initial system with a new operation print.
Importantly, note that the definition of the print() method in
the class AddP is well-typed. This is because the types of the
getters getE1() and getE2() are refined, using the covariant
return types feature of Java, to return ExpP instead of Exp. If
the types were not refined, then there would be a type-error
when using getE1().print() or getE2().print(), since
method print() would not be defined in Exp.

Instantiation Note that in the initial system, the abstract
class Add is not immediately usable: abstract classes cannot
be directly instantiated. As shown in Figure 7, an additional
class AddFinal is needed to extend Add and provide concrete
implementations of abstract methods getE1(), getE2() in

39



interface ExpP extends Exp { String print(); }
class LitP extends Lit implements ExpP {

LitP(int x) { super(x); }
public String print() { return "" + x; }

}
abstract class AddP extends Add implements ExpP {

abstract ExpP getE1(); //return type refined!
abstract ExpP getE2(); //return type refined!
public String print() {

return "(" + getE1().print() + " + " +
getE2().print() + ")";

}
}

Figure 6. Adding an operation print in the Java solution.

class AddFinal extends Add {
Exp e1, e2;
AddFinal(Exp e1, Exp e2) {

this.e1 = e1;
this.e2 = e2;

}
Exp getE1() { return e1; }
Exp getE2() { return e2; }

}

Figure 7. An additional class for instantiation.

its superclass. With AddFinal we can create an expression
and execute an operation on it:

Exp exp = new AddFinal(new Lit(7), new Lit(4));
System.out.println(exp.eval());

Similarly, when updating the system with new operation
print, an additional class AddPFinal is defined for instantia-
tion of the abstract class AddP (code for AddPFinal is almost
the same as AddFinal, so we omit it here).

6. Discussion and Limitations
It may seem surprising that such a simple solution to the EP
in mainstream languages has not been proposed before in the
literature. One possible explanation is that although many
languages support covariant type refinement in some form,
only Scala allows a very direct solution using type refinement
of immutable fields. In Java some more ingenuity (and code)
is required to make use of covariant return types. Although the
Java solution has some boilerplate (because Final classes are
needed), that code is mechanical and could be automatically
generated. The Java solution can also support independent
extensibility by changing classes into interfaces with default
methods (supported in Java 8), but for reasons of space we
omit that variant here.

Although the idea of covariant refinement has not been
applied before to solutions of the EP in mainstream OO
languages, it has been a fundamental part of various new
language designs aimed at solving extensibility problems.
For example, languages that support family polymorphism

rely on the fact that family extensions allow covariant type
refinements. In languages supporting family polymorphism,
it is also possible to have a simple solution to Wadler’s
EP [7]. One important difference to more conventional type
systems like Java is that in family polymorphism covariant
type-refinement is also possible for arguments of methods.
In contrast Java (or Scala) only allows type-refinements
for types used in positive positions (that is, return or field
types). There is a good reason for such restriction: it is
well-known that naively allowing covariant type-refinement
everywhere would lead to type unsoundness. Type systems
for family polymorphism need to take special care to ensure
that covariant type-refinement can happen everywhere.

Binary and Producer Methods The restriction of type-
refinement to types in positive positions implies that binary
methods pose extra challenges for extensibility. For example,
if expressions were to support a (binary) equality method,
then we would want to refine the argument type of the equal-
ity method in the extension. However this is not possible in
Scala or Java. Producer methods that transform one expres-
sion and produce another are possible using the techniques
presented here. However, they introduce some code duplica-
tion because the original code of the method cannot be reused
in extensions. In the original Wadler’s EP, the two operations
(printing and evaluation) are consumer methods where the
recursive type does not occur anywhere in the signature of
the method. It is for this special class of methods that our
techniques shine and lead to particularly simple solutions.

Mutability Another limitation of the approach presented
here is the lack of mutability of the sub-expressions: the Scala
solution relies on immutable fields; and the Java solution
relies on getters. We do not know how to support mutability
using only subtyping. However, if we also allow the use
of generics, then we can obtain a variant of the solution
presented here that supports mutability and even removes
the need for final classes in Java. The idea is to abstract over
the type of expressions in classes with sub-expressions. For
example, instead of the classes Add (in Figure 5) and AddP
(in Figure 6), the following classes would be used:
class Add<E extends Exp> implements Exp {

E e1, e2;
public int eval() {return e1.eval() + e2.eval();}

}
class AddP<E extends ExpP> extends Add<E> implements

ExpP {
public String print() {

return e1.print() + " + " + e2.print();
}

}

Now, the fields e1 and e2 are mutable, and the types of
the fields are refined via the bounds of E. This solution
can be viewed as a simplification of Torgersen’s solution
to the EP [16], that avoids uses of F-bounds [1] and excessive
type-parametrization. The full source code for this variant,
including instantiation code, can be found online. If we go

40



all the way to Torgersen’s solution it is even possible to deal
with binary and producer methods. However this comes at the
cost of simplicity, as now the code gets filled with numerous
type annotations and bounds.

7. Related Work
The EP in Mainstream Languages The solutions to the
EP presented here only use subtyping. This is in sharp con-
trast to existing solutions in various widely-used languages.
Essentially all the solutions that we know use a combina-
tion of two mechanisms: subtyping and type-parametrization.
Wadler proposed a solution using generics in Generic Java to
solve the EP. However, he later found a subtle typing problem.
Torgersen [16] presents 4 solutions that use a combination
of Java generics and subtyping. His solutions require a lot
of type parametrization and use advanced features, such as
F-bounds [1] or wildcards. Our approaches follow the same
structure as Torgersen’s first solution. The difference is that
covariant return types are used, instead of F-bounded type
parameters, to type occurrences of recursive types. Object
Algebras [13] are an alternative approach to solve the EP in
Java-like languages. While Object Algebras do not require
F-bounds or wildcards, they still require generics. There are
also solutions to the EP in Haskell (for example [15]), but
all of them rely heavily on type-parametrization.

Language-based solutions Various approaches, based on
new programming languages or programming language fea-
tures, can be used to solve the EP. Examples of these include
multi-methods [3]; open classes [4]; virtual classes [8]; ap-
proaches to family polymorphism [6]; and others [10]. The
main difference to our work is that those approaches rely
on the features targeted at solving extensibility problems,
whereas the approach presented here relies only on standard
OO language features.

8. Conclusion
This paper presents a new solution to Wadler’s Expression
Problem using only subtyping. The key idea is to use covari-
ant type refinement to refine recursive types in extensions.
This solution does not need any form of type-parametrization.

We believe that the results of our work provide two
important insights. Firstly, while it has been widely believed
that statically typed functional languages and OOP languages
have equal difficulties in solving the Wadler’s EP, our work
shows that this is not true. Wadler’s EP is in fact simpler
to solve in OOP languages due to the native support for
subtyping. Since traditional functional languages, such as
Haskell or ML, have avoided native support for subtyping a
similar solution does not directly apply. Secondly, our work
shows that, as a benchmark for extensibility, Wadler’s EP is
perhaps “too easy”. The bar can be set higher by requiring,
not only consumer methods, but also binary and producer
methods (such as a binary equality operation, or an operation
that transforms expressions).

Acknowledgments
We thank the reviewers and Erik Walkingshaw for feedback
that significantly improved this paper. This work has been
sponsored by the Hong Kong Research Grant Council Early
Career Scheme project number 27200514.

References
[1] P. Canning, W. Cook, W. Hill, W. Olthoff, and J. C. Mitchell.

F-bounded polymorphism for object-oriented programming.
In FPCA ’89, 1989.

[2] L. Cardelli. A semantics of multiple inheritance. Information
and Computation, 76:138–164, 1988.

[3] C. Chambers and G. T. Leavens. Typechecking and modules
for multimethods. ACM TOPLAS, 17:805–843, 1995.

[4] C. Clifton, G. T. Leavens, C. Chambers, and T. Millstein.
MultiJava: modular open classes and symmetric multiple
dispatch for java. In OOPSLA ’00, 2000.

[5] W. R. Cook. Object-oriented programming versus abstract data
types. In FOOL ’91, 1991.

[6] E. Ernst. Family polymorphism. In ECOOP ’01, 2001.

[7] E. Ernst. The expression problem, Scandinavian style. In
MASPEGHI, 2004.

[8] E. Ernst, K. Ostermann, and W. R. Cook. A virtual class
calculus. In POPL ’06, 2006.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign Patterns: Elements of Reusable Object-oriented Software.
Addison-Wesley, 1995.

[10] J. Hannemann and G. Kiczales. The aspectj web site.
http://www.aspectj.org.

[11] S. Krishnamurthi, M. Felleisen, and D. P. Friedman. Synthe-
sizing object-oriented and functional design to promote re-use.
In ECOOP ’98. 1998.

[12] B. C. d. S. Oliveira. Modular visitor components. In
ECOOP’09, 2009.

[13] B. C. d. S. Oliveira and W. R. Cook. Extensibility for
the masses: Practical extensibility with object algebras. In
ECOOP’12, 2012.

[14] J. C. Reynolds. User-defined types and procedural data
structures as complementary approaches to type abstraction.
In New Directions in Algorithmic Languages. 1975.

[15] W. Swierstra. Data types à la carte. Journal of Functional
Programming, 18(4):423 – 436, 2008.

[16] M. Torgersen. The expression problem revisited – four new
solutions using generics. In ECOOP’04, 2004.

[17] P. Wadler. The Expression Problem. Email, Nov. 1998.
Discussion on the Java Genericity mailing list.

[18] M. Zenger and M. Odersky. Independently extensible solutions
to the expression problem. In FOOL’05, 2005.

41


