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How to achieve modularity, type-safety 
and reuse?  

(Without requiring a PhD in Type-Theory!)

Long-term Goal of My 
Research



Motivation
• A compiler for a (functional) language typically 

requires a number of languages and 
transformations between these languages:

Source Language Extended System F System F

Target Language

Problem: Each language requires 
similar infrastructure!



Modular Visitor Components 3

a datatype of expressions Exp1 that supports numeric, addition and subtraction
variants together with a corresponding evaluation function:

data Exp1 = Num1 Int | Add1 Exp1 Exp1 | Minus1 Exp1 Exp1

eval1 :: Exp1 → Int
eval1 (Num1 x ) = x
eval1 (Add1 e1 e2 ) = eval1 e1 + eval1 e2
eval1 (Minus1 e1 e2 ) = eval1 e1 − eval1 e2

In a different context we may have a system composed of a datatype Exp2

that also supports negation and provides both an evaluation operation and an
operation that narrows Exp2 expressions into Exp1 expressions:

data Exp2 = Num2 Int | Add2 Exp2 Exp2 | Minus2 Exp2 Exp2 | Neg2 Exp2

eval2 :: Exp2 → Int
eval2 (Num2 x ) = x
eval2 (Add2 e1 e2 ) = eval2 e1 + eval2 e2
eval2 (Minus2 e1 e2 ) = eval2 e1 − eval2 e2
eval2 (Neg2 e) = − (eval2 e)

narrow21 :: Exp2 → Exp1

narrow21 (Num2 x ) = Num1 x
narrow21 (Add2 e1 e2 ) = Add1 (narrow21 e1 ) (narrow21 e2 )
narrow21 (Minus2 e1 e2 ) = Minus1 (narrow21 e1 ) (narrow21 e2 )
narrow21 (Neg2 e) = Minus1 (Num1 0) (narrow21 e)

The two systems are clearly related and share a lot of code, but there is not
any reuse of code (in a software engineering sense) between them. In current
programming languages, achieving reusability between these two systems is not
easy because datatypes and operations are evolving at the same time. This is,
after all, the EP — we suggest [6] for a good introduction to the original EP
for readers unfamiliar with it. However, there is something more about this
example that is not normally emphasized in the context of the EP. The narrow21

operation takes a value of Exp2 and converts it to a value of Exp1. Among other
things, it is statically known that the result of narrow21 will not contain any
negation variant. Solutions for the EP are only required to allow extensibility, but
there is no explicit requirement about the interaction between distinct types of
expressions. In particular, this allows for solutions where there is only a single,
global expression datatype [19–21]. However, with these approaches it is not
possible to accurately express the type of narrow21. Consequently these solutions
fail to solve the EFP because they do not meet the following requirement:

Different kinds of expressions should have different type identities.

Another aspect about this example that is not normally emphasized in the
context of the EP — although both Wadler [5] and Zenger and Odersky [20]
do mention it — is that there are interesting subtyping relationships between
some of the components in different families. In particular Exp1 <: Exp2 and
eval2 <: eval1. More generally, the extension of a datatype becomes a supertype
of the original datatype; while the extension of an operation becomes a subtype
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Repeated code!

Repeated code!



Algebras
• Algebras: A recurring abstraction that shows up in both FP & 

OOP. 

• In recent years Algebras proved useful to solve various 
extensibility/modularity issues in FP & OOP. 

• Goal 1: Overview of existing work; lessons learned. 

• Goal 2: Promote algebras as a good alternative to algebraic 
datatypes/OO hierarchies.  

• Goal 3: Vision for future work: with adequate language support, 
algebras can provide a simple solution to our modularity 
problem.



Algebras??

• Algebra is a very broad term. 

• What is meant by Algebras in this talk? 

• Essentially (variants of) F-Algebras



F-Algebras???
• F-Algebras have been known and used for a long time in 

Functional Programming: 

• F-Algebras show up in the definition of recursion patterns 
such as catamorphisms/folds. 

• Widely used in the Algebra of Programming ... lots of work in 
the end of 80's and 90’s 

Meijer et al., Functional Programming with Bananas, Lenses, Envelopes and Barbed Wire (1991) 

Bird and de Moor, The Algebra of Programming (1997) 

… and many, many others!



F(old)-Algebras

data List = Nil | Cons Int List 
!
!
foldList :: (Int -> a -> a) -> a -> List -> a 
foldList f k Nil                = k 
foldList f k (Cons x xs)  = f x (foldList f k xs) 
!
type FoldAlgebra a = (Int -> a -> a, a) 



data Exp = Lit Int | Add Exp Exp  
!
type FoldAlgebraExp a = (Int -> a, a -> a -> a) 
!
foldExp :: FoldAlgebraExp a -> Exp -> a 
foldExp (l, a) (Lit x)            = l x 
foldExp (l, a) (Add e1 e2)  =  
   a (foldExp (l, a) e1) (foldExp (l, a) e2)

F(old)-Algebras



• F-Algebras are isomorphic to Fold-Algebras; use 
sums-of-products instead of products-of-functions 

!
type FAlgebraExp a = Either Int (a,a) -> a 
!
cataExp :: FAlgebraExp a -> Exp -> a 
cataExp f (Lit x)            = f (Left x) 
cataExp f (Add e1 e2)  =  
   f (Right (cataExp f e1, cataExp f e2))

F-Algebras

F a -> a



• Lesson 1: F-Algebras show up in various 
(isomorphic) forms 

• FoldAlgebra: (Int -> a, a -> a -> a) 

!

• F-Algebra: Either Int (a,a) -> a

Varieties of Algebras

Int + a x a

Int -> a x a -> a -> a



Timeline
Timeline of Algebras-related research

80’s 90’s

Algebra of Programming!
!

F-Algebras in recursion 
patterns

00’s 04



Church Encodings



Church Encodings
• Between 2003-2008 a few things were happening in 

two areas: 

• Haskell/FP community: 

• The community discovers GADTs and their 
applications 

• Type-Theory/OO: 

• A type-theoretic explanation of the VISITOR 
pattern shows up.



Encodings of GADTs
• Researchers working in datatype-generic programming (DGP) 

were trying to create lightweight approaches (library-based 
instead of language-based) 

• Type representations such as: 
!

data Rep t where 
   RInt     :: Rep Int 
   RProd :: Rep a -> Rep b -> Rep (a,b) 
!
Turned out to be quite handy! 
!
Cheney and Hinze, A Lightweight Implementation of Generics and Dynamics, HW (2002) 
Hinze, Fun with phantom types, The Fun of Programming (2003)



• Problem: Back in 2003 there were no GADTs in Haskell: they had 
to be encoded somehow! 

• One proposal, due to Hinze, was to encode GADTs using type 
classes: 
!

class Generic rep where 
   rint      :: rep Int 
   rprod  :: rep a -> rep b -> rep (a,b) 
!
class Repr t where 
   repr :: Generic rep => rep t  
!
Hinze, Generics for the Masses, ICFP (2004) 

Encodings of GADTs

A Fold Algebra!  

A Fold!  



Folding representations: 
!

foldRep :: rep Int ->  
                (forall a b . rep a -> rep b -> rep (a,b)) ->  
                Rep t -> rep t 
foldRep rint rprod RInt               = rint 
foldRep rint rprod (RProd r1 r2) =  
    rprod (foldRep rint rprod r1) (foldRep rint rprod r2)  
  

Encodings of GADTs



Encodings of GADTs
• The essence of this encoding were type-theoretic 

encodings of datatypes (in particular Church encodings) 

• Type classes are just a clever way to employ Haskell 
features to model encodings of GADTs. 

• Church encodings can be viewed as a way to model 
algebraic datatypes using folds. 
!

!
Hinze, Generics for the Masses, JFP (2006) 
Oliveira and Gibbons, TypeCase: A Design Pattern for Type-Indexed Functions, HW 
(2005)



Type-Theoretic Visitors
• Around the same timeframe, Buchlovsky and Thielecke, 

were also investigating uses of Church Encodings: 

!

!

!

!
Buchlovsky and Thielecke, A Type-theoretic Reconstruction of the Visitor Pattern, MFPS 
(2005)

Buchlovsky and Thielecke

Internal visitor encoding Internal visitor in FGJ
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Fig. 2. Correspondence between type encodings and internal visitors in FGJ.

As a worked example, we consider the type B of binary trees with integers
at the leaves, as given by the least fixed point of F [X] = Z + X ⇥X. This is
encoded as

B = let � be ⇤�.(Z! �)⇥ ((� ⇥ �)! �) in let � be 8↵.�[↵]! ↵ in �

which is transformed into

interface Visitor<�> {
� visitLeaf(Int x);
� visitNode(� x, � y);

}
interface BinTree {

<↵> ↵ accept(Visitor<↵> v);
}

The datatype constructors are

leaf : Z! B

leaf(n) = ⇤↵.�hp, qi:(Z! ↵)⇥ ((↵⇥ ↵)! ↵).pn

node : (B⇥ B)! B

node(l, r) = ⇤↵.�hp, qi:(Z! ↵)⇥ ((↵⇥ ↵)! ↵).qhl[↵]hp, qi, r[↵]hp, qii
11

A Fold Algebra!  

A Fold!  



• The essence of the type-theoretic explanation was 
also based on type-theoretic encodings of 
datatypes. 

• The use of generic interfaces is just the way to 
model encodings of ADTs in OO languages. 

Type-Theoretic Visitors



Applications
• Lesson 2: Algebras are useful to model tree structures in many 

languages/paradigms, without requiring algebraic datatypes. 

• In OO languages we can use generic interfaces to model algebras. 

• In Haskell there are various ways to model algebras: type classes being 
one of them. 

• One (now very popular!) application is embedded DSLs: using 
encodings of datatypes allowed something between shallow and deep 
embeddings. 

!
Carrete et al., Finally tagless, partially evaluated: Tagless staged interpreters for simpler typed languages, 
APLAS (2007) & JFP (2009) 
Hofer et al., Polymorphic Embedding of DSLs, GPCE (2008) 
Rompf and Odersky, Lightweight Modular Staging, GPCE (2010)



Timeline
Timeline of Algebras-related research

80’s 90’s

Algebra of Programming!
!

F-Algebras in recursion 
patterns

00’s 04

Practical uses of 
Church Encodings!

!

06

Church Encoding 
DSLs!
!



Extensibility and 
Modularity



The Expression Problem

• The Expression Problem is a well-know modularity 
problem. 

• After 2006 many solutions to the expression 
problem using algebras were found/popularized. 

!

Wadler, The Expression Problem, Java Genericity Mailing list (1998)



The Expression Problem
• How do you add multiplication to the following type 

of expressions modularly? 
!
data Exp = Lit Int | Add Exp Exp  
!
type FoldAlgebraExp a = (Int -> a, a -> a -> a) 
!
foldExp :: FoldAlgebraExp a -> Exp -> a 
foldExp (l, a) (Lit x)            = l x 
foldExp (l, a) (Add e1 e2)  =  
   a (foldExp (l, a) e1) (foldExp (l, a) e2)

Closed/Not 
Extensible



Extensible Encodings
• The expression problem affects Datatype-Generic 

Programming libraries. 

• Hinze’s original Generics for the masses approach 
did not allow extensible generic functions.  

• Oliveira et al. noted the connection between the 
problems and suggested a solution. 

• Oliveira et al., Extensible and Modular Generics for the Masses, TFP (2006)



• With some modifications, the Generics for the 
Masses approach can be made extensible. 
!
!

class Generic rep where 
   rint      :: rep Int 
   rprod  :: rep a -> rep b -> rep (a,b) 
!
class Generic rep => GenericExt rep where 
   rplus  :: rep a -> rep b -> rep (a,b)

Extensible Encodings

Extensibility!



• In this solution algebras are encoded as type 
classes. 
!

• Extended algebras can be defined using 
subclasses.

Extensible Encodings



Datatypes a la Carte
• A different (and now very popular) solution to the 

Expression Problem was introduced in 2008 by 
Swierstra 

• The solution relies on F-Algebras  

!

!
Swierstra, Datatypes a la Carte, JFP (2008)



Datatypes a la Carte

F-Algebra!  

Fold!

data NumF a = Num Int deriving Functor 
data AddF a = Plus a a deriving Functor 
!
class Eval f where  
  eval :: f Int -> Int 
instance Eval NumF where 
  eval (Num x) = x 
instance Eval AddF where  
  eval (Plus e1 e2) = e1 + e2 
!
data Fix f = In {out :: f (Fix f)} 
!
fold :: Functor f => (f a -> a) -> Fix f -> a 
fold alg = alg . fmap (fold alg) . out



data MulF a = Mul a a deriving Functor 
!
class Eval f where  
  eval :: f Int -> Int 
instance Eval NumF where 
  eval (Num x) = x 
instance Eval AddF where  
  eval (Plus e1 e2) = e1 + e2 
instance Eval MulF where  
  eval (Mul e1 e2) = e1 * e2 
!

Datatypes a la Carte

Extensibility!



Extensible Visitors/ 
Object Algebras

• In OO languages we can also solve the Expression 
Problem with Algebras. 
!

• Interface inheritance can be used to achieve 
extensibility. 
!
!

Oliveira, Modular Visitor Components, ECOOP (2009) 
Oliveira and Cook, Extensibility for the Masses, ECOOP (2012)



Extensible Visitors/ 
Object Algebras

interface IntAlg<A> {
A lit(int x);
A add(A e1, A e2);

}

Fig. 2. Visitor interface for arithmetic expressions (also an object algebra interface).

Unfortunately, traditional visitors trade one type of extensibility for another:
adding new data variants is hard with visitors. The problem is the concrete
references to visitor interfaces IntAlg in the accept method. Adding new data
variants requires modifying IntAlg and all its implementations with new visit
methods to deal with the new variants. Another drawback of visitors is that
some initial preparation is required: the visited classes need to provide an accept
method. This can be a problem when the source code of the classes that we want
to visit is not available: if the classes have no accept method it is impossible to
use the Visitor pattern.

2.2 Algebraic Signatures, F-Algebras, and Church Encodings

An algebraic signature ⌃ [18] defines the names and types of functions that
operate over one or more abstract types, called sorts. We assume the existence
of some primitive built-in sorts for integers and booleans.

signature E
lit: Int ! E
add: E ⇥ E ! E

A general algebraic signature can contain constructors that return values of
the abstract set, as well as observations that return other kinds of values. In
this paper we restrict signatures to only contain constructors, as in the example
given above. We call such signatures constructive.

An ⌃-algebra is a set together with a collection of functions whose type is
specified in the signature ⌃. A given signature can have many algebras. For
example, one valid E-algebra has a set of two values and simple constant oper-
ations: (E={x, y}, lit=�n.x, add=�(a, b).x), where x, y are arbitrary constants.
This algebra seems unsatisfying because it is degenerate, in that it ignores the
inputs of its functions, and messy, in that its set includes extra values that are
never used. A special algebra, called the initial or free algebra, is neither messy
nor degenerate. One way to create the initial algebra is to use a set that contains
expressions, which are applications of functions in all legal ways according to the
signature, and to define the functions simply as constructors. The initial algebra
looks like this:

E = { lit(0), lit(1), ..., add(lit(0), lit(0)), add(lit(0), lit(1)), ... }
lit = �n.lit(n)
add = �(a, b).add(a, b)
The concept of a constructive signature defined above is a syntactic character-

ization of a class of algebras. A more fundamental approach comes from merging
the signature’s constructor functions f1 : T1 ! A, ..., fn : Tn ! A into a single

5

class Print2 implements IntAlg<String> {
public String lit(int x) {
return new Integer(x).toString();

}

public String add(String e1, String e2) {
return e1 + " + " + e2;

}
}

Fig. 5. Adding a printing operation.

interface IntBoolAlg<A> extends IntAlg<A> {
A bool(Boolean b);
A iff(A e1, A e2, A e3);

}

Fig. 6. Adding boolean expression variants.

Print2 p = new Print2();
String s = exp(p);

This object algebra visitor style avoids the creation of an intermediate object,
just to immediately invoke the print method afterwards. Unlike traditional visi-
tor implementations, this visitor style using object algebras supports data variant
extensibility and does not need accept methods.

Using internal visitors is best when the computation in the operation happens
bottom-up: essentially operations that could be defined as folds in functional pro-
gramming. This stems, of course, from the fact that internal visitors are basically
Church encodings and Church encodings encode data as folds. For operations
that do not naturally fit this bottom-up style of computation, or mutually depend
on other operations, the factory-oriented approach using retroactive implemen-
tations of interfaces is better.

5.2 Adding New Variants and Updating Operations

Adding new data variants is easy. The first step is to create new classes Bool
and Iff in the usual object-oriented style (like Lit and Add):

class Bool implements Exp {...}
class Iff implements Exp {...}

The second step, shown in Figure 6, is to create an extended algebra interface
with two new methods for the new boolean expressions. Finally the last step,
shown in Figure 7, is to provide extension for the new boolean expressions cases
for both the factory IntFactory and the retroactive implementation for printing.

10

Fold Algebra!

Extensibility!



Abstracting Away
Two different (but isomorphic) solutions using 
Algebras.  

Fold-Algebra: Int -> a x a -> a -> a x a -> a -> a 

!

F-Algebra: Int + a x a + a x a -> a

Fold Algebra!Extensibility!



Extensibility

• Lesson 3: Algebras support extensibility/modularity. 

• With algebraic datatypes, adding new cases 
modularly is not possible! 

• With OO hierarchies adding new methods 
modularly to an existing interface is not possible!



Extensibility and 
Modularity!

!

Timeline
Timeline of Algebras-related research

80’s 90’s

Algebra of Programming!
!

F-Algebras in recursion 
patterns

00’s 04

Practical uses of 
Church Encodings!

!

06

Church Encoding 
DSLs!
!
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More Work
• There is too much work on algebras and modularity to 

summarize here: 

• Increasing the expressive power of algebras: 
• Oliveira et al., Feature-Oriented Programming with Object Algebras, 

ECOOP (2013) 
• Rendel et al., From Object Algebras to Attribute Grammars, OOPSLA 

(2014) 
• Ornamental Algebras (a different dimension of 

modularity) 
• McBride, Ornamental Algebras, Algebraic Ornaments, JFP (2010) 

• Modular Reasoning 
• Delaware et al., Meta-Theory a la Carte, POPL (2013) 
• Delaware et al., Modular Monadic Meta-Theory, ICFP (2013)



Lessons Learned
• Lesson 1: F-Algebras show up in various 

(isomorphic) forms 

• Lesson 2: Algebras are useful to model tree 
structures in many languages/paradigms. 

• Lesson 3: Algebras support extensibility/modularity. 

• Lesson 4: Current solutions using algebras still 
require heavy encodings.



The Future: 
Programming Language 

Support?



Why PL Support for 
Algebras?

• Currently algebras have to be encoded with other 
language constructs. 

• Often algebras need to be composed. Some of the 
composition operators have to be encoded. 

• Algebras (and generalizations) use parametric 
polymorphism/generics. In more complex algebras 
there is too much parametrization going on.



Conclusions
• Existing solutions using various encodings of 

algebras have been extremely useful to better 
understand modularity issues. 

• I think we should continue exploring such 
encodings to improve our understanding. 

• However, I believe we also need to look at 
improving PL support to make solutions practical. 



Thank you!



Language support?
algebra interface ExpAlg where 
    sort Exp 
    Lit     : Int -> Exp 
    Add  : Exp -> Exp -> Exp 
!
interface IEval where 
    eval : Int 
!
algebras Eval implements ExpAlg where 
    type Exp = IEval 
!
    eval@(Lit x)            = x 
    eval@(Add e1 e2)  = e1.eval + e2.eval


