
Modular Architecture for Code and Metadata Sharing

Tomas Tauber Bruno C. d. S. Oliveira
The University of Hong Kong, Pok Fu Lam Road, Hong Kong, China

{ttauber,bruno}@cs.hku.hk

Abstract
Every fragment of code we write has dependencies and asso-
ciated metadata. Code dependencies range from local refer-
ences and standard library definitions to external third party
libraries. Metadata spans from within source code files (hi-
erarchical names and code comments) to external files and
database servers (package-level dependency configurations,
build and test results, code reviews etc.). This scattered stor-
age and non-uniform access limits our programming envi-
ronments in their functionality and extensibility.

In this paper, we propose a modular system architecture,
Haknam, better suited for code and related metadata shar-
ing. Haknam precisely tracks code interdependencies, al-
lows flexible naming and querying of code references, and
collects code fragments and their related metadata as mes-
sages in a distributed log-centric pipeline. We argue that this
setting brings considerable advantages. In particular, we fo-
cus on modular development of tools and services that can
assist in programming-related tasks. Every new functional-
ity can be simply added by creating and processing messages
from the distributed pipeline.

Categories and Subject Descriptors D.2.2 [Software En-
gineering]: Design Tools and Techniques—Computer-aided
software engineering (CASE); D.2.6 [Software Engineer-
ing]: Programming Environments—Integrated environments;
D.3.3 [Programming Languages]: Language Constructs and
Features—Modules, packages

Keywords Haknam, code slice, Haskell, fragmented code
distribution, evidence, tags, event log

1. Introduction
Software development evolved rather spontaneously and or-
ganically from different scientific and engineering commu-

nities [25]. Its early days started with very “localized” envi-
ronments. Before the internet or even personal workstations,
collaborative development mostly happened within individ-
ual organizations. Code sharing implied shared physical ac-
cess or physical media exchange. “External” code dependen-
cies would most likely come from within the same organiza-
tion. How well this worked or not depended on internal co-
ordination. With the advent of portable operating system and
programming environments, there has been an explosion of
various productivity tools, from libraries, version control to
build systems reused across different organizations.

The internet adoption later provided new means of code
sharing on a global scale and this trend accelerated. Instead
of developing code from scratch within a single organiza-
tion, software development relies on external code depen-
dencies from many different sources. Despite that, some of
our conventions and unconscious assumptions remain al-
most as if nothing changed from the early days.

Common programming languages and their compilers
implicitly treat all source code as something originating
from the local filesystem. This convention then requires
using external tools for separately storing and managing
shared source code and metadata about it (where it came
from, what version it is, etc.). Even with that, problems with
name clashes or versioning arise, because the world would
not agree on a global filesystem structure. Again, differ-
ent tools and techniques exist to bypass this problem. One
common approach is to use “stable distributions” (e.g. Ana-
conda [7]) where community maintainers compile a vetted
and tested list of compatible packages. Another common
approach is “version pinning” (e.g. Gradle [18]) of pack-
ages. Both of these approaches, however, ad-hoc emulate a
centralized “single organization” environment. In that sense,
this implies a fixed topology of inter-project dependencies.
Changing it (e.g. merging or splitting out projects) would
imply refactoring and a detached version history.

Another point is that commonly used imprecise indirect
versioning may still cause problems. Firstly, versioning is a
form of metadata outside language specifications and com-
pilers generally ignore it. Therefore, programming language
environments often cannot deal with depending on multiple
versions of the same library. Secondly, using a single release
number and coarse-grained dependencies may obfuscate and

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

MODULARITY’16, March 14–17, 2016, Málaga, Spain
c© 2016 ACM. 978-1-4503-3995-7/16/03...

http://dx.doi.org/10.1145/2889443.2889455

106

complicate upgrades. Some package maintainers suffer from
Hauptversionsnummernerhöhungsangst1[27] and introduce
API-breaking changes as non-breaking. On the other hand,
some API-breaking changes may be non-breaking to people
who depend on a subset of a particular library. One possibil-
ity to mitigate these problems is to enforce semantic version-
ing. Unless community guidelines suggest otherwise, this of-
ten assumes compatible API signatures are the only external
dependency requirement. It may be, but we may have other
requirements on the external code: e.g. that it compiles with
a specific compiler version on a specific platform, it has a
good performance or passes all relevant tests. These require-
ments vary individually from one project to another; and the
external code’s author may not have all of them in mind.

Overall, a lot of metadata surrounds today’s source code.
Unlike source code, which tends to be in text files, metadata
is scattered in different formats and places. We embed some
metadata directly in the source code (e.g. code comments).
At the same time, we place other metadata in different files in
the same repository (e.g. versioning information) or in vari-
ous databases and services (e.g. test results). Combining and
processing this scattered metadata may be non-trivial and
non-modular. Building and extending development tools is
tied to a local environment and limited by what metadata
they have access to. In other words, the lack of a modular
integrated infrastructure limits what can be done in a pro-
gramming language environment.

To address this issue, we propose Haknam, a modular
architecture designed for the today’s distributed software
development. Haknam builds on three core ideas:

1. Haknam does not store shared source code in text files,
but in uniquely identifiable parts of reusable functional-
ity. Each part precisely describes its dependencies and
can be used independently of irrelevant parts of a partic-
ular project and their dependencies.

2. Haknam does not impose a rigid filesystem-like struc-
ture, but allows flexible labeling of source code parts.
There are two types of labels: tags added by users, and ev-
idence which denote machine-verifiable properties. With
these flexible labels, source code parts can be searched
and work together without globally imposing any partic-
ular development workflow, conventions or naming struc-
tures.

3. Source code and metadata are uniformly stored and
accessed as messages in a distributed append-only se-
quence. This provides a clear separation between writing
new shared data and processing existing data into spe-
cialized services (e.g. for fast access of certain queries).
Combining and processing metadata is a matter of fil-
tering certain messages. We can extend functionality by
writing new types of messages (that existing services
may ignore) and services that will process them.

1 German word for the fear of increasing the major version number

We describe the overall architecture and these three ideas
of Haknam in Section 2. In Section 3, we outline the proto-
type implementation of Haknam, including an experimental
web-based development environment. Then in Section 4, we
present several prospective applications on top of Haknam.
We discuss related work in Section 5. Finally, we expand on
limitations of our prototype and overview future research di-
rections in Section 6, and add a few concluding remarks in
Section 7.

2. Vision Overview
This section shows the overall architecture and describes the
main concepts behind Haknam: fragmented code distribu-
tion, code organization with tags and evidence, and unified
data collection in the event log.

2.1 Once Upon a Programming Environment Design
In this section, we look at the extensible design intuition be-
hind Haknam that underpins tool development. The over-
all architecture based on this intuition is shown in Figure 1.
This Figure refers to three building blocks described later:
code slices (Section 2.2), flexible and reliable code-related
metadata (Section 2.3), and log-based storage (Section 2.4).
Nonetheless, in an analogy to the Unix programming envi-
ronment, development tools and services follow certain de-
sign principles:

• Each service (program) does one thing well.
• Each service is a “filter” in the sense that it subscribes

to different log partitions (distributed log systems are
generally divided into different partitions or topics) and
processes certain input messages from it. Unlike Unix
pipes, log partitions are distributed and allow multiple
publishers and subscribers.

• Each service consumes and produces event log messages.
This acts similarly to programs reading and producing
textual stream in Unix.

Other storage mechanisms can back different services,
depending on their purpose (full-text index for API lookups,
deductive databases for code dependencies, etc.). The data
they contain is eventually consistent with the event log.
Overall, Haknam utilizes two forms of extensibility:

1. We can add new forms of metadata, without affecting
or changing existing metadata and services. The content
of log messages can be arbitrary (any structure and any
serialization format), so existing services only subscribe
to the ones they can process and ignore the rest. New
services can simply read or produce new metadata as
messages that adhere to their processing conventions.

2. We can add new services, without affecting or changing
existing metadata and services. New services can use
and combine existing services, code slices and metadata
about them.

107

Figure 1. Overall architecture: code slices and related metadata are appended to a persistent log. The log is processed by
specialized services that provide fast access to some queries and services that verify requested evidence (e.g. if a given code
slice compiles) and write the result back to the log.

In Sections 2.2, 2.3, and 2.4, we describe individual con-
cepts that contribute to the overall modular architecture. In
Section 4, we explore various applications on top of Hak-
nam that benefit from its extensible design.

2.2 Enter the Fragmented Code Distribution
In this section, we describe how Haknam handles code
dependency metadata.

File Bundle Code Distribution. When discussing meta-
data about code, it is useful to look at the code itself. If we
omit line and block comments, code contains (usually im-
precise) metadata about its dependencies. In plain program-
ming languages, the entry point for using external code is by
writing (or generating) a statement similar to this one:

import Path.To.External .Code.File (externalNameReference)

There could be other keywords, such as for renaming or
using qualified names. In any case, this is a form of meta-
data about the code embedded in its textual representation.
Different tools may be interested in different portions of the
stored code file. If a tool tries to process it with the respect
to its corresponding abstract syntax (compilation, analysis,
testing etc.), it only matters that: the tool can go to the given
path (be it a local filesystem-related path or URL), fetch the
given file (be it a source file or an object file with interface)
which should contain the given name.

For this code-related processing, human-readable names,
filesystem paths and the traditional file bundle distribution
do not matter. In fact, they rather complicate the task:

1. Name or path conflicts may arise.

2. Referenced files may contain code which is irrelevant to
code dependent on these files.

3. Irrelevant code may fail to compile or increase processing
time.

Fragmented Code Distribution. To extract the precise de-
pendency metadata, we move away from the traditional file
bundle code distribution. Instead, we turn to the fragmented
code distribution (FCD). In FCD, each individual declara-
tion is exposed in its single encapsulated compilation unit
with a unique name. Single compilation units import from
other single compilation units only if they are true dependen-
cies. The immediate advantage is that FCD does not intro-
duce complications for processing that we had with the tradi-
tional file bundle code distribution. The potential disadvan-
tage is that there may be more code duplicity, i.e. different
units may share their dependencies. We, however, do not as-
sume these units are written manually by programmers, but
rather assisted and generated. Note that the traditional file
bundle code distribution, despite files being written manu-
ally, still requires external tools to manage versioning, builds
and external dependencies.

108

Before looking at an example of FCD features, we estab-
lish some terminology and background. Due to our prototype
implementation (described in Section 3.1), we show code ex-
amples in Haskell in this section. We borrow the FCD con-
cept from Fragnix [31], a new Haskell code/package man-
ager, and will use its terminology. In Fragnix, a single dec-
laration (of a function, a datatype, or a type class) is called
a code fragment. An example fragment is shown in the left
column of Table 1. This fragment is a function that takes
a credit card number, checks whether it is valid according
to the Luhn algorithm and either returns a value represent-
ing the card issuer or an error. Fragments themselves do not
capture dependencies. For that, Fragnix operates with code
slices. Each slice consists of four parts: a fragment, all its
dependencies, any language extensions, and a unique ID. A
unique ID is generated as a hash of the slice’s content. Slices
can then be represented as ordinary Haskell modules. For ex-
ample, the slice that includes the example fragment is shown
in the right column of Table 1. Code slices have two proper-
ties desirable for code-related processing: 1) name conflicts
do not arise; 2) referenced code slices only contain code
which is relevant to code slices depending on them.

The unique IDs guarantee that there are no conflicts – e.g.
two different versions of the same function end up in two
different unique code slices. The exact dependencies reduce
processing workload and prevent other problems – e.g. when
code slices fail to compile, it does not affect code slices that
do not depend on them. This is not always the case in the
traditional file bundle code distribution.

2.3 Crouching Tag, Hidden Evidence
In Section 2.2, we focused on the code processing aspect
of external dependencies. In this section, we describe how
Haknam handles code organization or naming-related meta-
data.

Filesystem-like Code Organization. The file bundle code
distribution naturally ties with the filesystem-like namespace
organization. This code namespace organization works with
the fragmented code distribution as well – Fragnix defines
environments to be modules that re-export code slices under
saner names. In this setting, let us now look at an example
task: searching for a new API. For instance, we can look for
a credit card validation function. In the current development
workflows, we will follow something along these steps:

Step 1: We will search with a query “credit card vali-
dation” either in a general purpose web search
engine (and include the programming language
name in the query) or in an API-specialized search
service.

Step 2: After browsing results, reading through documen-
tation and discovering a package name, e.g. “vali-
dation-tools”, we will write it in some external de-
pendency configuration file and get it downloaded.

Step 3: Finally, we will write something like this in our
source file: import Data.Validate (luhnValid).

We see that the names we ended up with have not much
in common with the original keywords in the query. It may
be the case that Steps 1 and 2 take some time and that most
developers search for this function with similar keywords.
Step 2 may involve checking build and test results or other
metadata.

We would then desire to create a tool, integrated in some
development environment, that would help with such API
searching tasks. We would face different obstacles. One ma-
jor obstacle would be relating different metadata (original
names, queries, build results etc.) spread across different
sources – some metadata (such as query history) may not
even be publicly available.

Label-based Code Organization. If we look at all the
metadata involved (from names and queries to build results),
we can think of it as programmer-written or machine-gen-
erated labels attached to some code slices. In other words,
Haknam offers a flexible and direct scheme for code orga-
nization: every code slice can be described with an arbitrary
number of user-defined labels (tags), and external dependen-
cies can be looked up using those labels. Users can attach
labels to any existing code slices. When writing a code frag-
ment, queries specify all its external dependencies.

The example of that is shown in the middle column of
Table 1 – each external name is accompanied by a query
with tags denoted by #. The other possibility for lookups is
to use evidence (denoted by @). Evidence labels are labels
which imply stronger machine-verified guarantees about ex-
ternal dependencies. In other words, tags can be arbitrarily
inserted, but evidence needs to be accompanied by a ma-
chine-verifiable justification.

The basic example of an evidence is publication. Once
the code slice is added to some user repository that is shared
online, it implicitly gets evidence for that. User repositories
could be similar to project source code repositories as well as
to various merged channels, such as channels that take and
republish code slices from different projects. In that sense,
stable distributions and other centralized solutions that exist
today are special cases that can emerge in Haknam.

We can, however, make evidence as precise as we wish
to: for example, we may require evidence for an exact ver-
sion of the compiler (since ABI may be different between
two compiler versions) on a particular platform. In Table
1, @ghc7.8 and @linux86 request evidence that the exter-
nal code should be successfully compiled with the compiler
GHC version 7.8 on the x86 Linux platform. Other exam-
ples of evidence include property-based randomized testing
or unit tests where a justification is in the form of machine
readable report of successful test passes. Evidence genera-
tion can be extended to any propositions that can be auto-
matically verified. This includes using external verification
tools and specifications. Beyond verification, we may, for ex-

109

Table 1. This table shows three main parts that we operate with in our prototype: 1) the user writes a code fragment, 2) the
editor pre-fills queries for unresolved names in the code fragment and the user verifies them and may change them (as described
in Section 3.5), 3) from the code fragment and relevant queries, the code slice is generated. Later, various tags or evidence may
be added about this code slice.

Code Fragment (written) External Queries (assisted) Code Slice (generated)

convertCard ::

CardNumber

→ CardType

convertCard no =

if luhnValid no

then getCardType no

else cardError

CardNumber : #credit card

payment # bank

CardType : #credit card

#Visa #MasterCard

luhnValid : #credit card

validation # Luhn

@ghc7.8@linux86

getCardType : #credit card

detection@ghc7.8@linux86

cardError : #invalid # card

error@ghc7.8@linux86

{-# LANGUAGE NoImplicitPrelude, (...) #-}
module F6438570461503997890 where

import F2895876643766170726 (luhnValid)

import F2982558241273070393 (getCardType)

import F4230983858141319800 (cardError)

import F8490776344619887876 (CardNumber)

import F7326499101269886236 (CardType)

convertCard :: CardNumber → CardType

convertCard no = if luhnValid no

then getCardType no

else cardError

ample, require evidence for rigorous performance measure-
ments below certain thresholds or for code style adherence.

If we revisit the example task of searching for a new API,
we do Steps 1-3 in one go. The flexible code organization
brings us a possibility to reach the external code in different
ways: some people may look it up with #Data#Validate#
Luhn , others with #Validate#Data#Luhn , or something
different such as #credit card#validation . Some may also
include extra keyword annotations denoting some desirable
properties (e.g. that the external code was tested). Queries
with evidence labels then bring some guarantees when a user
chooses to recompile a fragment with different dependencies
(i.e. when new slices matching the query appeared). In any
case, there are different ways how to reach the external code
and all of them are recorded.

If we were to create a tool that assists with API search-
ing, we have all relevant metadata at our fingertips. We can
create a simple tool, processing all query and label metadata
into an inverted index mapping keywords to external code.
Given a query, the tool can suggest an external code by rank-
ing it against previously stored keywords from queries. If
#credit card#validation is a fairly common query among
all users, we would get to that external code immediately
with the original query of Step 1.

2.4 The Way of the Event Log
In Sections 2.2 and 2.3, we described how Haknam sepa-
rates and handles different kinds of code-related metadata.
In this section, we look at how metadata is stored and pro-
cessed.

Heterogenous Non-uniform Source Storage. Tradition-
ally, we do not find metadata in a uniform source. Code with
some of its metadata is usually stored in text files. A his-

tory of changes is kept separately in internal version control
files. Other metadata (such as continuos integration results)
reside in remote databases. They may use different ways of
access – from HTTP requests, custom communication proto-
cols, to various middleware APIs. This has unfortunate con-
sequences on metadata processing scenarios.

It becomes non-trivial and non-portable to manage, com-
bine, and extend metadata from different sources. An exam-
ple where complications happen is with inter-project topo-
logical changes (such as splitting one project into two). In
this example, some relevant metadata before changes may
become “lost” (disassociated) after changes – for instance,
if split project code is copied to a fresh new repository with-
out its history of changes. Even with its history of changes,
some metadata, such as old test results, may not be carried
over.

Log-based Uniform Source Storage. Haknam stores all
data in the event log. The event log is a simple data storage
abstraction: append-only (previously written items are im-
mutable) and totally-ordered sequence of records. The cur-
rent state can be thought of as a result of selective aggrega-
tion over this sequence. For example, if we have three events
about slice with id 2895876643766170726:

1. Add tags #credit card and #validation to this slice.

2. Add a tag #Luhn to this slice.

3. Add evidence labels @ghc7.8 and @linux86 to this slice.

If we aggregate events for this slice, we can deduce its
current set of tags contains #credit card , #validation , and
#Luhn; and its evidence contains @ghc7.8 and @linux86.
The ultimate purpose of this abstraction is to keep a single
source of what happened and when. This is sometimes called

110

Event Sourcing or atomic broadcast [9]. Event logs tend to
be central points in many distributed system architectures
for many reasons. Firstly, they form one reliable source of
all data, so tools do not need to worry about explicit syn-
chronization and fault tolerance. This is in contrast with the
traditional non-uniform source storage where tools need to
worry about explicit synchronization and may not access
some sources simultaneously. In this setting, inter-project
changes do not cause any complications, since all old data
remain accessible for processing. For example, project split-
ting would correspond to writing events representing the cre-
ation of the new project and moving split code slices to it
from the old project. Secondly, they provide a clear sepa-
ration between writing and reading the data, which guides
implementation. Thirdly, several distributed high-availabil-
ity log systems exist in production [15, 22]. Finally, these
systems allow processing in realtime, so all tools can start
processing new data as soon as it arrives.

3. Prototype Implementation
This section contains implementation details and discusses
limitations of our prototype for Haknam. In addition to that,
it also describes an experimental web-based programming
editor environment. Development tools and services on top
of Haknam interact with this environment.

We chose Haskell for the prototype implementation. We
favored Haskell over other languages for two reasons: 1)
Haskell is a purely functional language; 2) Haskell’s mod-
ule system is relatively simple, i.e. it mostly does name res-
olution. Both cases make code reorganization for precise de-
pendencies easier, e.g. we do not need to worry about global
mutable variables. In Section 6.4, we discuss how our work
could extend to other languages.

3.1 Code Slices
We reused Fragnix’s internal implementation in our proto-
type. A few technical details may change in later implemen-
tation. Firstly, builtin definitions from the Haskell standard
library (Prelude) are not sliced, but imported directly. Ide-
ally, this may change and builtin definitions will not need to
be treated in a different way.

Secondly, code slice hashes are computed from the tex-
tual representation of their code fragments, dependencies,
and language extensions using the FNV-1 algorithm. This
approach suffices for our prototype, but a real system would
benefit from two changes. One change would be to use ab-
stract syntax trees rather than textual representations in hash
computations. This change would make code slices more ro-
bust to local name refactoring. The other change would be
to store metadata about the used hash algorithm. This would
strengthen the implementation against system changes.

Thirdly, single name declarations export multiple pieces:
functions export their type signatures and their definitions,
datatypes export their names and constructors, and type

classes export their names and methods. Our prototype
implementation does not handle type class instances well
and does not support advanced language features, such as
metaprogramming language extensions. Again, a full sys-
tem implementation would need to address these issues.

3.2 Name Queries
Section 2.3 described two types of labels used for flexible
code organization. The middle column of Table 1 shows ex-
amples of external name queries to generate the code slice in
the right column from the code fragment in the left column.
In our prototype, these name queries are resolved as boolean
queries of the standard Boolean information retrieval (BIR)
model [23]:

matched = id ∧ (
∧

e∈evidence e) ∧ (
∨

t∈tags t)

There may be no matched code slices. In that case, an
error is shown. There may also be multiple matched slices. In
that case, we rank the matches by the number of overlapping
tags and by their age: the one with the most overlapping tags
is selected; in case of draws, the latest one is selected. Other
ranking schemes are possible; for example ranking by the
total number of external code slices that are importing the
ranked slice. However, the ranking with overlapping tags is
fairly flexible – since the programmer could see intermediate
search results in the editor (described in Section 3.5), he/she
could always refine the query and add more specific tags or
fix it with some specific evidence.

For example, if one needs to disambiguate between con-
vertCard and getCardType which may share similar meta-
data, one could use their identifiers to do so. A more reliable
approach would be using an evidence label denoting that a
function passed a test suite which feeds it with valid and in-
valid card numbers. On the other hand, one may only need
the latter function and want to do a custom validation, for in-
stance, for performance reasons, because luhnValid may be
inefficient. In that situation, there could be an evidence la-
bel denoting passing a strict certainty threshold on rigorous
performance measurement of repeated function invokations
with randomized card numbers. In any case, the simple rank-
ing scheme and query language were a prototype implemen-
tation choice. We discuss the possibility of a more expressive
query language in Section 6.4.

3.3 Storage
There are different possibilities how to implement ideas de-
scribed in Section 2. Given the event log, one natural choice
is to use a log-centric distributed system. In our prototype,
we used Apache Kafka [22], but other systems (e.g. Event
Store [15]) would be equally good. The event log drives the
overall architecture design shown in Figure 1, since the main
communication happens via appending and reading mes-
sages from it. In Kafka, the log is partitioned into topics.
We create topics for the following two purposes:

111

1. “System” topics: these are single word topics for short
system-wide announcement messages, such as registra-
tion of new users or creation of new repositories.

2. Project topics: for each user project, a topic “user.project”
is created and gathers all messages related to changes in
that project.

There are different message types. All of them are written
as “Keyed Messages” in Kafka. The key denotes the message
type, e.g. “add-tags-<slice-id>”, and its content is in JSON
which depends on the message type, e.g. a JS array of tags
to be added. For example, the body of the first add tags event
from Section 2.4 would look as follows:

{"sliceID":2895876643766170726,
"tags":["credit card", "validation"]}

This approach is suitable for our prototype, but two
changes may improve a full system implementation. Firstly,
key names could contain information about their content
serialization format. Other serialization formats may later
evolve and gain usage in some communities. Secondly,
schemas for message content would be recorded in a ded-
icated system topic. These would be messages that may re-
fer to other previous schemas and would contain a hash code
computed from the schema structure. Key names would refer
to these hash codes. This change would account for potential
evolution in exchanged information (e.g. extra fields).

3.4 Basic Functionality
The implementation of services is language-independent.
For our prototype, we used Haskell.

Publication Request. The publication request’s message
contains a code fragment, its external name queries, and an
optional back-reference to a code slice. The back-reference
is used when the generated code slice is supposed to replace
an existing code slice.

Code Slice Generation. The input message is the publica-
tion request. At first, external name queries are evaluated.
For that, a label database is used to lookup external code
slice IDs. If that succeeds, a new code slice is generated.
From Fragnix’s momentarily implementation, the hash ID
is generated from the source code text (as described in Sec-
tion 3.1). The output message with the newly generated code
slice is then written. If the request contained a back-refer-
ence, a removal message for the old code slice is also writ-
ten.

Tag Insertion. The tag insertion message contains a se-
quence of tags to be added to a given code slice.

Code Slice Display and Removal from Projects. The ser-
vice processes code slice generation messages into a key-
value store that maps code slice IDs to the actual code. When
a code slice is “removed” from a project (i.e. the log contains
an event indicating removal), it is still processed and other

code can depend on it. Project attachment, hence, serves
more as a special label for project-based display in the edi-
tor. Even if a code slice becomes “removed” from all existing
projects, its original creation event persists in the log. A user
could still potentially find this code slice and copy it.

Code Slice Transitive Dependencies. This service also
processes code slice generation messages, but into a de-
ductive database where it captures dependency relationships
among code slices. This is then used for retrieving transitive
dependencies of a particular code slice (the input message
contains a slice ID, and the output is a sequence of IDs).

Code Slice Label Attachment. Tag and evidence inser-
tion messages are processed into a relational database. This
database is then used for resolving external name queries
(the input message is a sequence of queries, and the output
is a sequence of IDs).

Evidence Request. The evidence request contains the slice
ID and the desired evidence label.

Evidence Generation. This service processes the evidence
requests. In our prototype, we assumed a trusted execution
service and only implemented an ad-hoc compilation evi-
dence. After reading the request with certain evidence labels,
it queries the deductive database for transitive dependencies
of a compiled code slice. It then tries to compile the slice
with its dependencies. If compilation succeeds, it writes a
message with a sequence of desired evidence labels. We plan
to extend the prototype to handle general evidence genera-
tion by reusing existing continous integration software.

3.5 Experimental Editor
The editor frontend is independent of the underlying archi-
tecture (Figure 1) and potentially any existing editor, such
as Emacs, could take this role. The concepts we introduce
in Section 2, however, move away from a traditional text
file-oriented source code storage with scattered metadata.
Thus, adapting traditional text editors to this scenario may
require a lot of engineering effort. For this reason, we de-
cided to implement a prototype of an experimental “file-
less” development environment. Our motivation for devel-
oping this editor prototype was to have an easy control over
its user interface for rapid prototyping. This allows us to il-
lustrate ideas from Section 2, connect it with basic function-
ality described in Section 3.4, and possibly later with some
applications described in Section 4.

After logging in and selecting or creating a project, a user
enters the interactive editor environment, which is shown in
Figure 2. In the left panel, the user sees project organiza-
tion by “queries”. Users are free to specify queries according
to their personal preferences. The project organization then
may resemble traditional filesystem-like structure or not, i.e.
same code slices may appear under different queries if the
user wishes to. In the middle panel, the user sees the re-
sults of “organization queries”. This, again, may resemble

112

Figure 2. A screenshot of the experimental web-based programming environment: the left panel is used for query-based source
repository navigation, the middle panel shows the resulting code fragments, and the right panel shows opened extra metadata
information.

an opened text file. The difference is that the ordering of
individual code fragments does not matter. The user can in-
spect code fragments and click to expand relevant metadata
about them. The metadata appears in the right panel and the
user can modify it.

In Figure 1, the editor is split into two parts. The editor
backend communicates with the event log and specialized
services. This part was written in Haskell using the Snap
web framework. The editor frontend displays the user in-
terface and communicates with the backend. The frontend
was written in Elm and uses the Materialize framework and
the CodeMirror editor. Network communication, i.e. query-
ing and retrieval, happens via Socket.io. Local code is stored
in HTML5 Web Storage.

4. Prospective Applications
In this section, we overview several examples of potential
applications that can be built on top of Haknam. Implemen-
tation of these extensions follows the same guideline as the
core implementation: they produce, filter and process certain
messages.

Stable Code Vetting. The architecture described in Sec-
tions 2 and 3 is flexible and allows extensions beyond the
originally envisioned scope (unlike many current PL envi-
ronments). In this case, we consider a feature for automated
processing of community vetting on stable code. Different
organizations, communities or even individual projects have

different definitions of code stability. We may define stability
based on the time since last API changes, the number of sta-
ble external code slices depending on it and other features.
Even though we may process these features, code maintain-
ers with good reputation generally decide on when some-
thing becomes stable. Hence, for the purposes of demonstra-
tion, we would consider code to be stable if a certain thresh-
old of whitelisted users marked it as such.

The implementation of this feature is fairly straightfor-
ward. We would add a new type of message that denotes
an individual vote for code slice stability; and include this
action in the editor. Then, we would create a service that
collects and processes these votes from the event log. Af-
ter reaching a certain threshold on votes, this service would
trigger an action that represents stability. That could be in
the form of adding certain evidence labels, such as publish-
ing given code slices in a dedicated stable project repository.
Unlike in conventional repositories, stable and development
code coexist in the same environment. Creating stable distri-
butions is just a matter of labeling code by a trusted party.

Collaborative Code Editing and Replay. In the prototype,
we slice and store source code at a granularity of “check-
pointed” compilation units. An alternative or complement-
ing approach would be storing individual small incremental
changes, such as UI events. This granularity would not be
very useful for the basic functionality we described in Sec-
tion 3.4, but other applications could make use of it. One
immediate application is collaborative editing where, given

113

Figure 3. Comment metadata decoupled from source code:
In this example, an explanation comment is attached to a
local expression.

change information is annotated with its author, different
programmers could share a coding session by listening on
and contributing to the same stream (e.g. the same partition
of the event log). Replaying edit changes could be another
usage, e.g. for code reviewers to get an idea how code under
review came about.

It would be impractical storing information at this gran-
ularity forever. In Section 6.1, we describe a mechanism
that could solve this issue. Just like the current set of tags
is an aggregation of tag addition messages, the final slice
could be generated as an aggregation of all small incremen-
tal changes. The messages with small changes could expire
after a certain time or action, e.g. after their resulting code
has been marked as stable, and be compacted into the final
code slice.

Version Control. All VCS functionality could be easily
added. Commits are just metadata messages written to the
event log after some changes. Forking and branching is
done by reinserting messages from one project to a dif-
ferent project. The VCS functionality could go beyond its
traditional form. For example, we could also fork individual
code slices by dragging them from one project and drop-
ping them in another one in the editor. Merge notifications
can be shown immediately: 1) if a forked project updated
some parts, it can be shown in the original project whether
to synchronize those changes, 2) if an external dependency
was updated and the most recent update still satisfies all ev-
idence constraints and tags, the user can confirm to replace
it. Pull requests could be implemented, like everything else,
as messages written to the event log.

API Searching. One interesting area is API searching.
Code searching services can utilize available code and all
its metadata. They could combine code and metadata for
ranking of results. From the core data, we can rank by the
number of depending projects; or given a set of tags, we can
see which ones are used most in the queries. Code searching
services could also utilize the metadata from other appli-
cations. For example, using the information about project
bookmarking, code searches can be personalized by ranking
code from users’ bookmarked projects higher.

Decoupled Enriched Code Comments. Finally, the uni-
form storage may enrich common functionality. Tradition-
ally, source code is entangled with textual comments. In

Figure 4. Comment metadata decoupled from source code:
In this example, a different type of comment (code review)
is used.

Haknam, we could decouple comments from code: we
could store code comments as separately written messages
with references to existing code slices. This allows greater
flexibility in displaying code comments. For example, sep-
arate comments could be made by different users and refer
to different segments. In the editor, one could highlight ar-
bitrary parts of code slices and write comments about them.
Unlike traditional textual comments embedded in source
code, decoupled comments could be attached to a specific
expression – an example of that is shown in Figure 3. The de-
coupled comments could be visualized as collapsable over-
lay bubbles.

Other possibility for enriched code comments is to store
different types of comments separately. Comments may con-
tain high level descriptions, example usage or detailed expla-
nation. Each comment type can be visualized differently. For
instance, comments with example usage would render code
samples and clicking on a code sample would offer an op-
tion to copy it into an edited code slice. Another example
is that code comments could capture conversations and code
reviews. We show an example of that in Figure 4. All of this
could be easily achieved through uniformly storing and pro-
cessing metadata.

5. Related Work
System Software. Nix [13] or Guix [8] are OS-level lan-
guage-agnostic package managers that aim at reproducibil-
ity. The idea from Fragnix [31] of hashing module depen-
dencies is inspired by Nix, where cryptographic hashes cap-
ture all build dependencies and configurations of packages.
TagFS [4] or hFAD [32] are filesystems that allow more flex-
ible file organization through attaching labels to files and
querying using these labels. Novel programming systems,
such as Tunes OS [34] or Awelon Blue [3], track changes
and separate human-readable names from linking. GitTor-
rent [2] project aims at creating a decentralized network of
Git repositories with additional information stored in a dis-
tributed hash table. Since Git implements similar semantics
to what we described in Section 2.4, GitTorrent could po-
tentially serve as an alternative implementation of the stor-
age layer of Haknam. Eidetic computer systems [12] are the
ones that can recall any past state that existed in them. This
is one of the motivations behind Haknam’s storage layer
which could partially be considered eidetic. In Haknam’s

114

prototype, we assumed services as trusted black boxes. One
potential extension would be to require logging their internal
state changes as well.

Experimental Languages. The idea of having a single ex-
pression as a unit of compilation is explored in Annah [17].
In Annah, all expressions are encoded in calculus of con-
structions and stored in a textual representation on a web
server or a local filesystem. After reading an input expres-
sion, Annah’s compiler downloads and parses external ex-
pressions, and super-optimizes the whole program. It, how-
ever, does not provide any notion of versioning or addi-
tional metadata. Nava [29] used semantic queries to lookup
functionality. In Haknam, tags do not refer to any con-
cepts, hence resemble folksonomies rather than the semantic
web. Logic Metaprogramming [11] stores fragmented pro-
gram representations as predicates in a deductive database
and uses them for flexible and declarative form of metapro-
gramming. Haknam slices and stores source code at a gran-
ularity of compilation units, but as discussed in Section 4,
finer granularity could benefit some applications – declara-
tive metaprogramming would be an interesting direction to
explore.

Haskell Tools. Annex [21] is a dependency manager for
Haskell in development. It abandons semantic versioning
and manages dependencies through querying a deductive
database about program artifacts. Skete [20] aims to rep-
resent software package databases as Git repositories. Pro-
grammatica Project [19] integrated Haskell code develop-
ment and verification. Some of tools developed in the con-
text of Programmatica are related to Haknam, in particu-
lar, its ideas of program slicing, tracking dependencies on a
definition-level and evidence management. The differences
are that Programmatica tools focused on local code develop-
ment, there was no notion of shared code and versioning, and
aimed at verification. “Evidence management”, hence, dealt
with property testing and theorem proving. In Haknam, ev-
idence can be anything, including automated style checking
or performance profiling.

Monolithic Codebases. Many large software companies,
such as Google [26] or Facebook [14], published reports
about their positive experience when using monolithic ver-
sion control repositories. Despite common beliefs, mono-
lithic repositories were chosen for simplified organization,
dependency management, cross-project changes, and the
ease for developing tools. This motivation is shared by
our work. The difference is that Haknam does not impose
any global repository semantics beyond writing and reading
messages from the event log. Monorepos assume a consen-
sus on the filesystem structure, which is achievable within a
single organization, but not outside that. In Haknam, differ-
ent organizations may publish their code and impose their
workflows within their projects, while all their code can be
accessed like any other code in other projects. For example,

one workflow difference may be in handling changes. Au-
tomated scripts for some projects may watch for changes in
transitive dependencies, actively request evidence and pull in
latest results; some may only watch for direct dependencies;
others may update dependencies manually, but automatically
request all evidence that their dependants need.

CASE. Finally, the basic prototype functionality and ex-
perimental editor (Sections 3.4 and 3.5) as well as all
prospective applications (Section 4) are examples of Com-
puter-aided Software Engineering (CASE) [5] tools. Hak-
nam can thus be seen as a CASE environment – the dif-
ference is that traditional CASE environments, even in a
distributed setting [24], generally operate within a single
organization. One related extensive research branch of au-
tomated software engineering is tool integration [1]. Pro-
cessing of multiple sources of data plays a great role in im-
proving code searching (e.g. SEXTANT [30]) where data
integration is an important issue [10]. The idea of different
tools needing a different access to related data was first ex-
plored in Garlan’s views [16]. Related approaches appeared
in, for instance, virtual source files in Stellation [6], virtual
files in the Desert software engineering environment [28], or
intents in intentional programming [33]. The idea is to sep-
arate usage of source code from its storage representation.
In Haknam, this motivation is shared to some extent, espe-
cially in terms of storing precise dependencies, but there is
no primary aim of recreating files.

6. Discussion & Future Directions
In this section, we first discuss how to tackle some issues that
were not handled in our prototype, but would be important
considerations in a real system implementation. We then
outline possible future research directions.

6.1 Scalability
The event log systems, such as Apache Kafka [22] or
EventStore [15], can process tens of billions unique mes-
sage writes per day. In terms of daily workload, they proved
to be horizontally scalable. This, however, does not assume
all messages can be stored forever. If we stored every single
message, we would eventually run out of storage space. Even
if we assumed an infinite storage space, replaying the com-
plete log would take longer and longer. The standard way
to solve this problem is using log compaction. It means that
we throw away some obsolete records and store their more
recent updates. By doing so, we still have a complete backup
and can exactly replay more recent states, but lose the abil-
ity to replay all states. For example, we can get all tags for a
code slice in a certain project, but cannot replay all individ-
ual updates of tags. There are other possible optimizations to
prevent “code and metadata pollution”. For instance, we can
delete and archive old code slices (and their related meta-
data) that do not belong to any project and are not imported
by any other slices that belong to some projects. After this

115

“garbage collection”, we will not have a complete log, but a
log of everything that all current shared code depends on.

6.2 Backwards Compatibility
Existing Metadata and Environments. There are two di-
rections when considering existing metadata and environ-
ments for backwards compatibility: 1) how to extract and in-
tegrate metadata from various sources into Haknam, 2) how
to export data from Haknam into existing environments.
The first direction is challenging due to heterogeneous stor-
age, coarse-grained dependencies, and various conventions.
The second direction should work by having an “export” ser-
vice that would filter certain events from the event log, trans-
form them to the required format and store the result in a
desired location.

Existing Code. There are three directions when consider-
ing existing code for backwards compatibility: 1) how to use
existing Haskell code in Haknam, 2) how to use code from
Haknam in existing Haskell code, 3) how to interface with
non-Haskell code. For 1), we can reuse Fragnix’s feature that
allows slicing an existing Haskell module into an environ-
ment and code slices. Thus, we can automate the process
by having a service that reads updates from an old Haskell
repository, slices all modules, writes messages with resulting
slices and tags generated from module names (other meta-
data may be challenging). For 2), code slices in Haknam are
still regular Haskell modules, so they can be exported as reg-
ular Haskell source files. One desirable thing, however, may
be to have a human-readable interface in a Haskell source
file. For that, we can create Fragnix’s environment whose
name could be generated from user’s selected tags. For 3),
Haskell’s FFI can be used and external non-Haskell code can
be bundled in a message with a reproducible package defi-
nition, e.g. a Nix [13] or Guix [8] expression, and built by
special compilation services.

6.3 Privacy & Security
As described in Section 3, we gain a lot from having a sin-
gle integrated source of truth, but we would need to con-
sider more issues for the real system implementation. The
first issue is the notion of trust for the external services. For
example, how do we trust successful compilation evidence
and relevant binary artifact caches? One possibility is run-
ning our own binary artifact cache and make it recompile and
verify our code dependencies on-demand. Other possibility
is publishing public keys, signing messages and including
checksums. The second issue is how to restrict access to
shared code. For example, a company has some proprietary
code that cannot be made open source. We can resolve such
issue either by running a private event log, or by encrypting
sensitive messages. The final, perhaps hypothetical, issue is
with the infrastructure ownership where the solution could
be placing the event log on a content-addressable distributed
storage with decentralized ownership (e.g. GitTorrent [2]).

6.4 Future Directions
We conclude this section with several open questions, outly-
ing areas of potential future research directions.

Other Programming Languages. We focused on the stan-
dard Haskell, which eased our task in two ways: 1) it is
a purely functional language, 2) it has a relatively simple
module system. For example, simple information hiding can
be achieved through using let-bindings for private defini-
tions. Given a code fragment, it can generate different code
slices at different times or with different queries for external
names. “Separate compilation” as in separete typechecking
of code fragments is not possible, but code slices can be sep-
arately pre-compiled as normal Haskell modules. This could
be utilized for efficiency reasons – for development and test-
ing, “stable” strongly-connected dependencies could be sep-
aretely compiled and used; for deployment, global compila-
tion may be preferred. The question is how our work could
extend to other languages. The core issue is how to create
code slices when there are mutable global state interactions
and when the module system needs a complex access-level
name resolution or does metaprogramming. Dependencies
could potentially be tracked at a coarser level. Depending on
a language, it may not be clear what a minimal compilation
unit should be and automated slicing may only yield approx-
imate results. In OO languages, a natural unit for slices could
be well-encapsulated classes, traits or mixins.

First-class Language and More Expressive Queries. We
reused an existing text file-centric programming language
and preserved its semantics. Instead of embedding existing
languages, one alternative route would be to design and im-
plement a new programming language with Haknam fea-
tures in mind from scratch. Instead of plain text files, the pri-
mary abstraction would be the event log. In such language,
there may not be any notion of module or identifier names
and the lookup may need to be more expressive (e.g. Data-
log queries). The ability to reason about name lookups and
“time” can feed back into understanding how to extend to
other languages – for example, given name queries and frag-
ments as a form of light-weight metaprogramming, it can
help with understanding what sort of separate type checking
is possible. Other directions may include safe hot code swap-
ping (re-evaluating lookups at runtime) or utilizing different
granularity of compilation.

Applications and Evaluation. We listed examples of dif-
ferent applications in Section 4. There could potentially be
other applications extending the functionality beyond what
we described: a binary cache of most dependent on code
slices, project bookmarking, etc. Different related questions
may be worth investigating. One question is what this modu-
lar setting would imply for large open-source communities.
For example, if one tried to convert some existing histor-
ical metadata related to API usage, it could be examined
whether original interfaces are used as envisioned in their

116

static structure, or different structures emerged. Other ques-
tion is, for example, how the fragmented code organization
affects compilation times: on one hand the embedded com-
piler processes only relevant source code fragments, on the
other hand, the linker gets more burden. It also depends on
situations whether we consider compilation from scratch, or
recompilation after small changes during development.

7. Conclusion
Programming tool development is limited by its environ-
ment. Despite the wide-spread code reuse and sharing over
the internet, some of our conventions in programming en-
vironments remain in the “localized” pre-internet era. It is,
hence, worth exploring a modular system architecture that
is better suited for the today’s programming environment
needs. Our preliminary work serves as a foundation and
opens up different prospective applications that could vali-
date our hypothesis about its extensible design.

In turn, we expect it to inspire further research on modular
architectures for code and metadata sharing, and on software
development in this setting. This area spans from practical
issues, such as how we can retrofit other existing program-
ming languages with concepts from this work, to more ex-
ploratory matters, such as theoretical foundations for a lan-
guage that embodies these concepts in its semantics.

References
[1] F. Asplund and M. Törngren. The discourse on tool integration beyond

technology, a literature survey. Journal of Systems and Software, 106
(C):117–131, August 2015.

[2] C. Ball. GitTorrent, 2015. URL https://github.com/cjb/
GitTorrent.

[3] D. Barbour. Awelon Blue, 2014. URL https://awelonblue.
wordpress.com/.

[4] S. Bloehdorn, O. Görlitz, S. Schenk, M. Völkel, and F. I. Karlsruhe.
TagFS – Tag Semantics for Hierarchical File Systems. In I-KNOW
06: Proceedings of the Sixth International Conference on Knowledge
Management, pages 6–8, 2006.

[5] A. F. Case. Computer-aided Software Engineering (CASE): Tech-
nology for Improving Software Development Productivity. SIGMIS
Database, 17(1):35–43, September 1985.

[6] M. C. Chu-Carroll, J. Wright, and D. Shields. Supporting aggrega-
tion in fine grained software configuration management. SIGSOFT
Software Engineering Notes, 27(6):99–108, November 2002.

[7] Continuum Analytics. Anaconda Python Distribution, 2012. URL
http://continuum.io/downloads.

[8] L. Courtès. Functional Package Management with Guix. In European
Lisp Symposium, June 2013.

[9] F. Cristian, H. Aghili, R. Strong, and D. Dolev. Atomic broadcast:
From simple message diffusion to byzantine agreement. In Informa-
tion and Computation, pages 200–206, 1985.

[10] B. de Alwis and G. C. Murphy. Answering Conceptual Queries with
Ferret. In Proceedings of the Thirtieth International Conference on
Software Engineering, ICSE ’08, pages 21–30. ACM, 2008.

[11] K. De Volder. Type-oriented Logic Meta Programming. PhD thesis,
Vrije Universiteit Brussel, 1998.

[12] D. Devecsery, M. Chow, X. Dou, J. Flinn, and P. M. Chen. Eidetic
Systems. In Proceedings of the Eleventh USENIX conference on Oper-

ating Systems Design and Implementation, pages 525–540. USENIX
Association, October 2014.

[13] E. Dolstra. The Purely Functional Software Deployment Model. PhD
thesis, Faculty of Science, Utrecht University, 2006.

[14] G. Durham and S. Agarwal. Scaling Mercurial at Facebook, 2014.
URL https://code.facebook.com/posts/218678814984400/
scaling-mercurial-at-facebook/.

[15] Event Store LLP. Event Store, 2012. URL https://
geteventstore.com/.

[16] D. Garlan. Views for tools in integrated environments. In An Inter-
national Workshop on Advanced Programming Environments, pages
314–343. Springer-Verlag, 1986.

[17] G. Gonzalez. Annah, 2015. URL https://github.com/
Gabriel439/Haskell-Annah-Library.

[18] Gradle Inc. Gradle, 2007. URL http://gradle.org/.

[19] T. Hallgren, J. Hook, M. P. Jones, and R. B. Kieburtz. An overview
of the programatica toolset. In High Confidence Software and Systems
Conference (HCSS04), 2004.

[20] A. Heller and D. Scies. Skete, 2015. URL http://code.xkrd.net/
skete/skete.

[21] M. Hibberd. Annex: A Fact Based Dependency System, 2014. URL
http://mth.io/posts/annex/.

[22] J. Kreps, N. Narkhede, and J. Rao. Kafka: A Distributed Messaging
System for Log Processing. In Proceedings of ACM SIGMOD Work-
shop on Networking Meets Databases (NetDB’11). ACM, 2011.

[23] F. Lancaster and E. Fayen. Information Retrieval: On-line. Informa-
tion Sciences Series. Melville Pub. Co., 1973.

[24] D. B. Leblang and R. P. Chase, Jr. Computer-aided software engi-
neering in a distributed workstation environment. In Proceedings of
the First ACM SIGSOFT/SIGPLAN Software Engineering Symposium
on Practical Software Development Environments, SDE 1, pages 104–
112. ACM, 1984.

[25] M. S. Mahoney. Finding a history for software engineering. Annals of
the History of Computing, 26(1):8–19, January 2004.

[26] C. Metz. Google is 2 billion lines of code – and it’s all
in one place, 2015. URL http://www.wired.com/2015/09/
google-2-billion-lines-codeand-one-place/.

[27] S. Raemaekers, A. van Deursen, and J. Visser. Semantic Versioning
versus Breaking Changes: A Study of the Maven Repository. In 2014
IEEE Fourteenth International Working Conference on Source Code
Analysis and Manipulation, pages 215–224. IEEE, September 2014.

[28] S. P. Reiss. The Desert Environment. ACM Transactions on Software
Engineering and Methodology, 8(4):297–342, October 1999.

[29] H. Samimi, C. Deaton, Y. Ohshima, A. Warth, and T. Millstein. Call by
Meaning. In Proceedings of the 2014 ACM International Symposium
on New Ideas, New Paradigms, and Reflections on Programming &
Software - Onward! ’14, pages 11–28. ACM, October 2014.

[30] T. Schafer, M. Eichberg, M. Haupt, and M. Mezini. The SEXTANT
Software Exploration Tool. IEEE Transactions on Software Engineer-
ing, 32(9):753–768, September 2006.

[31] P. Schuster. Fragnix, 2014. URL https://github.com/phischu/
fragnix.

[32] M. Seltzer and N. Murphy. Hierarchical file systems are dead. In
Proceedings of the Twelfth Conference on Hot Topics in Operating
Systems, HotOS’09. USENIX Association, 2009.

[33] C. Simonyi. The death of computer languages, the birth of intentional
programming. In NATO Science Committee Conference, pages 398–
399, 1995.

[34] TUNES Project. TUNES OS/Language Project, 1992. URL http:
//tunes.org/.

117

