
Unified Syntax with Iso-Types

Yanpeng Yang, Xuan Bi, and Bruno C. d. S. Oliveira

The University of Hong Kong, Pokfulam, Hong Kong, China
{ypyang,xbi,bruno}@cs.hku.hk

Abstract. Traditional designs for functional languages (such as Haskell
or ML) have separate sorts of syntax for terms and types. In contrast,
many dependently typed languages use a unified syntax that accounts
for both terms and types. Unified syntax has some interesting advan-
tages over separate syntax, including less duplication of concepts, and
added expressiveness. However, integrating unrestricted general recur-
sion in calculi with unified syntax is challenging when some level of
type-level computation is present, as decidable type-checking is easily
lost.
This paper argues that the advantages of unified syntax also apply to
traditional functional languages, and there is no need to give up decidable
type-checking. We present a dependently typed calculus that uses unified
syntax, supports general recursion and has decidable type-checking. The
key to retain decidable type-checking is a generalization of iso-recursive
types called iso-types. Iso-types replace the conversion rule typically used
in dependently typed calculus, and make every computation explicit via
cast operators. We study two variants of the calculus that differ on the
reduction strategy employed by the cast operators, and give different
trade-offs in terms of simplicity and expressiveness.

1 Introduction

We live exciting times in the design of functional programming languages. In
recent years, dependent types have inspired novel designs for new programming
languages, such as Agda [19] or Idris [6], as well as numerous programming lan-
guage research [2, 3, 8, 23–25,28]. Dependently typed languages bring additional
expressiveness to type systems, and they can also support different forms of
assurances, such as strong normalization and logical consistency, not typically
present in traditional programming languages. Nevertheless, traditional designs
for functional languages still have some benefits. While strong normalization and
logical consistency are certainly nice properties to have, and can be valuable to
have in many domains, they can also impose restrictions on how programs are
written. For example, the termination checking algorithms typically employed
by dependently typed languages such as Agda or Idris can only automatically
ensure termination of programs that follow certain patterns. In contrast Haskell
or ML programmers can write their programs much more freely, since they do
not need to worry about retaining strong normalization and logical consistency.
Thus there is still plenty of space for both types of designs.

2 Y. Yang et al.

From an implementation and foundational point-of-view, dependently typed
languages and traditional functional languages also have important differences.
Languages like Haskell or ML have a strong separation between terms and types
(and also kinds). This separation often leads to duplication of constructs. For
example, when the type language provides some sort of type level computation,
constructs such as type application (mimicking value level application) may be
needed. In contrast many dependently typed languages unify types and terms.
There are benefits in unifying types and terms. In addition to the extra expres-
siveness afforded, for example, by dependent types, only one syntactic level is
needed. Thus duplication can be avoided. Having less language constructs sim-
plifies the language, making it easier to study (from the meta-theoretical point
of view) and maintain (from the implementation point of view).

In principle having unified syntax would be beneficial even for more tra-
ditional designs of functional languages, which have no strong normalization or
logical consistency. Not surprisingly, researchers have in the past considered such
an option for implementing functional languages [3,7,21], by using some variant
of pure type systems (PTS) [5] (normally extended with general recursion). Thus,
with a simple and tiny calculus, they showed that powerful and quite expressive
functional languages could be built with unified syntax.

However having unified syntax for types and terms brings challenges. One
pressing problem is that integrating (unrestricted) general recursion in depen-
dently typed calculi with unified syntax, while retaining logical consistency,
strong normalization and decidable type-checking is difficult. Indeed, many early
designs using unified syntax and unrestricted general recursion [3,7] lose all three
properties. For pragmatic reasons languages like Agda or Idris also allow turning
off the termination checker, which allows for added expressiveness, but loses the
three properties as well. More recently, various researchers [8, 24, 27] have been
investigating how to combine those properties, general recursion and dependent
types. However, this is usually done by having the type system carefully con-
trol the total and partial parts of computation, adding significant complexity to
those calculi when compared to systems based on pure type systems.

Nevertheless, if we are interested in traditional languages, only the loss of
decidable type-checking is problematic. Unlike strong normalization and logical
consistency, decidable type-checking is normally one property that is expected
from a traditional programming language design.

This paper proposes λI: a simple call-by-name variant of the calculus of
constructions. The key challenge solved in this work is how to define a calculus
comparable in simplicity to the calculus of constructions, while featuring both
general recursion and decidable type checking. The main idea, is to recover
decidable type-checking by making each type-level computation step explicit. In
essence, each type-level reduction or expansion is controlled by a type-safe cast.
Since single computation steps are trivially terminating, decidability of type
checking is possible even in the presence of non-terminating programs at the
type level. At the same time term-level programs using general recursion work
as in any conventional functional languages, and can be non-terminating.

Unified Syntax with Iso-Types 3

Our design generalizes iso-recursive types [22], which are our main source of
inspiration. In λI, not only folding/unfolding of recursion at the type level is
explicitly controlled by term level constructs, but also any other type level com-
putation (including beta reduction/expansion). There is an analogy to language
designs with equi-recursive types and iso-recursive types, which are normally the
two options for adding recursive types to languages. With equi-recursive types,
type-level recursion is implicitly folded/unfolded, which makes establishing de-
cidability of type-checking much more difficult. In iso-recursive designs, the idea
is to trade some convenience by a simple way to ensure decidability. Similarly, we
view the design of traditional dependently typed calculi, such as the calculus of
constructions as analogous to systems with equi-recursive types. In the calculus
of constructions it is the conversion rule that allows type-level computation to
by implicitly triggered. However, the proof of decidability of type checking for
the calculus of constructions [10] (and other normalizing PTS) is non-trivial,
as it depends on strong normalization [16]. Moreover decidability is lost when
adding general recursion. In contrast, the cast operators in λI have to be used
to explicitly trigger each step of type-level computation, but it is easy to ensure
decidable type-checking, even with general recursion.

We study two variants of the calculus that differ on the reduction strategy
employed by the cast operators, and give different trade-offs in terms of simplicity
and expressiveness. The first variant λIw uses weak-head reduction in the cast
operators. This allows for a very simple calculus, but loses some expressiveness
in terms of type level computation. Nevertheless in this variant it is still possible
to encode useful language constructs such as algebraic datatypes. The second
variant λIp uses parallel reduction for casts and is more expressive. It allows
equating terms such as Vec (1 + 1) and Vec 2 as equal. The price to pay for
this more expressive design is some additional complexity. For both designs type
soundness and decidability of type-checking are proved.

It is worth emphasizing that λI does sacrifice some convenience when per-
forming type-level computations in order to gain the ability of doing arbitrary
general recursion at the term level. The goal of this work is to show the benefits
of unified syntax in terms of economy of concepts for programming language de-
sign, and not use unified syntax to express computationally intensive type-level
programs. Investigating how to express computationally intensive type-level pro-
grams (as in dependently typed programming) in λI is left for future work.

In summary, the contributions of this work are:

– The λI calculus: A simple calculus for functional programming, that col-
lapses terms, types and kinds into the same hierarchy and supports general
recursion. λI is type-safe and the type system is decidable. Full proofs are
provided in the extended version of this paper [29].

– Iso-types: λI generalizes iso-recursive types by making all type-level com-
putation steps explicit via casts operators. In λI the combination of casts
and recursion subsumes iso-recursive types.

– A prototype implementation: The prototype of λI is available online1.
1 https://bitbucket.org/ypyang/aplas16

https://bitbucket.org/ypyang/aplas16

4 Y. Yang et al.

2 Overview

In this section, we informally introduce the main features of λI. In particular,
we show how the casts in λI can be used instead of the typical conversion rule
present in calculi such as the calculus of constructions. The formal details of λI
are presented in Section 3 and 4.

2.1 The Calculus of Constructions and the Conversion Rule

The calculus of constructions (λC) [10] is a higher-order typed lambda calculus
supporting dependent types (among various other features). A crucial feature of
λC is the conversion rule:

Γ ` e : τ1 Γ ` τ2 : s τ1 =β τ2

Γ ` e : τ2

It allows one to derive e : τ2 from the derivation of e : τ1 and the beta equality
of τ1 and τ2. This rule is important to automatically allow terms with beta
equivalent types to be considered type-compatible. For example, consider the
following identity function:

f = λy : (λx : ?. x) Int . y

The type of y is a type-level identity function applied to Int . Without the con-
version rule, f cannot be applied to 3 for example, since the type of 3 (Int)
differs from the type of y ((λx : ?. x) Int). Note that the beta equivalence
(λx : ?. x) Int =β Int holds. The conversion rule allows the application of f to
3 by converting the type of y to Int .

Decidability of Type Checking and Strong Normalization. While the conversion
rule in λC brings a lot of convenience, an unfortunate consequence is that it cou-
ples decidability of type checking with strong normalization of the calculus [16].
Therefore adding general recursion to λC becomes difficult, since strong nor-
malization is lost. Due to the conversion rule, any non-terminating term would
force the type checker to go into an infinite loop (by constantly applying the
conversion rule without termination), thus rendering the type system undecid-
able. For example, assume a term z that has type loop, where loop stands for any
diverging computation. If we type check (λx : Int . x) z under the normal typing
rules of λC, the type checker would get stuck as it tries to do beta equality on
two terms: Int and loop, where the latter is non-terminating.

2.2 An Alternative to the Conversion Rule: Iso-Types

In contrast to the conversion rule of λC, λI features iso-types, making it explicit
as to when and where to convert one type to another. Type conversions are
explicitly controlled by two language constructs: cast↓ (one-step reduction) and
cast↑ (one-step expansion). The benefit of this approach is that decidability of
type checking is no longer coupled with strong normalization of the calculus.

Unified Syntax with Iso-Types 5

Reduction. The cast↓ operator allows a type conversion provided that the re-
sulting type is a reduction of the original type of the term. To explain the use
of cast↓, assume an identity function g defined by g = λy : Int . y and a term
e such that e : (λx : ?. x) Int . In contrast to λC, we cannot directly apply g
to e in λI since the type of e ((λx : ?. x) Int) is not syntactically equal to Int .
However, note that the reduction relation (λx : ?. x) Int −→ Int holds. We can
use cast↓ for the explicit (type-level) reduction:

cast↓ e : Int

Then the application g (cast↓ e) type checks.

Expansion. The dual operation of cast↓ is cast↑, which allows a type conversion
provided that the resulting type is an expansion of the original type of the term.
To explain the use of cast↑, let us revisit the example from Section 2.1. We
cannot apply f to 3 without the conversion rule. Instead, we can use cast↑ to
expand the type of 3:

(cast↑ [(λx : ?. x) Int] 3) : (λx : ?. x) Int

Thus, the application f (cast↑ [(λx : ?. x) Int] 3) becomes well-typed. Intuitively,
cast↑ performs expansion, as the type of 3 is Int , and (λx : ?. x) Int is the
expansion of Int witnessed by (λx : ?. x) Int −→ Int . Notice that for cast↑ to
work, we need to provide the resulting type as argument. This is because for the
same term, there may be more than one choice for expansion. For example, 1+2
and 2 + 1 are both the expansions of 3.

One-Step. The cast rules allow only one-step reduction or expansion. If two
type-level terms require more than one step of reductions or expansions for nor-
malization, then multiple casts must be used. Consider a variant of the example
such that e : (λx : ?. λy : ?. x) Int Bool . Given g = λy : Int . y , the expression
g (cast↓ e) is ill-typed because cast↓ e has type (λy : ?. Int) Bool , which is not
syntactically equal to Int . Thus, we need another cast↓:

cast↓ (cast↓ e) : Int

to further reduce the type and allow the program g (cast↓ (cast↓ e)) to type check.

Decidability without Strong Normalization. With explicit type conversion rules
the decidability of type checking no longer depends on the strong normaliza-
tion property. Thus the type system remains decidable even in the presence
of non-termination at type level. Consider the same example using the term
z from Section 2.1. This time the type checker will not get stuck when type
checking (λx : Int . x) z . This is because in λI, the type checker only performs
syntactic comparison between Int and loop, instead of beta equality. Thus it
rejects the above application as ill-typed. Indeed it is impossible to type check
such application even with the use of cast↑ and/or cast↓: one would need to
write infinite number of cast↓’s to make the type checker loop forever (e.g.,
(λx : Int . x)(cast↓(cast↓ . . . z))). But it is impossible to write such program in
practice.

6 Y. Yang et al.

Variants of Casts. A reduction relation is used in cast operators to convert types.
We study two possible reduction relations: call-by-name weak-head reduction and
full reduction. Weak-head reduction cannot reduce sub-terms at certain positions
(e.g., inside λ or Π binders), while full reduction can reduce sub-terms at any
position. We define two variants of casts, namely weak and full casts, by employ-
ing weak-head and full reduction respectively. We also create two variants of λI,
namely λIw and λIp. The only difference is that λIw uses weak-head reduction
in weak cast operators cast↑ and cast↓, while λIp uses full reduction, specifically
parallel reduction, in full cast operators cast⇑ and cast⇓. Both variants reflect
the idea of iso-types, but have trade-offs between simplicity and expressiveness:
λIw uses the same call-by-name reduction for both casts and evaluation to keep
the system and metatheory simple, but loses some expressiveness, e.g. cannot
convert Vec (1 + 1) to Vec 2. λIp is more expressive but results in a more com-
plicated metatheory (see Section 4.2). Note that when generally referring to λI,
we do not specify the reduction strategy, which could be either variant.

2.3 General Recursion

λI supports general recursion and allows writing unrestricted recursive programs
at term level. The recursive construct is also used to model recursive types at
type level. Recursive terms and types are represented by the same µ primitive.

Recursive Terms. The primitive µx : τ. e can be used to define recursive func-
tions. For example, the factorial function would be written as:

fact = µf : Int → Int . λx : Int . if x == 0 then 1 else x× f (x− 1)

We treat the µ operator as a fixpoint, which evaluates µx : τ. e to its recursive
unfolding e[x 7→ µx : τ. e]. Term-level recursion in λI works as in any standard
functional language, e.g., fact 3 produces 6 as expected (see Section 3.4).

Recursive Types. The same µ primitive is used at the type level to represent
iso-recursive types [11]. In the iso-recursive approach a recursive type and its
unfolding are different, but isomorphic. The isomorphism is witnessed by two
operations, typically called fold and unfold. In λI, such isomorphism is witnessed
by cast↑ and cast↓. In fact, cast↑ and cast↓ generalize fold and unfold: they can
convert any types, not just recursive types, as we shall see in the example of
encoding parametrized datatypes in Section 5.

3 Dependent Types with Iso-Types

In this section, we present the λIw calculus, which uses a (call-by-name) weak-
head reduction strategy in casts. This calculus is very close to the calculus of
constructions, except for three key differences: 1) the absence of the � constant
(due to use of the “type-in-type” axiom); 2) the existence of two cast operators;

Unified Syntax with Iso-Types 7

3) general recursion on both term and type level. Unlike λC the proof of de-
cidability of type checking for λIw does not require the strong normalization of
the calculus. Thus, the addition of general recursion does not break decidable
type checking. In the rest of this section, we demonstrate the syntax, operational
semantics, typing rules and metatheory of λIw. Full proofs of the meta-theory
can be found in the extended version of this paper [29].

3.1 Syntax

Figure 1 shows the syntax of λIw, including expressions, contexts and values. λIw
uses a unified representation for different syntactic levels by following the pure
type system (PTS) representation of λC [5]. There is no syntactic distinction
between terms, types or kinds. We further merge types and kinds together by
including only a single sort ? instead of two distinct sorts ? and � of λC. This
design brings economy for type checking, since one set of rules can cover all
syntactic levels. We use metavariables τ and σ for an expression on the type-
level position and e for one on the term level. We use τ1 → τ2 as a syntactic
sugar for Πx : τ1. τ2 if x does not occur free in τ2.

Explicit Type Conversion. We introduce two new primitives cast↑ and cast↓
(pronounced as “cast up” and “cast down”) to replace the implicit conversion
rule of λC with one-step explicit type conversions. The type-conversions perform
two directions of conversion: cast↓ is for the one-step reduction of types, and cast↑
is for the one-step expansion. The cast↑ construct takes a type parameter τ as
the result type of one-step expansion for disambiguation (see also Section 2.2).
The cast↓ construct does not need a type parameter, because the result type of
one-step reduction is uniquely determined, as we shall see in Section 3.5.

We use syntactic sugar castn↑ and castn↓ to denote n consecutive cast operators
(see Figure 1). Alternatively, we can introduce them as built-in operators but
treat one-step casts as syntactic sugar instead. Making n-step casts built-in can
reduce the number of individual cast constructs, but makes cast operators less
fundamental in the discussion of meta-theory. Thus, in the paper, we treat n-step
casts as syntactic sugar but make them built-in in the implementation for better
performance. Note that castn↑ is simplified to take just one type parameter, i.e.,
the last type τ1 of the n cast operations. Due to the determinacy of one-step
reduction (see Lemma 1), the intermediate types can be uniquely determined,
thus can be left out from the castn↑ operator.

General Recursion. We add one primitive µ to represent general recursion. It has
a uniform representation on both term level and type level: the same construct
works both as a term-level fixpoint and a recursive type. The recursive expression
µx : τ. e is polymorphic, in the sense that τ is not restricted to ? but can be any
type, such as a function type Int → Int or a kind ?→ ?.

8 Y. Yang et al.

Expressions e, τ, σ ::= x | ? | e1 e2 | λx : τ. e | Πx : τ1. τ2
| µx : τ. e | cast↑ [τ] e | cast↓ e

Contexts Γ ::= ∅ | Γ, x : τ
Values v ::= ? | λx : τ. e | Πx : τ1. τ2 | cast↑ [τ] v
Syntactic Sugar

τ1 → τ2 , Πx : τ1. τ2, where x 6∈ FV(τ2)

castn↑ [τ1] e , cast↑[τ1](cast↑[τ2](. . . (cast↑ [τn] e) . . .))
, where τ1 −→ τ2 −→ · · · −→ τn

castn↓ e , cast↓(cast↓(. . . (cast↓︸ ︷︷ ︸
n

e) . . .))

Fig. 1. Syntax of λIw

e −→ e ′ One-step Weak-head Reduction

(λx : τ. e1) e2 −→ e1[x 7→ e2]
S Beta

e1 −→ e ′
1

e1 e2 −→ e ′
1 e2

S App

µx : τ. e −→ e[x 7→ µx : τ. e]
S Mu

e −→ e ′

cast↓ e −→ cast↓ e
′ S CastDown

e −→ e ′

cast↑ [τ] e −→ cast↑ [τ] e ′ S CastUp
cast↓ (cast↑ [τ] v) −→ v

S CastElim

Fig. 2. Operational semantics of λIw

3.2 Operational Semantics

Figure 2 shows the small-step, call-by-name operational semantics. Three base
cases include S Beta for beta reduction, S Mu for recursion unrolling and
S CastElim for cast canceling. Three inductive cases, S App, S CastDown
and S CastUp, define reduction at the head position of an application, and the
inner expression of cast↓ and cast↑ terms, respectively. Note that S CastElim
and S CastDown do not overlap because in the former rule, the inner term of
cast↓ is a value (see Figure 1), i.e., cast↑ [τ] v , but not a value in the latter rule.

The reduction rules are called weak-head because only the head term of an
application can be reduced, as indicated by the rule S App. Reduction is also not
allowed inside the λ-term and Π-term which are both defined as values. Weak-
head reduction rules are used for both type conversion and term evaluation.
Thus, we refer to cast operators in λIw as weak casts. To evaluate the value of
a term-level expression, we apply the one-step (weak-head) reduction multiple
times, i.e., multi-step reduction, the transitive and reflexive closure of the one-
step reduction.

3.3 Typing

Figure 3 gives the syntax-directed typing rules of λIw, including rules of context
well-formedness ` Γ and expression typing Γ ` e : τ . Note that there is only
a single set of rules for expression typing, because there is no distinction of
different syntactic levels.

Unified Syntax with Iso-Types 9

Most typing rules are quite standard. We write ` Γ if a context Γ is well-
formed. We use Γ ` τ : ? to check if τ is a well-formed type. Rule T Ax
is the “type-in-type” axiom. Rule T Var checks the type of variable x from
the valid context. Rules T App and T Lam check the validity of application
and abstraction respectively. Rule T Pi checks the type well-formedness of the
dependent function. Rule T Mu checks the validity of a recursive term. It ensures
that the recursion µx : τ. e should have the same type τ as the binder x and
also the inner expression e.

The Cast Rules. We focus on the rules T CastUp and T CastDown that
define the semantics of cast operators and replace the conversion rule of λC.
The relation between the original and converted type is defined by one-step
weak-head reduction (see Figure 2). For example, given a judgment Γ ` e : τ2
and relation τ1 −→ τ2 −→ τ3, cast↑ [τ1] e expands the type of e from τ2 to τ1,
while cast↓ e reduces the type of e from τ2 to τ3. We can formally give the typing
derivations of the examples in Section 2.2:

Γ ` e : (λx : ?. x) Int
(λx : ?. x) Int −→ Int

Γ ` (cast↓ e) : Int

Γ ` 3 : Int Γ ` (λx : ?. x) Int : ?
(λx : ?. x) Int −→ Int

Γ ` (cast↑ [(λx : ?. x) Int] 3) : (λx : ?. x) Int

Importantly, in λIw term-level and type-level computation are treated differently.
Term-level computation is dealt in the usual way, by using multi-step reduction
until a value is finally obtained. Type-level computation, on the other hand, is
controlled by the program: each step of the computation is induced by a cast. If
a type-level program requires n steps of computation to reach the normal form,
then it will require n casts to compute a type-level value.

Pros and Cons of Type in Type. The “type-in-type” axiom is well-known to give
rise to logical inconsistency [14]. However, since our goal is to investigate core
languages for languages that are logically inconsistent anyway (due to general
recursion), we do not view “type-in-type” as a problematic rule. On the other
hand the rule T Ax brings additional expressiveness and benefits: for example
kind polymorphism [30] is supported in λIw.

Syntactic Equality. Finally, the definition of type equality in λIw differs from
λC. Without λC’s conversion rule, the type of a term cannot be converted freely
against beta equality, unless using cast operators. Thus, types of expressions are
equal only if they are syntactically equal (up to alpha renaming).

3.4 The Two Faces of Recursion

Term-level Recursion. In λIw, the µ-operator works as a fixpoint on the term
level. By rule S Mu, evaluating a term µx : τ. e will substitute all x ’s in e with
the whole µ-term itself, resulting in the unrolling e[x 7→ µx : τ. e] . The µ-term
is equivalent to a recursive function that should be allowed to unroll without

10 Y. Yang et al.

` Γ Well-formed Context ` ∅
Env Empty

` Γ Γ ` τ : ?

` Γ, x : τ
Env Var

Γ ` e : τ Typing
` Γ

Γ ` ? : ?
T Ax

` Γ x : τ ∈ Γ

Γ ` x : τ
T Var

Γ ` e1 : Πx : τ2. τ1 Γ ` e2 : τ2

Γ ` e1 e2 : τ1[x 7→ e2]
T App

Γ, x : τ1 ` e : τ2 Γ ` Πx : τ1. τ2 : ?

Γ ` λx : τ1. e : Πx : τ1. τ2
T Lam

Γ ` τ1 : ? Γ, x : τ1 ` τ2 : ?

Γ ` Πx : τ1. τ2 : ?
T Pi

Γ, x : τ ` e : τ Γ ` τ : ?

Γ ` µx : τ. e : τ
T Mu

Γ ` e : τ2 Γ ` τ1 : ? τ1 −→ τ2

Γ ` cast↑ [τ1] e : τ1
T CastUp

Γ ` e : τ1 τ1 −→ τ2

Γ ` cast↓ e : τ2
T CastDown

Fig. 3. Typing rules of λIw

restriction. Recall the factorial function example in Section 2.3. By rule T Mu,
the type of fact is Int → Int . Thus we can apply fact to an integer. Note that
by rule S Mu, fact will be unrolled to a λ-term. Assuming the evaluation of if -
then-else construct and arithmetic expressions follows the one-step reduction,
we can evaluate the term fact 3 as follows:

fact 3
−→ (λx : Int . if x == 0 then 1 else x× fact (x− 1)) 3 -- by S App

−→ if 3 == 0 then 1 else 3× fact (3− 1) -- by S Beta

−→ · · · −→ 6

Note that we never check if a µ-term can terminate or not, which is an
undecidable problem for general recursive terms. The factorial function example
above can stop, while there exist some terms that will loop forever. However,
term-level non-termination is only a runtime concern and does not block the
type checker. In Section 3.5 we show type checking λIw is still decidable in the
presence of general recursion.

Type-level Recursion. On the type level, µx : τ. e works as a iso-recursive
type [11], a kind of recursive type that is not equal but only isomorphic to
its unrolling. Normally, we need to add two more primitives fold and unfold for
the iso-recursive type to map back and forth between the original and unrolled
form. Assuming there exist expressions e1 and e2 such that e1 : µx : τ. σ and
e2 : σ[x 7→ µx : τ. σ] , we have the following typing results:

unfold e1 : σ[x 7→ µx : τ. σ]
fold [µx : τ. σ] e2 : µx : τ. σ

by applying standard typing rules of iso-recursive types [22]:

Γ ` e1 : µx : τ. σ

Γ ` unfold e1 : σ[x 7→ µx : τ. σ]

Γ ` µx : τ. σ : ?
Γ ` e2 : σ[x 7→ µx : τ. σ]

Γ ` fold [µx : τ. σ] e2 : µx : τ. σ

Unified Syntax with Iso-Types 11

However, in λIw we do not need to introduce fold and unfold operators, be-
cause with the rule S Mu, cast↑ and cast↓ generalize fold and unfold. Consider
the same expressions e1 and e2 above. The type of e2 is the unrolling of e1’s
type, which follows the one-step reduction relation by rule S Mu: µx : τ. σ −→
σ[x 7→ µx : τ. σ] . By applying rules T CastUp and T CastDown, we can
obtain the following typing results:

cast↓ e1 : σ[x 7→ µx : τ. σ]
cast↑ [µx : τ. σ] e2 : µx : τ. σ

Thus, cast↑ and cast↓ witness the isomorphism between the original recursive
type and its unrolling, behaving in the same way as fold and unfold in iso-
recursive types.

An important remark is that casts are necessary, not only for controlling the
unrolling of recursive types, but also for type conversion of other constructs,
which is essential for encoding parametrized algebraic datatypes (see Section 5).
Also, the “type-in-type” axiom [7] makes it possible to encode fixpoints even
without a fixpoint primitive, i.e., the µ-operator. Thus if no casts would be
performed on terms without recursive types, it would still be possible to build a
term with a non-terminating type and make type-checking non-terminating.

3.5 Metatheory

We now discuss the metatheory of λIw. We focus on two properties: the decid-
ability of type checking and the type safety of the language. First, we show that
type checking λIw is decidable without requiring strong normalization. Second,
the language is type-safe, proven by subject reduction and progress theorems.

Decidability of Type Checking. The proof for decidability of type checking is by
induction on the structure of e. The non-trivial case is for cast-terms with typing
rules T CastUp and T CastDown. Both rules contain a premise that needs
to judge if two types τ1 and τ2 follow the one-step reduction, i.e., if τ1 −→ τ2
holds. We show that τ2 is unique with respect to the one-step reduction, or
equivalently, reducing τ1 by one step will get only a sole result τ2. Such property
is given by the following lemma:

Lemma 1 (Determinacy of One-step Weak-head Reduction). If e −→
e1 and e −→ e2, then e1 ≡ e2.

We use the notation ≡ to denote the alpha equivalence of e1 and e2. Note that
the presence of recursion does not affect this lemma: given a recursive term µx :
τ. e, by rule S Mu, there always exists a unique term e ′ ≡ e[x 7→ µx : τ. e] such
that µx : τ. e −→ e ′. With this result, we show it is decidable to check whether
the one-step relation τ1 −→ τ2 holds. We first reduce τ1 by one step to obtain τ ′1
(which is unique by Lemma 1), and compare if τ ′1 and τ2 are syntactically equal.
Thus, we can further show type checking cast-terms is decidable.

12 Y. Yang et al.

For other forms of terms, the typing rules only contain typing judgments in
the premises. Thus, type checking is decidable by the induction hypothesis and
the following lemma which ensures the typing result is unique:

Lemma 2 (Uniqueness of Typing for λIw). If Γ ` e : τ1 and Γ ` e : τ2,
then τ1 ≡ τ2.

Thus, we can conclude the decidability of type checking:

Theorem 1 (Decidability of Type Checking for λIw). Given a well-formed
context Γ and a term e, it is decidable to determine if there exists τ such that
Γ ` e : τ .

We emphasize that when proving the decidability of type checking, we do
not rely on strong normalization. Intuitively, explicit type conversion rules use
one-step weak-head reduction, which already has a decidable checking algorithm
according to Lemma 1. We do not need to further require the normalization of
terms. This is different from the proof for λC which requires the language to be
strongly normalizing [16]. In λC the conversion rule needs to examine the beta
equivalence of terms, which is decidable only if every term has a normal form.

Type Safety. The proof of the type safety of λIw is by showing subject reduction
and progress theorems:

Theorem 2 (Subject Reduction of λIw). If Γ ` e : σ and e −→ e′ then
Γ ` e ′ : σ.

Theorem 3 (Progress of λIw). If ∅ ` e : σ then either e is a value v or there
exists e ′ such that e −→ e ′.

The proof of subject reduction is straightforward by induction on the deriva-
tion of e −→ e′. Some cases need supporting lemmas: S CastElim requires
Lemma 1; S Beta and S Mu require the following substitution lemma:

Lemma 3 (Substitution of λIw). If Γ1, x : σ, Γ2 ` e1 : τ and Γ1 ` e2 : σ,
then Γ1, Γ2[x 7→ e2] ` e1[x 7→ e2] : τ [x 7→ e2] .

The proof of progress is also standard by induction on ∅ ` e : σ. Notice
that cast↑ [τ] v is a value, while cast↓ e1 is not: by rule S CastDown, e1 will
be constantly reduced until it becomes a value that could only be in the form
cast↑ [τ] v by typing rule T CastDown. Then rule S CastElim can be further
applied and the evaluation does not get stuck. Another notable remark is that
when proving the case for application e1 e2, if e1 is a value, it could only be a
λ-term but not a cast↑-term. Otherwise, suppose e1 has the form cast↑ [Πx :
τ1. τ2] e ′

1. By inversion, we have ∅ ` e ′
1 : τ ′1 and Πx : τ1. τ2 −→ τ ′1. But such τ ′1

does not exist because Πx : τ1. τ2 is a value which is not reducible.

Unified Syntax with Iso-Types 13

r −→p r
′ One-step Parallel Reduction

x −→p x
P Var

? −→p ?
P Star

(λx : ρ. r1) r2 −→p r1[x 7→ r2]
P Beta

µx : ρ. r −→p r [x 7→ µx : ρ. r]
P MuBeta

r1 −→p r
′
1 r2 −→p r

′
2

r1 r2 −→p r
′
1 r

′
2

P App

ρ −→p ρ
′ r −→p r

′

λx : ρ. r −→p λx : ρ′. r ′
P Lam

ρ1 −→p ρ
′
1 ρ2 −→p ρ

′
2

Πx : ρ1. ρ2 −→p Πx : ρ′1. ρ
′
2

P Pi

ρ −→p ρ
′ r −→p r

′

µx : ρ. r −→p µx : ρ′. r ′
P Mu

Fig. 4. One-step parallel reduction of erased terms

4 Iso-Types with Full Casts

In Section 3, casts use one-step weak-head reduction, which is also used by term
evaluation and simplifies the design. To gain extra expressiveness, we take one
step further to generalize casts with full reduction. In this section, we present a
variant of λI called λIp, where casts use parallel reduction for type conversion.
Full specification and proofs can be found in the extended version [29].

4.1 Full Casts with Parallel Reduction

Using weak-head reduction in cast operators keeps the simplicity of the language
design. However, it lacks the ability to do full type-level computation, because
reduction cannot occur at certain positions of terms. For example, weak casts
cannot convert the type Vec (1+1) to Vec 2 since the desired reduction is at the
non-head position. Thus, we generalize weak casts to full casts (cast⇑ and cast⇓)
utilizing one-step parallel reduction (−→p) for type conversion. Figure 4 shows
the definition of −→p. It allows to reduce terms at any position, e.g., non-head
positions or inside binders λx : ?. 1+1 −→p λx : ?. 2, thus enables full type-level
computation for casts.

There are three remarks for parallel reduction worth mentioning. First, par-
allel reduction is defined up to erasure, a process that removes all casts from
terms (see Figure 5). We use metavariable r and ρ to range over erased terms
and types, respectively. The only syntactic change of erased terms is that there
is no cast. The syntax is omitted here and can be found in the extended ver-
sion [29]. It is feasible to define parallel reduction only for erased terms because
casts in λIp (also λIw) are only used to ensure the decidability of type checking
and have no effect on dynamic semantics, thus are computationally irrelevant.

Second, the definition of parallel reduction in Figure 4 is slightly different
from the standard one for PTS [1]. It is partially parallel: rules P Beta and
P MuBeta do not parallel reduce sub-terms but only do beta reduction and
recursion unrolling, respectively. Such definition makes the decidability property
(see Lemma 6) easier to prove than the conventional fully parallel version. It also
requires fewer reduction steps than the non-parallel version, thus correspondingly
needs fewer casts.

14 Y. Yang et al.

Erased Expressions r , ρ
Erasure
|x| = x
|?| = ?
e1 e2	=	e1		e2
λx : τ. e	= λx :	τ	.	e
Πx : τ1. τ2	= Πx :	τ1	.	τ2
µx : τ. e	= µx :	τ	.	e
cast⇑ [τ] e	=	e		
cast⇓ [τ] e	=	e		

Fig. 5. Erasure of casts

Erased Values
u ::= ? | λx : ρ. r | Πx : ρ1. ρ2

Evaluation Rules

(λx : ρ. r1) r2 −→ r1[x 7→ r2]
r1 −→ r ′1

r1 r2 −→ r ′1 r2

µx : ρ. r −→ r [x 7→ µx : ρ. r]

Fig. 6. Values and evaluation rules of erased terms

Expressions e, τ, σ ::= · · · | cast⇑ [τ] e | cast⇓ [τ] e
Values v ::= · · · | cast⇑ [τ] v | cast⇓ [τ] v
Typing

Γ ` e : τ2 Γ ` τ1 : ? |τ1| −→p |τ2|
Γ ` cast⇑ [τ1] e : τ1

TF CastUp

Γ ` e : τ1 Γ ` τ2 : ? |τ1| −→p |τ2|
Γ ` cast⇓ [τ2] e : τ2

TF CastDown

Fig. 7. Syntactic and typing changes of λIp

Third, parallel reduction does not have the determinacy property like weak-
head reduction (Lemma 1). For example, for term (λx : ?. 1 + 1) Int , we can
(parallel) reduce it to either (λx : ?. 2) Int by rule P App and P Lam, or 1 + 1
by rule P Beta. Thus, to ensure the decidability, we also need to add the type
annotation for cast⇓ operator to indicate what exact type we want to reduce to.
Similar to cast⇑, cast⇓ [τ] v is a value, which is different from the weak cast↓-term.

Figure 7 shows the syntactic and typing changes of λIp. Notice that in λIw,
reduction rules for type casting and term evaluation are the same, i.e., the weak-
head call-by-name reduction. But in λIp, parallel reduction is only used by casts.
We define weak-head reduction (−→) for term evaluation individually (see Figure
6). Note that the relation −→ is defined only for erased terms, which is similar to
the treatment of −→p. We also define syntactic values for erased terms, ranged
over by u (see Figure 6).

4.2 Metatheory

We show that the two key properties, type safety and decidability of type check-
ing, still hold in λIp.

Type Safety. Full casts are more expressive but also complicate the metatheory:
term evaluation could get stuck by full casts. For example, the following term,

(cast⇓ [Int → Int] (λx : ((λy : ?. y) Int). x)) 3

Unified Syntax with Iso-Types 15

cannot be further reduced because the head position is already a value but not
a λ-term. Note that weak casts do not have such problem because only cast↑ is
annotated and not legal to have a Π-type in the annotation (see last paragraph
of Section 3.5). To avoid getting stuck by full casts, one could introduce several
cast push rules similar to System FC [26]. For example, the stuck term above
can be further evaluated by pushing cast⇓ into the λ-term:

(cast⇓ [Int → Int] (λx : ((λy : ?. y) Int). x)) 3 −→ (λx : Int . x) 3

However, adding “push rules” significantly complicates the reduction rela-
tions and metatheory. Instead, we adopt the erasure approach inspired by Zom-
bie [24] and Guru [25] that removes all casts when proving the type safety. We
define a type system for erased terms, called erased system. Its typing judgment
is ∆ ` r : ρ where ∆ ranges over the erased context. Omitted typing rules are
available in the extended version [29].

The erased system is basically calculus of constructions with recursion and
“type-in-type”. Thus, we follow the standard proof steps for PTS [5]. Notice
that term evaluation uses the weak-head reduction −→. We only need to prove
subject reduction and progress theorems for −→. But we generalize the result
for subject reduction, which holds up to the parallel reduction −→p.

Lemma 4 (Substitution of Erased System). If ∆1, x : ρ′, ∆2 ` r1 : ρ and
∆1 ` r2 : ρ′, then ∆1, ∆2[x 7→ r2] ` r1[x 7→ r2] : ρ[x 7→ r2] .

Theorem 4 (Subject Reduction of Erased System). If ∆ ` r : ρ and
r −→p r ′ then ∆ ` r ′ : ρ.

Theorem 5 (Progress of Erased System). If ∅ ` r : ρ then either r is a
value u or there exists r ′ such that r −→ r ′.

Given that the erased system is type-safe, if we want to show the type-safety
of the original system, it is sufficient to show the typing is preserved after erasure:

Lemma 5 (Soundness of Erasure). If Γ ` e : τ then |Γ | ` |e| : |τ |.

Decidability of Type Checking. The proof of decidability of type checking λIp is
similar to λIw in Section 3.5. The only difference is for cast rules TF CastUp
and TF CastDown, which use parallel reduction |τ1| −→p |τ2| as a premise.
We first show the decidability of parallel reduction:

Lemma 6 (Decidability of Parallel Reduction). If ∆ ` r1 : ρ1 and ∆ `
r2 : ρ2, then whether r1 −→p r2 holds is decidable.

As cast⇑ and cast⇓ are annotated, both τ1 and τ2 can be determined and
the well-typedness is checked in the original system. By Lemma 5, the erased
terms keeps the well-typedness. Thus, by Lemma 6, it is decidable to check if
|τ1| −→p |τ2|. We conclude the decidability of type checking by following lemmas:

16 Y. Yang et al.

Lemma 7 (Uniqueness of Typing for λIp). If Γ ` e : τ1 and Γ ` e : τ2,
then τ1 ≡ τ2.

Theorem 6 (Decidability of Type Checking for λIp). Given a well-formed
context Γ and a term e, it is decidable to determine if there exists τ such that
Γ ` e : τ .

5 Application of Iso-Types

λI is a simple core calculus, but expressive enough to encode useful language
constructs. We have implemented a simple functional language Fun to show
how features of modern functional languages can be encoded in λI. We focus on
common features available in traditional functional languages and some inter-
esting type-level features, but not the full power of dependent types. Supported
features include algebraic datatypes, records, higher-kinded types, kind poly-
morphism [30] and datatype promotion [30].

Due to lack of space, many examples illustrating the various language features
supported in Fun are provided only in the extended version [29]. Here we show
the essential idea of how to exploit iso-types to encode language constructs.

Encoding Parametrized Algebraic Datatypes with Weak Casts. We give an ex-
ample of encoding parametrized algebraic datatypes in λIw via µ-operator and
weak casts. Importantly we should note that having iso-recursive types alone
(and alpha equality) would be insufficient to encode parametrized types: the
generalization afforded by iso-types is needed here. In Fun we can define poly-
morphic list as:

data List a = Nil | Cons a (List a);

This Fun definition is translated into λIw using a Scott encoding [18] of datatypes:

List = µL : ?→ ?. λa : ?.Πb : ?. b → (a → L a → b)→ b
Nil = λa : ?. cast2↑ [List a] (λb : ?. λn : b. λc : (a → List a → b).n)

Cons = λa : ?. λx : a. λ(xs : List a).
cast2↑ [List a] (λb : ?. λn : b. λc : (a → List a → b). c x xs)

The type constructor List is encoded as a recursive type. The body is a type-level
function that takes a type parameter a and returns a dependent function type,
i.e., Π-type. The body of Π-type is universally quantified by a type parameter b,
which represents the result type instantiated during pattern matching. Following
are the types corresponding to data constructors: b for Nil , and a → L a → b
for Cons, and the result type b at the end. The data constructors Nil and Cons
are encoded as functions. Each of them selects a different function from the
parameters (n and c). This provides branching in the process flow, based on
the constructors. Note that cast↑ is used twice here (written as cast2↑): one for
one-step expansion from τ to (λa : ?. τ) a and the other for folding the recursive
type from (λa : ?. τ) a to List a, where τ is the type of cast2↑ body.

Unified Syntax with Iso-Types 17

We have two notable remarks from the example above. First, iso-types are
critical for the encoding and cannot be replaced by iso-recursive types. Since type
constructors are parameterized, not only folding/unfolding recursive types, but
also type-level reduction/expansion is required, which is only possible with casts.
Second, though weak casts are not as powerful as full casts, they are capable of
encoding many useful constructs, such as algebraic datatypes and records [29].
Nevertheless full-reduction casts enable other important applications. Some ap-
plications of full casts are discussed in the extended version [29].

6 Related Work

Core calculus for functional languages. Girard’s System Fω [14] is a typed
lambda calculus with higher-kinded polymorphism. For the well-formedness of
type expressions, an extra level of kinds is added to the system. In comparison,
because of unified syntax, λI is considerably simpler than System Fω, both in
terms of language constructs and complexity of proofs. As for type-level com-
putation, System Fω differs from λI in that it uses a conversion rule, while λI
uses explicit casts. The current core language for GHC Haskell, System FC [26]
is a significant extension of System Fω, which supports GADTs [20], functional
dependencies [15], type families [13], and kind equality [28]. These features use
a non-trivial form of type equality, which is currently missing from λI. On the
other hand, λI uses unified syntax and has only 8 language constructs, whereas
System FC uses multiple levels of syntax and currently has over 30 language
constructs, making it significantly more complex. One direction of our future
work is to investigate the addition of such forms of non-trivial type-equality.

Unified syntax with decidable type-checking. Pure Type Systems [4] show how a
whole family of type systems can be implemented using just a single syntactic
form. PTSs are an obvious source of inspiration for our work. Although this
paper presents a specific system based on λC, it should be easy to generalize
λI in the same way as PTSs and further show the applicability of our ideas to
other systems. An early attempt of using a PTS-like syntax for an intermediate
language for functional programming was Henk [21]. The Henk proposal was to
use the lambda cube as a typed intermediate language, unifying all three levels.
However the authors have not studied the addition of general recursion nor full
dependent types.

Zombie [8] is a dependently typed language using a single syntactic category.
It is composed of two fragments: a logical fragment where every expression is
known to terminate, and a programmatic fragment that allows general recursion.
Though Zombie has one syntactic category, it is still fairly complicated (with
around 24 language constructs) as it tries to be both consistent as a logic and
pragmatic as a programming language. Even if one is only interested in modeling
a programmatic fragment, additional mechanisms are required to ensure the
validity of proofs, e.g., call-by-value semantics and value restriction [23, 24]. In
contrast to Zombie, λI takes another point of the design space, giving up logical
consistency and reasoning about proofs for simplicity in the language design.

18 Y. Yang et al.

Unified syntax with general recursion and undecidable type checking. Cayenne [3]
integrates the full power of dependent types with general recursion, which bears
some similarities with λI. It uses one syntactic form for both terms and types,
allows arbitrary computation at type level and is logically inconsistent because
of allowing unrestricted recursion. However, the most crucial difference from λI
is that type checking in Cayenne is undecidable. From a pragmatic point of view,
this design choice simplifies the implementation, but the desirable property of
decidable type checking is lost. Cardelli’s Type:Type language [7] also features
general recursion to implement equi-recursive types. Recursion and recursive
types are unified in a single construct. However, both equi-recursive types and
the Type:Type axiom make the type system undecidable. ΠΣ [2] is another
example of a language that uses one recursion mechanism for both types and
functions. The type-level recursion is controlled by lifted types and boxes since
definitions are not unfolded inside boxes. However, ΠΣ does not have decid-
able type checking due to the “type-in-type” axiom. And its metatheory is not
formally developed.

Casts for managed type-level computation. Type-level computation in λI is con-
trolled by explicit casts. Several studies [12,17,23–26] also attempt to use explicit
casts for managed type-level computation. However, casts in those approaches
are not inspired by iso-recursive types. Instead they require equality proof terms,
while casts in λI do not. The need for equality proof terms complicates the lan-
guage design because: 1) building equality proofs requires various other language
constructs, adding to the complexity of the language design and metatheory;
2) It is desirable to ensure that the equality proofs are valid. Otherwise, one
can easily build bogus equality proofs with non-termination, which could en-
danger type safety. Guru [25] and Sep3 [17] make syntactic separation between
proofs and programs to prevent certain programmatic terms turning into invalid
proofs. The programmatic part of Zombie [23,24], which has no such separation,
employs value restriction that restricts proofs to be syntactic values to avoid
non-terminating terms. PTS with convertibility proofs (PTSf) [12] extends PTS
by replacing the implicit conversion rule with explicit conversion proofs embed-
ded into terms. However, it requires many language constructs to build equality
proofs; and it does not allow general recursion, thus does not need to deal with
problem 2). Our treatment of full casts in λIp, using a separate erased system
for developing metatheory, is similar to the approach of Zombie or Guru which
uses an unannotated system.

Restricted recursion with termination checking. As proof assistants, dependently
typed languages such as Coq [9] and Adga [19] are conservative as to what kind
of computation is allowed. They require all programs to terminate by means of
a termination checker, ensuring recursive calls are decreasing. Decidable type
checking and logical consistency are preserved. But the conservative, syntactic
criteria is insufficient to support a variety of important programming paradigms.
Agda offers an option to disable the termination checker to allow writing arbi-
trary functions. However, this may endanger both decidable type checking and

Unified Syntax with Iso-Types 19

logical consistency. Idris [6] is a dependently typed language that allows writ-
ing unrestricted functions. However, to achieve decidable type checking, it also
requires termination checker to ensure only terminating functions are evaluated
by the type checker. While logical consistency is an appealing property, it is
not a goal of λI. Instead λI aims at retaining (term-level) general recursion as
found in languages like Haskell or ML, while benefiting from a unified syntax to
simplify the implementation of the core language.

7 Conclusion

This work proposes λI: a minimal dependently typed core language that al-
lows the same syntax for terms and types, supports type-level computation, and
preserves decidable type checking under the presence of general recursion. The
key idea is to control type-level computation using iso-types via casts. Because
each cast can only account for one-step of type-level computation, type checking
becomes decidable without requiring strong normalization of the calculus. At
the same time one-step casts together with recursion provide a generalization
of iso-recursive types. Two variants of λI show trade-offs of employing differ-
ent reduction strategies in casts. In future work, we hope to investigate surface
language mechanisms, such as type families in Haskell, to express intensive type-
level computation in a more convenient way.

Acknowledgments. We thank the anonymous reviewers for their helpful com-
ments. This work has been sponsored by the Hong Kong Research Grant Council
Early Career Scheme project number 27200514.

References

1. Adams, R.: Pure type systems with judgemental equality. Journal of Functional
Programming 16(02), 219–246 (2006)

2. Altenkirch, T., Danielsson, N.A., Löh, A., Oury, N.: ΠΣ: Dependent types without
the sugar. In: Functional and Logic Programming, pp. 40–55. Springer (2010)

3. Augustsson, L.: Cayenne — a language with dependent types. In: ICFP ’98. pp.
239–250 (1998)

4. Barendregt, H.: Introduction to generalized type systems. Journal of Functional
Programming 1(2), 125–154 (1991)

5. Barendregt, H.: Lambda calculi with types. In: Handbook of Logic in Computer
Science. vol. 2, pp. 117–309 (1992)

6. Brady, E.: IDRIS—systems programming meets full dependent types. In: PLPV
’11. pp. 43–54 (2011)

7. Cardelli, L.: A Polymorphic lambda-calculus with Type: Type. Digital Systems
Research Center (1986)

8. Casinghino, C., Sjöberg, V., Weirich, S.: Combining proofs and programs in a
dependently typed language. In: POPL ’14. pp. 33–45 (2014)

9. Coq development team: The coq proof assistant. http://coq.inria.fr/

http://coq.inria.fr/

20 Y. Yang et al.

10. Coquand, T., Huet, G.: The calculus of constructions. Information and Computa-
tion 76, 95–120 (1988)

11. Crary, K., Harper, R., Puri, S.: What is a recursive module? In: PLDI ’99. pp.
50–63 (1999)

12. van Doorn, F., Geuvers, H., Wiedijk, F.: Explicit convertibility proofs in pure type
systems. In: LFMTP ’13. pp. 25–36 (2013)

13. Eisenberg, R.A., Vytiniotis, D., Peyton Jones, S., Weirich, S.: Closed type families
with overlapping equations. In: POPL ’14 (2014)

14. Girard, J.Y.: Interprtation fonctionnelle et limination des coupures de l’arithmtique
d’ordre suprieur. Ph.D. thesis, Universit Paris VII (1972)

15. Jones, M.P.: Type Classes with Functional Dependencies. Proceedings of the 9th
European Symposium on Programming Languages and Systems (March) (2000)

16. Jutting, L.: Typing in pure type systems. Information and Computation 105(1),
30–41 (1993)

17. Kimmell, G., Stump, A., III, H.D.E., Fu, P., Sheard, T., Weirich, S., Casinghino,
C., Sjöberg, V., Collins, N., Ahn, K.Y.: Equational reasoning about programs with
general recursion and call-by-value semantics. In: PLPV ’12. pp. 15–26 (2012)

18. Mogensen, T.A.: Theoretical pearls: Efficient self-interpretation in lambda calculus.
Journal of Functional Programming 2(3), 345–364 (1992)

19. Norell, U.: Towards a practical programming language based on dependent type
theory. Ph.D. thesis, Chalmers University of Technology (2007)

20. Peyton Jones, S., Washburn, G., Weirich, S.: Wobbly types: type inference for gen-
eralised algebraic data types. Tech. Rep. MS-CIS-05-26, University of Pennsylvania
(Jul 2004)

21. Peyton Jones, S., Meijer, E.: Henk: a Typed Intermediate Language. In: Types in
Compilation Workshop (1997)

22. Pierce, B.C.: Types and programming languages. MIT press (2002)
23. Sjöberg, V., Casinghino, C., Ahn, K.Y., Collins, N., III, H.D.E., Fu, P., Kimmell,

G., Sheard, T., Stump, A., Weirich, S.: Irrelevance, heterogenous equality, and
call-by-value dependent type systems. In: MSFP ’12. pp. 112–162 (2012)

24. Sjöberg, V., Weirich, S.: Programming up to congruence. In: POPL ’15. pp. 369–
382 (2015)

25. Stump, A., Deters, M., Petcher, A., Schiller, T., Simpson, T.: Verified programming
in guru. In: PLPV ’09. pp. 49–58 (2008)

26. Sulzmann, M., Chakravarty, M.M.T., Jones, S.P., Donnelly, K.: System f with type
equality coercions. In: TLDI ’07. pp. 53–66 (2007)

27. Swamy, N., Chen, J., Fournet, C., Strub, P.Y., Bhargavan, K., Yang, J.: Secure
distributed programming with value-dependent types. In: ICFP ’11. pp. 266–278
(2011)

28. Weirich, S., Hsu, J., Eisenberg, R.A.: System fc with explicit kind equality. In:
ICFP ’13. pp. 275–286 (2013)

29. Yang, Y., Bi, X., Oliveira, B.C.d.S.: Unified syntax with iso-types. Extended ver-
sion available from https://bitbucket.org/ypyang/aplas16 (2016)

30. Yorgey, B.A., Weirich, S., Cretin, J., Peyton Jones, S., Vytiniotis, D., Magalhães,
J.P.: Giving Haskell a Promotion. In: TLDI ’12. pp. 53–66 (2012)

https://bitbucket.org/ypyang/aplas16

	Unified Syntax with Iso-Types

