Functional Programming,
Object-Oriented
Programming and Algebras!

Bruno Oliveira (bruno@cs.hku.hk)
The University of Hong Kong

10th ACM SIGPLAN Workshop on Generic Programming
(WGP 2014)

mailto:bruno@cs.hku.hk

| ong-term Goal of My
Research

How to achieve modularity, type-safety

and reuse?
(Without requiring a PhD in Type-Theory!)

Motivation

 Acompiler for a (functional) language typically
requires a number of languages and
transformations between these languages:

Source Language Extended System F System F

é)
Problem: Each language requires

similar infrastructure!
_ _J

Target Language

Language 1
data Fxp; = Numy Int | Add, Fxp, Fxp, | Minus,1 Fxp, Ezxp,

evaly :: Bxpy — Int

evaly (Numy x) =z
eval, (Addy el e2) evaly el + evaly €2 Repeated code!
evaly (Minusy el e2) = evaly el — evaly e2

Language 2

data Ezp, = Nums Int | Adds Fxps, Exps | Minuss Exps Exps | Negy Exps
evals 1 Expy — Int

evals (Nums x) T

evals (Adds el e2) = evals el + evals €2
evale (Minuss el e2) = evaly el — evaly e2

Repeated code!

evals (Neg, €) = — (evalsy e)

narrowsoy :: Brp, — Bxp,

narrowsy (Nums x) = Numi x

narrows; (Adds el e2) = Addy (narrows; el) (narrows; e2)
narrows; (Minuse el e2) = Minus, (narrowo; el) (narrows; e2)
narrows; (Neg, e) = Minusy (Numy 0) (narrows; e)

Algebras

Algebras: A recurring abstraction that shows up in both FP &
OOP.

Inrecent years Algebras proved useful to solve various
extensibility/modularity issues in FP & OOP.

Goal 1: Overview of existing work; lessons learned.

Goal 2: Promote algebras as a good alternative to algebraic
datatypes/OQ hierarchies.

Goal 3: Vision for future work: with adequate language support,
algebras can provide a simple solution to our modularity
problem.

Algebras??

 Algebrais a very broad term.
 Whatis meant by Algebras in this talk?

e Essentially (variants of) F-Algebras

F-Algebras’???

* F-Algebrashave been known and used for a long time in
Functional Programming:

* F-Algebrasshow up in the definition of recursion patterns
such as catamorphisms/folds.

* Widely used in the Algebra of Programming ... lots of work in
the end of 80's and 90’s

Meijer et al., Functional Programming with Bananas, Lenses, Envelopes and Barbed Wire (1991)
Bird and de Moor, The Algebra of Programming (1997)

...and many, many others!

F(old)-Algebras

data List = Nil | Cons Int List

foldList:: (Int->a->a)->a-> List-> a
foldListf k Nil = K
foldListf k (Cons x xs) = f x (foldList f k xs)

type FoldAlgebraa =(Int->a-> a, a)

F(old)-Algebras

data Exp = Lit Int | Add Exp Exp
type FoldAlgebrabExp a = (Int-> a, a -> a -> a)

foldExp :: FoldAlgebrakxpa -> Exp -> a
foldExp (I, a) (Lit x) =] X
foldExp (I, a) (Add el e2) =

a (foldExp (I, a) e1) (foldExp (I, a) e2)

—-Algebras

 F-Algebrasare isomorphic to Fold-Algebras; use
sums-of-products instead of products-of-functions

Fa->a
‘ V
type FAIgebraExp a = Either Int (a,a) -> a

catakxp :: FAlgebrakExpa-> Exp -> a
catabExp f (Lit x) =1 (Left x)
cataExpf (Add el e2) =

f (Right (catakExp f e, cataExp t €2))

Varieties of Algebras

* Lesson 1:F-Algebras show up Iin various
(isomorphic) forms

 FoldAlgebra:(Int->a, a->a-> a)
/\

[Int->axa->a->a]

* F-Algebra: Either Int (a,a) -> a
A
[Im+axa]

Timeline

Timeline of Algebras-related research

Algebra of Programming

F-Algebras in recursion
patterns

80’s 90’s 00’s 04

Church Encodings

Church Encodings

 Between 2003-2008 a few things were happening in
two areas:

« Haskell/FP community:

 Thecommunity discovers GADTs and their
applications

e Type-Theory/OOQO:

o Atype-theoretic explanation of the VISITOR
pattern shows up.

Encodings of GADTs

* Researchersworking in datatype-generic programming (DGP)
were trying to create lightweight approaches (library-based
instead of language-based)

* [yperepresentations such as:

data Rep t where
Rint :: Rep Int
RProd :: Rep a -> Rep b -> Rep (a,b)

Turned out to be quite handy!

Cheney and Hinze, A Lightweight Implementation of Generics and Dynamics, HW (2002)
Hinze, Fun with phantom types, The Fun of Programming (2003)

Encodings of GADTs

* Problem: Back in 2003 there were no GADTs in Haskell: they had
to be encoded somehow!

 Oneproposal, due to Hinze, was to encode GADTs using type
classes:

class Generic rep where |
it rep Int A Fold Algebral

rorod ::repa->repb->rep(a,b)

class Repr t where
repr ;. Generic rep =>rep t

Hinze, Generics for the Masses, ICFP (2004)

Encodings of GADTs

Folding representations:

foldRep :: rep Int ->
(forallab .repa->repb->rep(ab)) ->
Rept->rept
foldRep rint rprod Rint = rint
foldRep rint rprod (RProd r1 r2) =
rorod (foldRep rint rprod r1) (foldRep rint rprod r2)

Encodings of GADTs

 Theessence of this encoding were type-theoretic
encodings of datatypes (in particular Church encodings)

* [ypeclasses are just a clever way to employ Haskell
features to model encodings of GADTSs.

e Churchencodings can be viewed as a way to model
algebraic datatypes using folds.

Hinze, Generics for the Masses, JFP (2006)
Oliveiraand Gibbons, TypeCase: A Design Pattern for Type-Indexed Functions, HW
(2005)

lType-Theoretic Visitors

* Aroundthe same timeframe, Buchlovsky and Thielecke,
were also investigating uses of Church Encodings:

interface Visitor<(3> {
[visitLeaf (Int x); A Fold Algebra!
B visitNode(3 x, O y);
t

interface BinTree {
<a> a accept(Visitor<a> v);

¥

Buchlovsky and Thielecke, A Type-theoretic Reconstruction of the Visitor Pattern, MFPS
(2005)

lType-Theoretic Visitors

* Theessence of the type-theoretic explanation was
also based on type-theoretic encodings of
datatypes.

* [Theuse of genericinterfaces is just the way to
model encodings of ADTs in OO languages.

Applications

* Lesson2: Algebras are useful to model tree structures in many
languages/paradigms, without requiring algebraic datatypes.

* In OO languages we can use generic interfaces to model algebras.

* InHaskell there are various ways to model algebras: type classes being
one of them.

* One (now very popular!) application is embedded DSLs: using
encodings of datatypes allowed something between shallow and deep
embeddings.

Carrete et al., Finally tagless, partially evaluated: Tagless staged interpreters for simpler typed languages,
APLAS (2007) & JFP (2009)

Hofer et al., Polymorphic Embedding of DSLs, GPCE (2008)

Rompfand Odersky, Lightweight Modular Staging, GPCE (2010)

Timeline

Timeline of Algebras-related research

Church Encoding
DSLs

Algebra of Programming Practical uses of

Church Encodings

F-Algebrasin recursion
patterns

80’s 90's 00’s 04 06

Extensipility ano
Modaularity

The Expression Problem

 The Expression Problem is a well-know modularity
problem.

e After 2006 many solutions to the expression
problem using algebras were tound/popularized.

Wadler, The Expression Problem, Java Genericity Mailing list (1998)

The Expression Problem

 How do you add multiplication to the following type
of expressions modularly?

Closed/Not

data Exp = Lit Int | Add Exp Exp Extensible

type FoldAlgebrabExp a = (Int->a, a-> a -> a)

foldExp :: FoldAlgebrabExpa -> Exp -> a
foldExp (I, a) (Lit x) =| X
foldExp (I, a) (Add el e2) =

a

(foldExp (I, a) e1) (foldExp (I, a) e2)

Extensible Encodings

* Theexpression problem affects Datatype-Generic
Programming libraries.

* Hinze'soriginal Generics for the masses approach
did not allow extensible generic functions.

* Oliveiraet al. noted the connection between the
problems and suggested a solution.

e Oliveiraet al., Extensible and Modular Generics for the Masses, TFP (2006)

Extensible Encodings

* With some modifications, the Generics for the
Masses approach can be made extensible.

class Generic rep where
rnt :rep Int
rorod ::rep a->rep b ->rep(a,b)

class Generic rep => GenerickExtrep where
rolus ::rep a->rep b ->rep(a,b)

Extensible Encodings

* |Inthis solution algebras are encoded as type
classes.

 Extended algebras can be defined using
subclasses.

Datatypes a la Carte

o Adifferent (and now very popular) solution to the
Expression Problem was introduced in 2008 by
Swierstra

* [he solution relies on F-Algebras

Swierstra, Datatypes a la Carte, JFP (2008)

Datatypes a la Carte

data NumF a = Num Int deriving Functor
data AddF a = Plus a a deriving Functor

class Eval f where
eval :: f Int -> Int

iInstance Eval NumF where
eval (Num x) = x

iInstance Eval AddF where
eval (Plusele2)=el1 +e2

F-Algebral

dataFix f = In {out :: f (Fix f)}

fold:: Functorf=>(fa->a)-> Fixf-> a
foldalg = alg . fmap (fold alg) . out

Datatypes a la Carte

data MulF a = Mul a a deriving Functor

class Eval f where
eval :: f Int -> Int

iInstance Eval NumF where
eval (Num x) = X

instance Eval AddF where
eval (Plusele?2)=¢el1 +e2

iInstance Eval MulF where
eval (Mul el e2) =el1 *e?2

Extensible Visitors/
Object Algebras

* In OO languages we can also solve the Expression
Problem with Algebras.

e |nterface inheritance can be used to achieve
extensiblility.

Oliveira, Modular Visitor Components, ECOOP (2009)
Oliveiraand Cook, Extensibility for the Masses, ECOOP (2012)

Extensible Visitors/
Object Algebras

interface IntAlg<A> { Fold Algebra!
A lit(int Xx);

A add(A el, A e2):
}

interface IntBoolAlg<A> extends IntAlg<A> {
A bool(Boolean b);
A iff(A el, A e2, A e3);
}

Abstracting Away

Two different (but isomorphic) solutions using
Algebras.

Fold-Algebra: Int->axa->a->axa->a->a

Sl

F-Algebra:Int+axa+axa->a

Extensibility

* [esson 3: Algebras support extensibility/modularity.

 With algebraic datatypes, adding new cases
modularly is not possible!

* With OO hierarchies adding new methods
modularly to an existing interface is not possible!

Timeline

Timeline of Algebras-related research

Church Encoding
DSLs

Algebra of Programming Practical uses of
Church Encodings
F-Algebrasin recursion
patterns

Extensibility and
Modularity

80’s 90's 00’s 04 06 08 09 12

14

MVore Work

* [hereis too much work on algebras and modularity to
summarize here:

* |Increasingthe expressive power of algebras:

* OQOliveiraet al., Feature-Oriented Programming with Object Algebras,

ECOOP (2013)
* Rendelet al., From Object Algebras to Attribute Grammars, OOPSLA
(2014)

 Ornamental Algebras (a different dimension of

modularity)
* McBride, Ornamental Algebras, Algebraic Ornaments, JFP (2010)

 Modular Reasoning

 Delawareet al., Meta-Theory a la Carte, POPL (2013)
* Delawareet al., Modular Monadic Meta-Theory, ICFP (2013)

| essons L.earned

Lesson 1: F-Algebras show up Iin various
(isomorphic) forms

Lesson 2: Algebras are useful to model tree
structures in many languages/paradigms.

Lesson 3: Algebras support extensibility/modularity.

Lesson 4: Current solutions using algebras still
require heavy encodings.

Ihe Future:
Programming Language
Support?

Why PL Support for
Algebras?

e Currently algebras have to be encoded with other
language constructs.

e Oftenalgebras need to be composed. Some of the
composition operators have to be encoded.

* Algebras(and generalizations) use parametric
polymorphism/generics. In more complex algebras
there Is too much parametrization going on.

Conclusions

e Existing solutions using various encodings of
algebras have been extremely useful to better
understand modularity issues.

* |think we should continue exploring such
encodings to Improve our understanding.

 However, | believe we also need to look at
improving PL support to make solutions practical.

Thank you!

| anguage support”?

algebra interface ExpAlg where
sort Exp
Lit :Int-> EXxp
Add : Exp -> Exp -> EXp

interface |IEval where
eval : Int

algebras Eval implements ExpAlg where
type Exp = |Eval

eval@(Lit x) = X
eval@(Add el e2) =el.eval + e2.eval

