Disjoint Intersection Types

Bruno C. d. S. Oliveira Zhiyuan Shi João Alpuim

The University of Hong Kong
{bruno,zyshi,alpuim}@cs.hku.hk

Abstract

Dunfield showed that a simply typed core calculus with intersection types and a merge operator is able to capture various programming language features. While his calculus is type-safe, it is not coherent: different derivations for the same expression can elaborate to expressions that evaluate to different values. The lack of coherence is an important disadvantage for adoption of his core calculus in implementations of programming languages, as the semantics of the programming language becomes implementation-dependent.

This paper presents λ_i: a coherent and type-safe calculus with a form of intersection types and a merge operator. Coherence is achieved by ensuring that intersection types are disjoint and programs are sufficiently annotated to avoid type ambiguity. We propose a definition of disjointness where two types A and B are disjoint only if certain set of types are common supertypes of A and B. We investigate three different variants of λ_i, with three variants of disjointness. In the simplest variant, which does not allow \top types, two types are disjoint if they do not share any common supertypes at all. The other two variants introduce \top types and refine the notion of disjointness to allow two types to be disjoint when the only the set of common supertypes are top-like. The difference between the two variants with \top types is on the definition of top-like types, which has an impact on which types are allowed on intersections. We present a type system that prevents intersection types that are not disjoint, as well as an algorithmic specifications to determine whether two types are disjoint for all three variants.

Categories and Subject Descriptors D.3.2 [Language Classifications]: Applicative (functional) languages; F.3.3 [Studies of Programming Languages]: Functional constructs

General Terms Design, Languages, Theory

Keywords Intersection Types, Type System

1. Introduction

Intersection types date back to Coppo et al. [9] and Pottinger [26] work. Early work was motivated by the applications of intersection types to characterize exactly all strongly normalizing lambda terms. Since then various researchers [6, 12, 15, 17, 22, 24] have started looking at the application of intersection types for designing new and more powerful type systems for programming languages. Since Reynolds’ work on the Forsythe [28] programming language, various other languages, including CDuce [4], Scala [20] and Stardust [13] have incorporated some notion of intersection types.

Recently Dunfield [14] showed the usefulness of type systems with intersection types and a merge operator. The presence of a merge operator in a core calculus provides significant expressiveness, allowing encodings for many other language constructs as syntactic sugar. For example single-field records are encoded as types with a label, and multi-field records are encoded as the concatenation of single-field records. Concatenation of records is expressed using intersection types at the type-level and the merge operator at the term level. Dunfield formalized a simply typed lambda calculus with intersection types and a merge operator. He showed how to give a semantics to the calculus by a type-directed translation to a simply typed lambda calculus extended with pairs. The type-directed translation is elegant and type-safe.

While Dunfield’s calculus is type-safe, it lacks the property of coherence: different derivations for the same source expression can lead to target expressions that evaluate to different values. Dunfield left coherence as an open problem. The lack of coherence is an important disadvantage for adoption of his core calculus in implementations of programming languages, as the semantics of the programming language becomes implementation dependent. Although Dunfield mentioned the possibility of extending the type system to allow only disjoint intersection types, he did not formalize or further pursue this approach.

This paper presents λ_i: a type-safe and coherent core calculus with intersection types and a merge operator. Coherence is achieved by ensuring that intersection types are disjoint and programs are sufficiently annotated to avoid type ambiguity. We propose a definition of disjointness where two types A and B are disjoint when only a certain set of types are common supertypes of A and B. We investigate three different variants of λ_i, with three variants of disjointness. The difference between the variants of disjointness is on what is the set of allowed common supertypes. To avoid type ambiguity, which arises from the undecidability of type assignment of intersection types [30], we use a variant of the calculus that allows type annotations. Without additional type annotations the same term can have multiple types, and consequently different semantics depending on the type. The additional annotations enable a type system based on bidirectional type-checking techniques [16, 25], that ensures that every term has a unique type, eliminating an additional source of ambiguity in the semantics.

In the simplest variant of λ_i, which does not allow \top types, two types A and B are disjoint $(A \ast B)$ if there is no type C such that both A and B are subtypes of C. With this definition of disjointness we present a formal specification of a type system that prevents intersection types that are not disjoint. However, the formal definition

1 The notation $A \ast B$ is inspired by the separating conjunction construct in Reynolds’ separation logic [29].
of disjointness does not lend itself directly to an algorithmic implementation. Therefore, we also present an algorithmic specification to determine whether two types are disjoint. Moreover, this specification is shown to be sound and complete with respect to the formal definition of disjointness.

The other two variants of \(\lambda_i \) introduce \(\top \) types and refine the notion of disjointness. The main problem of adding \(\top \) types into \(\lambda_i \) is that now every two types have at least one common supertype. Therefore, defining disjointness between two types as the non-existence of a common supertype does not work. To account for \(\top \) types we propose a notion of \(\top \)-disjointness, where only common supertypes that are top-like are allowed for two types \(A \) and \(B \). The difference between the two variants with \(\top \) types is on the particular definition of top-like types, which has an impact on which types are allowed on intersections. In a simple version, top-like types are the set of types: \(\top, \top \& \top, \top \& \top \& \top, \ldots \). All such types are proper top types: that is, they are supertypes of every other type. Unfortunately the simple notion of top-like types has limited expressiveness because it forbids any two function types to be disjoint. The second definition of top-like types is more liberal, and it allows for functional top types (such as \(\Int \to \top \)) to be in the set of top-like types. With this variant of top-like types, the limitations in expressiveness are removed. Both variants with \(\top \) types are type-safe and coherent, and both notions of \(\top \)-disjointness have sound and complete algorithmic versions.

We have mechanized all three variants of \(\lambda_i \) and their meta-theoretical results in the Coq proof assistant. The definitions and proofs use the locally nameless representation with co-finite quantification [3] to represent variables and binders. Except for two auxiliary lemmas used in the lambda cases for the proofs of soundness and completeness of bidirectional type-checking, all proofs are “admit” free. In particular, the main proofs of this paper (coherence and type-preservation) are complete. The two auxiliary theorems that we did not manage to prove are trivially true, but they proved surprisingly tricky to prove using the locally nameless representation with co-finite quantification.

In summary, the contributions of this paper are:

- **Disjoint Intersection Types**: A new form of intersection type where only disjoint types are allowed. A sound and complete algorithmic specification of disjointness (with respect to the corresponding formal definition) is presented for three different variants of disjointness.

- **Formalization of \(\lambda_i \) and Proof of Coherence**: An elaboration semantics of all three variants of \(\lambda_i \) into a simply typed \(\lambda \)-calculus is given. Type-safety and coherence are proved and formalized. All definitions and meta-theory are mechanically formalized using the Coq theorem prover.

- **Implementation**: An implementation of \(\lambda_i \), encodings of several examples presented in the paper, and also the Coq proofs are available at:

 `https://github.com/jalpuim/disjoint-intersection-types`

2. Overview

This section introduces \(\lambda_i \) and its support for intersection types and the merge operator. We also discuss how the notion of disjoint intersection types achieves a coherent semantics.

Note that this section uses some syntactic sugar, as well as standard programming language features to illustrate the various concepts in \(\lambda_i \). Although the minimal core language that we formalize in Section 3 does not present all such features, our implementation supports them.

2.1 Intersection Types and the Merge Operator

Intersection Types. The intersection of type \(A \) and \(B \) (denoted as \(A \& B \) in \(\lambda_i \)) contains exactly those values which can be used as values of type \(A \) and of type \(B \). For instance, consider the following program in \(\lambda \):

```
let x : Int & Bool = ... in -- definition omitted
let succ (y : Int) : Int = y+1 in
let not (y : Bool) : Bool = if y then False else True in
(succ x, not x)
```

If a value \(x \) has type \(\Int \& \Bool \) then \(x \) can be used as an integer and as a boolean. Therefore, \(x \) can be used as an argument to any function that takes an integer as an argument, and any function that take a boolean as an argument. In the program above the functions \(\text{succ} \) and \(\text{not} \) are simple functions on integers and characters, respectively. Passing \(x \) as an argument to either one (or both) of the functions is valid.

Merge Operator. In the previous program we deliberately did not show how to introduce values of an intersection type. There are many variants of intersection types in the literature. Our work follows a particular formulation, where intersection types are introduced by a *merge operator* [6, 14, 27]. As Dunfield [14] has argued a merge operator adds considerable expressiveness to a calculus. The merge operator allows two values to be merged in a single intersection type. In \(\lambda_i \) (following Dunfield’s notation), the merge of two values \(v_1 \) and \(v_2 \) is denoted as \(v_1 \& v_2 \). For example, an implementation of \(x \) is constructed in \(\lambda_i \) as follows:

```
let x : Int & Boolean = 1, True in ...
```

Merge Operator and Pairs. The merge operator is similar to the introduction construct on pairs. An analogous implementation of \(x \) with pairs would be:

```
let xPair : (Int, Bool) = (1, True) in ...
```

The significant difference between intersection types with a merge operator and pairs is in the elimination construct. With pairs there are explicit eliminators (\(\text{fst} \) and \(\text{snd} \)). These eliminators must be used to extract the components of the right type. For example, in order to use \(\text{fst} \) and \(\text{snd} \) with pairs, we would need to write a program such as:

```
(succ (fst xPair), not (snd xPair))
```

In contrast the elimination of intersection types is done implicitly, by following a type-directed process. For example, when a value of type \(\Int \) is needed, but an intersection of type \(\Int \& \Bool \) is found, the compiler generates code that uses \(\text{fst} \) to extract the corresponding value at runtime.

2.2 (In)Coherence

Coherence is a desirable property for the semantics of a programming language. A semantics is said to be coherent if any *valid program* has exactly one meaning [27] (that is, the semantics is not ambiguous). In contrast a semantics is said to be incoherent if there are multiple possible meanings for the same valid program.

Incoherence in Dunfield’s Calculus A problem with Dunfield’s calculus [14] is that it is incoherent. Unfortunately the implicit nature of elimination for intersection types built with a merge operator can lead to incoherence. The merge operator combines two terms, of type \(A \) and \(B \) respectively, to form a term of type \(A \& B \). For example, \(1, \text{True} \) is of type \(\Int \& \Bool \). In this case, no matter whether \(1, \text{True} \) is used as \(\Int \) or \(\Bool \), the result of evaluation is always clear. However, with overlapping types, it is not clear anymore to see the intended result. For example, what should be the result of the following program, which asks for an integer (using a type annotation) out of a merge of two integers:
(1,2) : Int

Should the result be 1 or 2?

Dunfield’s calculus [14] accepts the program above, and it allows that program to result in 1 or 2. In other words the results of the program are incoherent.

Getting Around Incoherence In a real implementation of Dunfield’s calculus a choice has to be made on which value to compute. For example, one potential option is to always take the left-most value matching the type in the merge. Similarly, one could always take the right-most value matching the type in the merge. Either way, the meaning of a program will depend on a biased implementation choice, which is clearly unsatisfying from the theoretical point of view. Dunfield suggests some other possibilities, such as the possibility of restricting typing of merges so that a merge has type A only if exactly one branch has type A. He also suggested another possibility, which is to allow only for disjoint types in an intersection. This is the starting point for us and the approach that we investigate in this paper.

2.3 Disjoint Intersection Types and their Challenges λI requires that the two types in an intersection be disjoint. Informally saying that two types are disjoint means that the set of values of both types are disjoint. Disjoint intersection types are potentially useful for coherence, since they can rule out ambiguity when looking up a value of a certain type in an intersection. However there are several issues that need to be addressed first in order to design a calculus with disjoint intersection types and that ensures coherence. The key issues and the solutions provided by our work are discussed next. We emphasize that even though Dunfield has mentioned disjointness as an option to restore coherence, he has not studied the approach further or addressed the issues discussed next.

Simple disjoint intersection types Looking back at the expression 1, 2 in Section 2.2, we can see that the reason for incoherence is that there are multiple, overlapping, integers in the merge. Generally speaking, if both terms can be assigned some type C, both of them can be chosen as the meaning of the merge, which leads to multiple meanings of a term. A natural option is to try to forbid such overlapping values of the same type in a merge. Thus, for simple types such as Int and Bool, it is easy to see that disjointness holds when the two types are different. Intersections such as Int & Bool and String & Bool are clearly disjoint. While an informal, intuitive notion of disjointness is sufficient to see what happens with simple types, it is less clear what disjointness means in general.

Formalizing disjointness Clearly a formal notion of disjointness is needed to design a calculus with disjoint intersection types, and to clarify what disjointness means in general. As we shall see the particular notion of disjointness is quite sensitive to the features that are allowed in a language. Nevertheless, the different notions of disjointness follow the same principle: they are defined in terms of the subtyping relation; and they describe which common supertypes are allowed in order for two types to be considered disjoint.

A first attempt at a definition for disjointness is to require that, given two types A and B, both types are not subtypes of each other. Thus, denoting disjointness as A ∩ B, we would have:

\[A \cap B \equiv A \nless B \text{ and } B \nless A \]

At first sight this seems a reasonable definition and it does prevent merges such as 1, 2. However some moments of thought are enough to realize that such definition does not ensure disjointness. For example, consider the following merge:

\[(1,‘c’), (2, True)\]

This merge has two components which are also merges. The first component (1,‘c’) has type Int&Char, whereas the second component (2, True) has type Int&Bool. Clearly,

\[\text{Int&Char} \nless \text{Int&Bool and Int&Bool} \nless \text{Int&Char}\]

Nevertheless the following program still leads to incoherence:

\[\text{succ} ((1,‘c’), (2, True))\]

as both 2 or 3 are possible outcomes of the program. Although this attempt to define disjointness failed, it did bring us some additional insight: although the types of the two components of the merge are not subtypes of each other, they share some types in common.

In order for two types to be truly disjoint, they must not have any sub-components sharing the same type. In a simply typed calculus with intersection types (and without a ⊤ type) this can be ensured by requiring the two types not to share a common supertype:

Definition 1 (Simple disjointness). Two types A and B are disjoint (written A + B) if there is no type C such that both A and B are subtypes of C:

\[A + B \equiv \neq C, A \nless C \text{ and } B \nless C \]

This definition of disjointness prevents the problematic merge \[(1,‘c’), (2, True)\]. Since Int is a common supertype of both Int&Char and Int&Bool, those two types are not disjoint, according to this simple notion of disjointness.

The simple definition of disjointness is the basis for the first calculus presented in this paper: a simply typed lambda calculus with intersection (but without a ⊤ type). This variant of λI is useful to study many important issues arising from disjoint intersections, without the additional complications of ⊤. As shown in Section 4, this definition of disjointness is sufficient to ensure coherence in λI.

Disjointness of other types Equipped with a formal notion of disjointness, we are now ready to see how disjointness works for other types. For example, consider the following intersection types of functions:

1. \[(\text{Int} \rightarrow \text{Int}) \& (\text{String} \rightarrow \text{String})\]
2. \[(\text{String} \rightarrow \text{Int}) \& (\text{String} \rightarrow \text{String})\]
3. \[(\text{Int} \rightarrow \text{String}) \& (\text{String} \rightarrow \text{String})\]

Which of those intersection types are disjoint? It seems reasonable to expect that the first intersection type is disjoint: both the domain and co-domain of the two functions in the intersection are different. However, it is less clear whether the two other intersection types are disjoint or not. Looking at the definition of simple disjointness for further guidance, and the subtyping rule for functions in λI (which is standard [5]):

\[B_1 \nless A_1 \quad A_2 \nless B_2 \quad A_1 \rightarrow A_2 \rightarrow B_1 \rightarrow B_2 \quad \rightarrow S\]

we can see that the types in the second intersection do not share any common supertypes. Since the target types of the two function types (Int and String) do not share a common supertype, it is not possible to find a type C that is both a common supertype of (String → Int) and (String → String). In contrast, for the third intersection type, it is possible to find a common supertype: String & Int → String. The contravariance of argument types in S → is important here. All that we need in order to find a common supertype between (Int → String) and (String → String) is to find a common supertype between Int and String. One such common supertype is String & Int. Preventing the third intersection type ensures that type-based look-ups are not ambiguous (and cannot lead to incoherence). If the third intersection type was allowed then the following program:
where \(f \) has type \(\text{Int} \rightarrow \text{String} \) and \(g \) has type \(\text{String} \rightarrow \text{String} \), would be problematic. In this case either \(f \) or \(g \) could be selected, potentially leading to very different (and incoherent) results when applied to some argument.

Is disjointness sufficient to ensure coherence? Another question is whether disjoint intersection types are sufficient to ensure coherence. Consider the following example:

\[(\text{suc}, \neg) (3, \text{True})\]

Here there are two merges, with the first merge being applied to the second. The first merge contains two functions (\text{suc} and \(\neg \)). The second merge contains two values that can serve as input to the functions. The two merges are disjoint. However what should be the result of this program? Should it be 4 or False?

There is semantic ambiguity in this program, even though it only uses disjoint merges. However a close look reveals a subtly different problem from the previous programs. There are two possible types for this program: Int or Bool. Once the type of the program is fixed, there is only one possible result: if the type is Int the result of the program is 4; if the type is Bool then the result of the program is False. Like other programming language features (for example type classes [31]), types play a fundamental role in determining the result of a program, and the semantics of the language is not completely independent from types. In essence there is some type ambiguity, which happens when some expressions can be typed in multiple ways. Depending on which type is chosen for the sub-expressions the program may lead to different results. This phenomenon is common in type-directed mechanisms, and it also affects type-directed mechanisms such as type classes or, more generally, qualified types [18].

The typical solution to remove type ambiguity is to add type annotations that choose a particular type for a sub-expression when multiple options exist. Our approach to address this problem is to use bidirectional type-checking techniques [16, 25]. We show that with a fairly simple and unremarkable bidirectional type system, we can guarantee that every sub-expression (possibly with annotations) has a unique type. For example:

\[(\text{suc}, \neg) : \text{Int} \rightarrow \text{Int} (3, \text{True})\]

is a valid \(\lambda_i \) program, which has a unique determined type, and results in 4. In this case the bidirectional type-system forces users to provide an annotation of the expression being applied. Without the annotation the program would be rejected. With the bidirectional type system, disjointness is indeed sufficient to ensure coherence.

2.4 Disjoint Intersection Types with \(\top \)

In the presence of a \(\top \) type the simple definition of disjointness is useless: \(\top \) is always a common supertype of any two types. Therefore, with the previous definition of disjointness no disjoint intersections can ever be well-formed in the presence of \(\top \) ! Moreover, since \(\top \) is not disjoint to any type, it does not make sense to allow its presence in a disjoint intersection type. Adding a \(\top \) type requires some adaptations to the notion of disjointness. This paper studies two additional variants of \(\lambda_i \) with \(\top \) types. In both variants the definition of disjointness is revised as follows:

Definition 2 (\(\top \)-disjointness). Two types \(A \) and \(B \) are disjoint (written \(A \neq B \)) if the following two conditions are satisfied:

1. \(\neg (\text{not } A) \) and \(\neg (\text{not } B) \)
2. \(\forall C. \text{if } A < C \text{ and } B < C \text{ then } C \).

In the presence of \(\top \), instead of requiring that two types do not share any common supertype, we require that the only allowed common supertypes are top-like (condition #2). Additionally, it is also required that the two types \(A \) and \(B \) are not themselves top-like (condition #1). The unary relation \(\downarrow \) denotes such top-like types. Top-like types obviously include the \(\top \) type. However top-like types also include other types which are syntactically different from \(\top \), but behave like a \(\top \) type. For example, \(\top \neq \top \) is syntactically different from \(\top \), but it is still a supertype of every other type (including \(\top \) itself). A standard subtyping relation for intersection types includes a rule:

\[
A_1 <: A_2 \quad A_1 <: A_3 \quad \text{S\&R}
\]

The presence of S\&R means that not only \(\top \neq \top \) but also \(\top <: \top \neq \top \) are derivable. In other words, in a calculus like Dunfield’s there are infinitely many syntactically different types that behave like a \(\top \) type: \(\top, \top \neq \top, \top \neq \top \neq \top, \ldots \).

The notion of \(\top \)-disjointness has two benefits. Firstly, and more importantly, \(\top \)-disjointness is sufficient to ensure coherence. For example, the following program is valid, and coherent:

\[(3, \text{True}) : \top \]

Even though the types of both components of the merge are a subtype of the type of the program (\(\top \)), the result of the program is always the unique \(\top \) value. Secondly, \(\top \)-disjointness has the side-effect of excluding other top-like types from the system: the type \(\top \neq \top \) is not a well-formed disjoint intersection type. In contrast to Dunfield’s calculus, \(\lambda_i \) has a unique syntactic \(\top \) type.

Functional intersections and top-like types The two variants of \(\lambda_i \) with \(\top \) differ slightly on the definition of top-like types. The concrete definition of top-like types is important because it affects what types are allowed in intersections. In the simpler version of \(\lambda_i \) with \(\top \), multiple functions cannot coexist in intersections. This is obviously a drawback and reduces the expressiveness of the system. The essential problem is that a simple notion of top-like types is too restrictive. For example consider again the intersection type:

\[(\text{String} \rightarrow \text{Int}) \& (\text{String} \rightarrow \text{String})\]

According to the simple definition of disjointness, this disjoint intersection type is valid. However according to \(\top \)-disjointness and a simple definition of top-like types, which accounts only for proper top types, this disjoint intersection type is not valid. The two types have a common supertype which is not a supertype of every type: \(\text{String} \rightarrow \top \). In this case \(\text{String} \rightarrow \top <: \top \), but \(\top <: (\text{String} \rightarrow \top) \). Therefore the two types do not meet the second condition of \(\top \)-disjointness as there exists a common supertype, which is not top-like.

Generalizing top-like types In the second variant of \(\lambda_i \) top-like types are defined more liberally and they allow function types whose co-domain is a top type to be considered as a top-like type. For example, the type \(\text{String} \rightarrow \top \) is considered a top-like type. The benefit of allowing this more liberal notion of top-like types is that, similarly to the first variant of \(\lambda_i \) without \(\top \), disjoint intersections can have multiple function types.

3. The \(\lambda_i \) Calculus and its Type System

This section presents the syntax, subtyping and type assignment of \(\lambda_i \): a calculus with intersection types and a merge operator. This calculus is inspired by Dunfield’s calculus [14], without considering union types. Moreover, since we are only interested in disjoint intersections, \(\lambda_i \) also has different typing rules for intersections from those in Dunfield’s calculus. Sections 4 and 5 will present the more fundamental contributions of this paper by showing other required changes for supporting disjoint intersection types and ensuring coherence. The calculus in this section does not include the
Types $A, B, C ::= \text{Int} \mid A \to B \mid A \times B \mid A & B$

Terms $e ::= i \mid x \mid \lambda x. e \mid e_1, e_2 \mid \text{proj}_k e \mid e_1, e_2 \mid e_1, e_2$

Contexts $\Gamma ::= \cdot \mid \Gamma, x : A$

Figure 1. \(\lambda_i\) syntax.

\(\top\) type, since it brings additional complications. Section 6 presents two variants of \(\lambda_i\) with a \(\top\) type, while preserving coherence.

3.1 Syntax

Figure 1 shows the syntax of \(\lambda_i\). The difference from the \(\lambda\)-calculus (with pairs), highlighted in gray, are intersection types \((A & B)\) at the type-level, and merges \((e_1, e_2)\) at the term level.

Types. Meta-variables \(A, B\) range over types. Types include function types \(A \to B\) and product types \(A \times B\). \(A & B\) denotes the intersection of types \(A\) and \(B\). We also include integer types \(\text{Int}\). We also include integer literals \(1\).

Terms. Meta-variables \(e\) range over terms. Terms include standard constructs: variables \(x\); abstraction of terms over variables \(\lambda x. e\); application of terms \(e_1\) to terms \(e_2\), written \(e_1 e_2\); pairing of two terms (denoted as \((e_1, e_2)\)); and both projections of a pair \(e\), written \(\text{proj}_k e\) (with \(k \in \{1, 2\}\)). The expression \(e_1, e_2\) is the *merge* of two terms \(e_1\) and \(e_2\). Merges of terms correspond to intersections of types \(A & B\). In addition, we also include integer literals \(1\).

Contexts. Typing contexts are standard: \(\Gamma\) tracks bound variables \(x\) with their type \(A\).

In order to focus on the key features that make this language interesting, we do not include other forms such as type constants and fixpoint terms. However they can be included in the formalization in standard ways.

3.2 Subtyping

The subtyping rules of the form \(A <: B\) are shown in the top part of Figure 2. At the moment, the reader is advised to ignore the gray-shaded part in the rules, which will be explained later. The rule \(S\to\) says that a function is contravariant in its parameter type and covariant in its return type. The three rules dealing with intersection types are just what one would expect when interpreting types as sets. Under this interpretation, for example, the rule \(S\&\) says that if \(A_i\) is both the subset of \(A_2\) and the subset of \(A_3\), then \(A_i\) is also the subset of the intersection of \(A_2\) and \(A_3\).

Note that the notion of ordinary types, which is used in rules \(S\&L_1\) and \(S\&L_2\), was introduced by Davies and Pfenning [12] to provide an algorithmic version of subtyping. In our system ordinary types are used for a different purpose as well: they play a fundamental role in ensuring that subtyping produces unique coercions. Section 5 will present a detailed discussion on this. The subtyping relation, is known to be reflexive and transitive [12].

<table>
<thead>
<tr>
<th>A ordinary</th>
<th>$A \to B$ ordinary</th>
<th>$A \times B$ ordinary</th>
<th>Int ordinary</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A <: B$</td>
<td>$A <: B$</td>
<td>$A <: B$</td>
<td>$A <: B$</td>
</tr>
<tr>
<td>$\text{Int} <: \text{Int} \iff \lambda x. x$</td>
<td>SZ</td>
<td>$A_1 <: B_1 \iff E_1$</td>
<td>$A_2 <: B_2 \iff E_2$</td>
</tr>
<tr>
<td>$A_1 \times A_2 <: B_1 \times B_2 \iff \lambda p. (E_1 (\text{proj}_1 p), E_2 (\text{proj}_2 p))$</td>
<td>$S\times$</td>
<td>$B_1 <: A_1 \iff E_1$</td>
<td>$B_2 <: A_2 \iff E_2$</td>
</tr>
<tr>
<td>$A_1 \to A_2 \iff B_1 \to B_2 \iff \lambda f. \lambda x. E_2 (f (E_1 x))$</td>
<td>$S\to$</td>
<td>$A_1 <: A_2 \iff E_1$</td>
<td>$A_2 <: A_3 \iff E_2$</td>
</tr>
<tr>
<td>$A_1 <: A_2 & A_3 \iff \lambda x. (E_1 x, E_2 x)$</td>
<td>$S&R$</td>
<td>$A_1 <: A_2 & A_3 \iff \lambda x. (E_1 x, E_2 x)$</td>
<td></td>
</tr>
<tr>
<td>$A_1 <: A_2 & A_3 \iff \lambda x. (E_1 x, E_2 x)$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2. Declarative type system of \(\lambda_i\).
3.3 Declarative Type System

The well-formedness of types and the typing relation are shown in the middle and bottom of Figure 2, respectively. Importantly, the disjointness judgment, which is highlighted using a box, appears in the well-formedness rule for intersection types (WF&) and the typing rule for merges (T-MERGE). The presence of the disjointness judgment, as well as the use of ordinary types in the subtyping relation, are the most essential differences between our type system and the original type system by Dunfield.

Apart from WF&, the remaining rules for well-formedness are standard. The typing judgment is of the form:

\[\Gamma \vdash e : A \]

It reads: “in the typing context \(\Gamma \), the term \(e \) is of type \(A \)”. The standard rules are those for variables T-VAR; lambda abstractions T-LAM; application T-APP; integer literals T-INT; products T-PROD; and projections T-PROJ. T-MERGE means that a merge \(e_1, e_2 \), is assigned an intersection type composed of the resulting types of \(e_1 \) and \(e_2 \), as long as the types of the two expressions are disjoint. Finally, T-SUB states that for any types \(A \) and \(B \), if \(A :<: B \) then any expression \(e \) with assigned type \(A \) can also be assigned the type \(B \).

Typing disjoint intersections

Dunfield’s calculus has different typing rules for intersections. However, his rules make less sense in a system with disjoint intersections. For example, they include the following typing rule, for introducing intersection types:

\[
\frac{\Gamma \vdash e : A \quad \Gamma \vdash e : B}{\Gamma \vdash e : A \& B}
\]

A first reason why such rule would not work in \(\lambda_i \) is that it does not restrict \(A \& B \) to be disjoint. Therefore, in the presence of such an unrestricted rule it would be possible to create non-disjoint intersection types. It is easy enough to have an additional disjointness restriction, which would ensure the disjointness between \(A \) and \(B \). However, even if that issue is fixed, the rule would be counterintuitive. If \(A \) and \(B \) are disjoint then, by definition, no expressions should ever have types \(A \) and \(B \) at the same time. In contrast, in \(\lambda_i \), the rule T-MERGE captures the fact that two disjoint pieces of evidence are needed to create a (disjoint) intersection type.

4. Semantics, Disjointness and Coherence

This section discusses the elaboration semantics of \(\lambda_i \), and shows a bidirectional type system that guarantees coherence and type safety. Moreover the bidirectional type system is shown to be sound and complete with respect to the type system presented in Section 3 (provided that terms have some additional type annotations). The coherence theorem presented in this section, relies on two key aspects of the calculus:

- **Uniqueness of subtyping coercions**: the notion of ordinary types and well-formed disjoint intersection types ensures that coercions produced by subtyping are unique.
- **No type ambiguity**: the bidirectional type system does not have type-ambiguity, and it infers a unique type for every well-typed expression.

4.1 Target of Elaboration

The dynamic semantics of the call-by-value \(\lambda_i \) is defined via a type-directed translation into the simply typed \(\lambda \)-calculus with pair and unit types. The syntax and typing of our target language is unsurprising. The syntax of the target language is shown in Figure 3. The highlighted part shows its difference with the \(\lambda \)-calculus. We included a unit type \(() \) and its only inhabitant \(\text{()} \), but they will only

| Types | \(T := \) | \(\text{Int} \)
| --- | --- |
| {} | \(T_1 \rightarrow T_2 \)
| \(T_1 \times T_2 \) |

| Terms | \(E := \) | \(x \)
| --- | --- |
| \(i \) | \(\lambda x. E \)
| \(E_1 \ E_2 \) | \(\text{proj}_1 E \)
| \(\text{proj}_2 E \) |

Figure 3. Target language syntax.

| Contexts | \(G := \) | \(\text{proj}_x E \) |
| --- | --- |
| \(k \in \{1,2\} \) |

Figure 4. Type and context translation.

used in Section 6. The typing rules can be found in our Coq development.

Type and Context Translation. Figure 4 defines the type translation function \(| | \) from \(\lambda_i \) types \(A \) to target language types \(T \). The notation \(| | \) is also overloaded for context translation from \(\lambda_i \) contexts \(\Gamma \) to target language contexts \(G \).

4.2 Coercive Subtyping and Coherence

The \(\lambda_i \) calculus uses coercive subtyping, where subtyping derivations produce a coercion that is used to transform values of one type to another type. Our calculus ensures that the coercions produced by subtyping are unique. Unique coercions are fundamental for proving our coherence result of the semantics of \(\lambda_i \).

Coercive subtyping. The judgment

\(A_1 :<: A_2 \leftrightarrow E \)

extends the subtyping judgment in Figure 2 with a coercion on the right hand side of \(\leftrightarrow \). A coercion \(E \) is just a term in the target language and is ensured to have type \(|A_1| \rightarrow |A_2| \) (by Lemma 1). For example,

\(\text{Int&Bool} :<: \text{Bool} \rightarrow \lambda x. \text{proj}_2 x \)

generates a coercion function with type: \(\text{Int&Bool} \rightarrow \text{Bool} \). Note that, in contrast to Dunfield’s elaboration approach, where subtyping produces coercions that are source language terms, in \(\lambda_i \), coercions are produced directly on the target language.
The rule S_2 generates the identity function as the coercion in the target language. Rule $S \times$ says that one pair is a subtype of another, as long as the first and second component of the former are a subtype of the first and second component of the latter, respectively. The generated coercion extracts both components of the pair, applies the respective coercion, and creates a new pair using both results. In $S \rightarrow$, we elaborate the subtyping of parameter and return types by η-expanding f to $\lambda x. f \ x$, applying E_1 to the argument and E_2 to the result. Rules $S\&L_1$, $S\&L_2$, and $S\&R$ elaborate intersection types. $S\&R$ uses both coercions to form a pair. Rules $S\&L_1$ and $S\&L_2$ reuse the coercion from the premises and create new ones that cater to the changes of the argument type in the conclusions. Note that the two rules are overlapping and hence a program can be elaborated differently, depending on which rule is used. Finally, all rules produce type-correct coercions:

Lemma 1 (Subtyping rules produce type-correct coercions). If $A_1 \prec A_2 \rightarrow E$, then $\vdash E : |A_1| \rightarrow |A_2|$.

Proof. By a straightforward induction on the derivation.

Overlapping subtyping rules The key problem with the subtyping rules in Figure 2 is that all three rules dealing with intersection types ($S\&L_1$ and $S\&L_2$ and $S\&R$) overlap. Unfortunately, this means that different coercions may be given when checking the subtyping between two types, depending on which derivation is chosen. This is the ultimate reason for incoherence. There are two important types of overlap:

1. The left decomposition rules for intersections ($S\&L_1$ and $S\&L_2$) overlap with each other.
2. The left decomposition rules for intersections ($S\&L_1$ and $S\&L_2$) overlap with the right decomposition rules for intersections $S\&R$.

Well-formedness and disjointness The fact that in λx all intersection types are disjoint is useful to deal with problem 1). Recall the definition of disjointness:

Definition 3 (Simple disjointness). Two types A and B are disjoint (written $A \neq B$) if there is no type C such that both A and B are subtypes of C:

$$A \neq B \equiv \exists C. A \prec C \text{ and } B \prec C$$

Disjoint intersections are enforced by well-formedness of types. Since the two types in an intersection are disjoint, it is impossible that both of the preconditions of the left decompositions are satisfied at the same time. Therefore, only one of the two left decomposition rules can be chosen for a disjoint intersection type. More formally, with disjoint intersections, we have the following theorem:

Lemma 2 (Unique subtype contributor). If $A_1 \& A_2 \prec B$, where $A_1 \& A_2$ and B are well-formed types, then it is not possible that both of the following hold at the same time:

1. $A_1 \prec B$
2. $A_2 \prec B$

Unfortunately, disjoint intersections alone are insufficient to deal with problem 2). In order to deal with problem 2), we introduce a distinction between types, and ordinary types.

Ordinary types. Ordinary types are just those which are not intersection types, and are asserted by the judgment

$$A \text{ ordinary}$$

Since types in λx are simple, the only ordinary types are function type, integers and pairs. But in richer systems, ordinary types can also include, for example, record types. In the left decomposition rules for intersections we introduce a requirement that A_3 is ordinary. The consequence of this requirement is that when A_3 is an intersection type, then the only rule that can be applied is $S\&R$.

Unique coercions. Well-formedness and ordinary types guarantee that at any moment during the derivation of a subtyping relation, at most one rule can be used. Consequently, the coercion of a subtyping relation $A \prec B$ is uniquely determined. This fact is captured by the following lemma:

Lemma 3 (Unique coercion). If $A \prec B \leftrightarrow E_1 \text{ and } A \prec B \leftrightarrow E_2$, where A and B are well-formed types, then $E_1 \equiv E_2$.

4.3 Bidirectional Type System with Elaboration

In order to prove the coherence result we first introduce a bidirectional type system, which is closely related to the type system presented in Section 3. The bidirectional type system is elaborating, producing a term in the target language while performing the typing derivation.

The bidirectional type system is useful for two different reasons. Firstly, the presence of the subsumption rule (T-SUB) makes the type system not syntax directed, which presents a challenge for an implementation. Bidirectional type-checking makes the rules syntax directed again. Secondly, and more importantly, the subsumption rule also creates type ambiguity: the same term can have multiple types. This is problematic because there can be different semantics for a term, depending on the type of the term. Bidirectional type-checking comes to the rescue again, by ensuring that with the additional type annotations only one type is inferred for a term.

Key Idea of the elaboration. The key idea in the elaboration is to turn merges into usual pairs, similar to Dunfield’s elaboration approach [14]. For example,

$$1, \text{ "one"}$$

becomes $(1, \text{ "one"})$. In usage, the pair will be coerced according to type information. For example, consider the function application:

$$\langle \lambda x. \text{String} \rightarrow \text{String} \rangle \langle 1, \text{ "one"} \rangle$$

This expression will be translated to

$$\langle \lambda x \rangle \ (\langle \lambda x. \text{proj}_2 x \rangle \ 1, \text{ "one"})$$

The coercion in this case is $(\lambda x. \text{proj}_2 x)$. It extracts the second item from the pair, since the function expects a String but the translated argument is of type $(\text{Int}, \text{String})$.

The elaboration judgments and rules. Figure 5 presents the elaborating bidirectional type system, which is closely related to the declarative type-system, presented in Figure 2. The key differences between them are that all ’s are replaced with \Rightarrow or \Leftarrow. There are two check-mode rules: T-LAM and T-SUB. The remaining rules are all in the synthesis mode. Moreover there is one additional rule for annotation expressions (T-ANN). The syntax of source terms also needs to be extended with annotation expressions $e : A$. The reader might notice that the choice for this type-system does not follow the convention of making introduction forms as checked and elimination forms as synthesized [12, 16]. We use this design because:

1. We aim at maximizing type-inference: annotations becomes less of a burden as there are only two checked premises in our rules (excluding T-ANN);
2. Most of the language is simple enough to rely on type inference (i.e. it is decidable);
3. The simplicity of this design allows us to concentrate on its key property, which is the coherence of the type-system.
Theorem 1 (Type preservation). We have that:

- If $\Gamma \vdash e \Rightarrow A \Rightarrow E$, then $\Gamma \vdash e : [A]$.
- If $\Gamma \vdash e \Leftarrow A \Leftarrow E$, then $\Gamma \vdash e : [A]$.

Having this in mind, we do not claim this bidirectional type-system is the optimal choice for the system, and other design choices could be equally justified had our intentions been different.

We may now explain in more detail this elaborating bidirectional type-system. The two elaboration judgments $\Gamma \vdash e \Rightarrow A \Rightarrow E$ and $\Gamma \vdash e \Leftarrow A \Leftarrow E$ extend the usual typing judgments with an elaborated term on the right hand side of the arrows. The elaboration ensures that E has type $[A]$. Noteworthy are the T-Merge and T-Sub rules. The T-Merge straightforwardly translates merges into pairs. The T-Sub accounts for the type coercions arising from subtyping. The additional coercions are necessary to ensure that the target terms are correctly typed, since the target language lacks subtyping. Note that the elaboration judgments can be modeled as a single relation, where the mode is an additional parameter of the relation. Thus for theorems that need both judgments simple induction is sufficient (mutual induction is not needed).

Type-safety The type-directed elaboration is type-safe. This property is captured by the following two theorems.

Theorem 1 (Type preservation). We have that:

- If $\Gamma \vdash e \Rightarrow A \Rightarrow E$, then $\Gamma \vdash e : [A]$.
- If $\Gamma \vdash e \Leftarrow A \Leftarrow E$, then $\Gamma \vdash e : [A]$.

Proof. (Sketch) By structural induction on the term and the corresponding inference rule.

Theorem 2 (Type safety). If e is a well-typed λ_1 term, then e evaluates to some λ-calculus value v.

Proof. Since we define the dynamic semantics of λ_1 in terms of the composition of the type-directed translation and the dynamic semantics of λ-calculus, type safety follows immediately.

Soundness and Completeness The declarative type system presented in Figure 2 is closely related to the bidirectional type system in Figure 5. We can prove that the bidirectional type system is sound and complete with respect to the declarative specification, modulo some additional type-annotations. To relate terms which are typeable in both systems, we use the definition of erasure shown in Figure 6.

Theorem 3 (Soundness of bidirectional type-checking). We have that:

- If $\Gamma \vdash e \Rightarrow A \Rightarrow E$, then $\Gamma \vdash [e] : A$.
- If $\Gamma \vdash e \Leftarrow A \Leftarrow E$, then $\Gamma \vdash [e] : A$.

Proof. (Sketch) By structural induction on the term and the corresponding inference rule.

Theorem 4 (Completeness of bidirectional type-checking). If $\Gamma \vdash e : A$, then $\Gamma \vdash e' \Rightarrow A \Rightarrow E$, where $[e'] = e$.

Proof. (Sketch) By structural induction on the term and the corresponding inference rule.

Uniqueness of type-inference An important property of the bidirectional type-checking in Figure 5 is that, given an expression e, if it is possible to infer a type for e, then e has a unique type.

Theorem 5 (Uniqueness of type-inference). If $\Gamma \vdash e : A_1 \Rightarrow E_1$ and $\Gamma \vdash e \Leftarrow A_2 \Leftarrow E_2$, then $A_1 = A_2$.

Proof. (Sketch) By structural induction on the term and the corresponding inference rule.

In contrast, as illustrated in Section 2.3, in the declarative type system some terms may have multiple, incompatible types. Therefore there is no uniqueness of types for the declarative type system, and the same term can have different semantics depending on its type.
4.4 Coherency of Elaboration

Combining the previous results, we show the central theorem:

Theorem 6 (Unique elaboration). We have that:

- If \(\Gamma \vdash e \Rightarrow A_1 \leftarrow E_1 \) and \(\Gamma \vdash e \Rightarrow A_2 \leftarrow E_2 \), then \(E_1 \equiv E_2 \).
- If \(\Gamma \vdash e \Leftarrow A_1 \) and \(\Gamma \vdash e \Leftarrow A_2 \), then \(A_1 \equiv A_2 \).

(“\(\equiv \)” means syntactical equality, up to \(\alpha \)-equality.)

Proof. By induction on the first derivation. Note that two cases need special attention: T-SUB and T-APP. In the T-SUB rule:

\[
\begin{align*}
\Gamma \vdash E \leftarrow A & \quad A \leftarrow B \xrightarrow{E_{\text{sub}}} E_{\text{sub}} \\
\Gamma \vdash e & \Leftarrow B \quad \Gamma \vdash e \Leftarrow E_{\text{sub}}
\end{align*}
\]

we need to show not only that \(E_{\text{sub}} \) is unique (by Lemma 3), but also that \(A \) is unique (by Theorem 5). Uniqueness of \(A \) is needed to apply the induction hypothesis. For T-APP:

\[
\begin{align*}
\Gamma \vdash e_1 & \Rightarrow A_1 \rightarrow A_2 \leftarrow E_1 \\
\Gamma \vdash e_2 & \Leftarrow A_2 \leftarrow E_2
\end{align*}
\]

we need to show the uniqueness of \(A_1 \) using Theorem 5, in order to apply the induction hypothesis. \(\Box \)

5. Algorithmic Disjointness

Section 4 presented a type system with disjoint intersection types that is both type-safe and coherent. Unfortunately the type system is not yet algorithmic because the specification of disjointness does not lend itself to an implementation directly. This is a problem, because we need an algorithm for checking whether two types are disjoint or not in order to implement the type-system.

This section presents the set of rules for determining whether two types are disjoint. The set of rules is algorithmic and an implementation is easily derived from them. The derived set of rules for disjointness is proved to be sound and complete with respect to the definition of disjointness in Section 4.

5.1 Algorithmic Rules

The rules for the algorithmic judgment are shown in Figure 7, which consists of two judgments.

Main Judgment. The judgment \(A \ast B \) says two types \(A \) and \(B \) are disjoint. The rules dealing with intersection types (\(\ast \&L \land \ast \&R \)) are quite intuitive. The intuition is that if two types \(A \) and \(B \) are disjoint to some type \(C \), then their intersection \((A \&B) \) is also clearly disjoint to \(C \). The rules capture this intuition by inductively distributing the relation itself over the intersection constructor \((\&)\). Although those two rules overlap, the order of applying them in an implementation does not matter as applying either of them will eventually lead to the same conclusion, that is, if two types are disjoint or not.

The rule for functions (\(\ast \rightarrow \)) is more interesting. It says that two function types are disjoint if and only if their return types are disjoint (regardless of their parameter types!). At first this rule may look surprising because the parameter types play no role in the definition of disjointness. To see the reason for this consider the two function types:

\[
\text{Int} \rightarrow \text{String} \quad \text{Bool} \rightarrow \text{String}
\]

Even though their parameter types are disjoint, we are still able to think of a type which is a supertype for both of them. For example, \(\text{Int} \& \text{Bool} \rightarrow \text{String} \). Therefore, two function types with the same return type are not disjoint. Essentially, due to the contravariance of function types, functions of the form \(A \rightarrow C \) and \(B \rightarrow C \) always have a common supertype (for example \(\text{A} \& \text{B} \rightarrow C \)). The lesson from this example is that the parameter types of two function types do not have any influence in determining whether those two function types are disjoint or not: only the return types matter.

Finally, the rules for pairs (\(\ast \pi_1 \land \ast \pi_2 \)) say that either the first components or the second components must be disjoint. This is due to product subtyping being contravariant: disjointness of either component is enough to make it impossible to construct a supertype. For instance, take the following two product types:

\[
\begin{align*}
\text{[Int, String]} & \quad \text{[Bool, String]}
\end{align*}
\]

We can never come up with a common supertype for these because it does not exist a type \(C \) which is both a supertype of \(\text{Int} \) and \(\text{Bool} \).

Axioms. Up till now, the rules of \(A \ast B \) have only taken care of two types with the same language constructs. But how can the fact that \(\text{Int} \text{ and Int} \rightarrow \text{Int} \) are disjoint be decided? That is exactly the place where the judgment \(A \ast \alpha B \) comes in handy. It provides the axioms for disjointness. What is captured by the set of rules is that \(A \ast \alpha B \) holds for all two types of different constructs unless any of them is an intersection type.

5.2 Meta-theory

The following two theorems together say that the algorithmic judgment and the definition of disjointness are equivalent.

Theorem 7 (Soundness of algorithmic disjointness). For any two types \(A \) and \(B \), \(A \ast B \) implies \(A \ast B \).

Proof. By induction on the derivation of \(A \ast B \). \(\Box \)

Theorem 8 (Completeness of algorithmic disjointness). For any two well-formed types \(A \) and \(B \), \(A \ast B \) implies \(A \ast B \).

Proof. By a case analysis on the shape of \(A \) and \(B \). \(\Box \)
T ⊤ Introducing the λi, we do not restate them here. Also we omit pairs from the two properties are essentially the same as those stated in Sections 4 and λ retain coherence, and all other key properties of top-like type, while discussing their expressiveness. Both variants problem a notion of two types to satisfy a simple notion of disjointness. To address this 6.1 Introducing λi

As discussed in Section 2, the definition of simple disjointness is useless when λi is extended with ⊤. For these reasons, we differentiate top-like types from the rest of the types, so that restrictions may be imposed based on the former. For now, the formal definition of a top-like type is omitted, and we informally define it as a type that resembles ⊤ in some way. Having this in mind, ⊤-disjointness is defined as follows:

Definition 4 (⊤-Disjointness). Given two types A and B we have that:

\[A \succeq_B (\text{not } |A|) \text{ and (not } |B|) \text{ and} \]
\[(\forall C, \text{ if } A \succeq C \text{ and } B \succeq C \text{ then } |C|) \]

where |C| means that C is a top-like type.

Informally, given two types A and B:

- A and B cannot be top-like types (i.e. preventing types such as T&T to be well-formed).
- If there is any common supertype of A and B, that is not top-like, then intersection of these types is forbidden, as there might be an overlap between them.

Another problem arising from the introduction of ⊤ is that Lemma 2 no longer holds. For example, given A1&A2 ⊒ ⊤ (for any type A1 and A2), both A1 or A2 can be coerced to ⊤ (because any type is a subtype of ⊤). Thus, in this case, the type A1&A2 has two subtype contributors violating Lemma 2. Nevertheless, it is still possible to prove a weaker result. Namely:

Lemma 4 (Unique subtype contributor (with ⊤)). If A1&A2 ⊒ B, where A1&A2 and B are well-formed types, and B is not top-like, then it is not possible that the following holds at the same time:

1. A1 ⊒ B
2. A2 ⊒ B

This suggests that we will need to take special care to preserve coherence in the presence of top-like types.

6.3 A Simple Calculus with ⊤

In the first variant of λi with ⊤ the basic idea is to have a definition of top-like types, which captures all syntactically distinct top types: ⊤, ⊤ & ⊤, ⊤ & ⊤ & ⊤. The resulting system has only one syntactic ⊤, namely ⊤ itself. Moreover, coherence is preserved.

Top-Like Types A top-like type can be formalized as a unary relation on a type A, denoted as |A|, as shown in Figure 9. The rule TOPLIKE-TOP states that ⊤ is a top-like type; the rule TOPLIKE-INTER indicates that any intersection composed of just top-like types is also a top-like type.

Algorithmic disjointness rules Similarly to the original system, the definition of ⊤-disjointness does not lead to an implementation. Fortunately, the algorithmic disjointness rules, shown in Figure 9, remain the almost same as described in Section 5. The only significant difference is the absence of the *⇒ rule. The reason for this is that, in this variant of λi, two functions always have non-top-like common supertypes. For example, consider the function types:

\[\text{Bool} \Rightarrow \text{Int} \rightarrow \text{String} \Rightarrow \text{String} \]

Although both the domains and co-domains of the functions seem to be unrelated, there are still non-top-like common supertypes in the presence of ⊤. For example, Bool&String ⇒ ⊤ is a common supertype of the previous function types. In general, in this variant of λi, any two function types are never disjoint.
are well-formed: both functions types are not top-like types accord-

tion(s). In general, any type of the form

type where the codomain is not

equal intersections such as

results in a value of type

top-like whenever its return type is also top-like. Although function

ecludes all types of the form

Finally, note that this variant of λ_1 excludes all types of the form

A&B, where A and B are top-like. Thus, the system is left with only

one well-formed syntactic \top type.

6.4 An Improved Calculus with \top

The definition of top-like types in Section 6.3 is, unfortunately, quite restrictive: multiple function types are not allowed within in-

tersection types. This is in contrast with the original λ_1 calculus, where multiple function types can co-exist in an intersection. To ad-

dress this limitation, we generalize the definition of top-like types.

The generalization introduces a new ambiguity in our subtyping

rules, which requires some changes on the generation of target lan-

guage coercions.

Top-Like Types The extended top-like definitions and result-

ing system are formalized in Figure 10. Note how we just added

TOPLIKE-FUN to the top-like relation, by stating that a function is
top-like whenever its return type is also top-like. Although function
types that return a top-like type are not strictly speaking top-types,

they can be viewed as **pre-top-types**: applying a value of this type
results in a value of type \top, regardless of the application’s argu-

ment(s). In general, any type of the form $A_k \rightarrow \top$ (with $k \in \mathbb{N}$),
is considered a top-like type in the new variant of λ_1. The conse-
quence of allowing this more liberal notion of top-like types is that

now disjoint intersections such as

$$
(\text{Bool} \rightarrow \text{Int}) \& (\text{String} \rightarrow \text{String})
$$

are well-formed: both functions types are not top-like types accord-

ing to the new definition; and the only common supertypes that they

share are top-like types (for example: Bool\&String $\rightarrow \top$).

Note that the notion of a **pre-top-type** is not novel amongst intersec-
tion type-systems. For example, Coppo et al. [9] refer to function
types where the codomain is not \top as tail-proper types. How-

ever we have not investigated whether the definitions are deeply

connected and doing so is left as future work.

Coercive Subtyping The new definition of top-like types intro-
duces a new problem when generating coercions. Introducing func-
tions within intersection types leads to ambiguity between subtype

contributors under intersection types. Let us demonstrate this using

an example. Suppose that we want to build a derivation for:

$$
(\text{Int} \rightarrow \text{Int}) \& (\text{Char} \rightarrow \text{Char}) \lls (\text{Int} \& \text{Char}) \rightarrow \top
$$

There are two possible derivations:

- one using Int \rightarrow Int $\lls (\text{Int} \& \text{Char}) \rightarrow \top$ (via S&L$_1$);
- another using Char \rightarrow Char $\lls (\text{Int} \& \text{Char}) \rightarrow \top$ (via S&L$_2$).

\begin{figure}[h]
\centering
\begin{align*}
\begin{array}{c}
\text{TOPLIKE-TOP} \\
|A| & |A| & |B| & |A&B| & \text{TOPLIKE-INTER} \\
\text{A } \sqsubseteq \text{B} \\
A_1 \& A_2 \sqsubseteq B_1 \& B_2 & \text{\&L} & A_1 \sqsubseteq B_1 & A_2 \sqsubseteq B_2 & \text{\&R} \\
A \sqsubseteq B & \text{\&L} & A \sqsubseteq B & \text{\&R} \\
\text{Int } \sqsubseteq A \rightarrow B & \text{\&AX} \\
& \text{\&AXSYM} \\
\hline
\end{array}
\end{align*}
\caption{Figure 9. Top-like types and Algorithmic Disjointness.}
\end{figure}

\begin{figure}[h]
\centering
\begin{align*}
\begin{array}{c}
\text{TOPLIKE-TOP} \\
|A| & |A| & |B| & |A&B| & \text{TOPLIKE-INTER} \\
\text{A } \sqsubseteq \text{B} \\
A_1 \& A_2 \sqsubseteq B_1 \& B_2 & \text{\&L} & A_1 \sqsubseteq B_1 & A_2 \sqsubseteq B_2 & \text{\&R} \\
A \sqsubseteq B & \text{\&L} & A \sqsubseteq B & \text{\&R} \\
\text{Int } \sqsubseteq A \rightarrow B & \text{\&AXINT-FUN} \\
& \text{\&AXSYM} \\
\hline
\end{array}
\end{align*}
\caption{Figure 10. Top-like types, Subtyping (changed rules only) and Algorithmic Disjointness for the improved calculus.}
\end{figure}

\begin{figure}[h]
\centering
\begin{align*}
\begin{array}{c}
\text{A } \sqsubseteq \text{B} \\
A_1 \sqsubseteq B_1 \& A_2 \sqsubseteq B_2 & \text{\&L} & A_1 \sqsubseteq B_1 & A_2 \sqsubseteq B_2 & \text{\&R} \\
\text{A } \sqsubseteq \text{B} & \text{\&L} & A \sqsubseteq B & \text{\&R} \\
\text{Int } \sqsubseteq A \rightarrow B & \text{\&AX} \\
& \text{\&AXSYM} \\
\hline
\end{array}
\end{align*}
\caption{Figure 11. Coercion generation considering Top-like types.}
\end{figure}
Unfortunately the two derivations generate different coercions. Thus, without further changes in λ_1, this would be a source of incoherence.

To address this new source of incoherence, we change the way coercions are generated in $S_1\&L_1$ and $S_1\&L_2$. The changes are shown in Figure 10. The basic idea is to look at the form of A_3 in both rules:

- when A_3 is top-like (\mathcal{A}_3), the coercion is a function with the same arity of A_3, returning \bot;
- when A_3 is not top-like: the same coercion (as in the previous systems) is generated.

This behavior is formalized with a meta-function, denoted as \mathcal{A}_C, and described in Figure 11.

Finally, the reader may notice how the modified rules still overlap when \mathcal{A}_3. However, in this case, both rules can be used interchangeably as they both lead to the same coercion. With this change in the subtyping rules we are able to retain coherence.

Algorithmic disjointness rules. The algorithmic disjointness rules are, again, similar to the ones presented in the original system. In relation to the simple system with \top we placed back $\dashv\rightarrow$, since we lifted the restriction of intersections with function types. We also had to modify $\varphi \cdot \lambda \mathcal{X}(\varphi \rightarrow \top)$ to include the premise $\varphi \bot \mathcal{B}$. This is due to the specification of \top-disjointness, which requires two types not to be top-like in order for them to be disjoint.

7. Related Work

Merge Operator. Reynolds invented Forsythe [28] in the 1980s. Forsythe has a merge operator p_1, p_2 and a coherent semantics. The result was proved formally by Reynolds [27] in a lambda calculus with interaction types and a merge operator. He has four different typing rules for the merge operator, each accounting for various possibilities of what the types of the first and second components are. With those four rules, a merge can only be constructed when the second component of the merge is either a function or a (one-field) record. The set of rules is restrictive and it forbids, for instance, the merge of two functions. In λ_1, a merge can contain, for example two primitive values (which is disallowed in Forsythe). Moreover, except for the variant presented in Section 6.3, multiple functions can co-exist in a merge as long as they are provably disjoint. The treatment of disjointness of functions is particularly challenging, especially in combination with a \top type, and supporting multiple functions (as well as other types) in a merge is a significant innovation over Reynolds’ approach.

Castagna et al. [6] proposed $\lambda\&$ to study the overloading problem for functions. Their calculus contains a special merge operator that works only for functions. The calculus is coherent. Similarly to us they impose well-formedness conditions on the formation of a (functional) merge. However, their well-formedness conditions cannot be ported to a system with arbitrary intersections like λ_1, since those conditions assume function types only. They also show how to encode records, but it seems that encoding arbitrary merges and intersections is not possible. For the special case of functional merges, the conditions that are used in $\lambda\&$ are incomparable in expressive power to those in λ_1. That is, $\lambda\&$ accepts some functional merges that λ_1 rejects, and λ_1 accepts some functional merges that $\lambda\&$ rejects. For example, the functional merge

\[(\text{Int} \rightarrow \text{Char}) \& (\text{Int} \rightarrow \text{Bool})\]

is accepted in λ_1 but not in $\lambda\&$. One reason why λ_1 also rejects some functional intersections, which are accepted in $\lambda\&$, seems to be related to the presence of arbitrary merges. As discussed in Section 5, the combination of contravariance and the presence of arbitrary merges means that we can always find a common supertype of two functions that have non-disjoint co-domains. In $\lambda\&$ the non-existence of arbitrary merges means that it is harder to find common supertypes of functions, allowing for a more liberal notion of coherent functional merges.

Our work is largely inspired by Dunfield [14], and throughout the paper we have already made extensive comparisons with his work. He described a similar approach to ours: compiling a system with intersection types and a merge operator into ordinary λ-calculus terms with pairs. One major difference is that our system does not include unions. As acknowledged by Dunfield, his calculus lacks coherence. Dunfield also mechanically formalized his proofs, using the Twelf proof assistant [21]. However he did not prove any results about coherence, so his meta-theoretical results were not immediately useful to us. Since we were also not familiar with Twelf, we decided to start a new formalization in Coq (which we are familiar with), while proving many new results related to coherence.

Pierce [23] made a comprehensive review of coherence, especially on Curien and Ghelli [10] and Reynolds’ methods of proving coherence; but he was not able to prove coherence for his F_ω calculus. He introduced a primitive glue function as a language extension which corresponds to our merge operator. However, in his system users can “glue” two arbitrary values, which can lead to incoherence.

Coherence without Merge. Recently, Castagna et al. [7] studied a very interesting and coherent calculus that has polymorphism and set-theoretic type connectives (such as intersections, unions, and negations). Unfortunately their calculus does not include a merge operator like ours, which is our major source of difficulty for achieving coherence.

Going in the direction of higher kinds, Compagnoni and Pierce [8] added intersection types to System F_ω and used a new calculus, F^\forall_ω, to model multiple inheritance. In their system, types include the construct of intersection of types of the same kind. Davies and Pfenning [12] studied the interactions between intersection types and effects in call-by-value languages. And they proposed a “value restriction” for intersection types, similar to value restriction on parametric polymorphism. We borrowed the notion of ordinary types from Davies and Pfenning. Ordinary types play a fundamental role in ensuring coherence in λ_1. In contrast to λ_1, none of those calculi include a merge operator.

There have been attempts to provide a foundational calculus for Scala that incorporates intersection types [1, 2]. However, the type-soundness of a minimal Scala-like calculus with intersection types and parametric polymorphism is not yet proven. Recently, some form of intersection types has been adopted in object-oriented languages such as Scala, Ceylon, and Grace. Generally speaking, the most significant difference to λ_1 is that in all those languages there is no explicit introduction construct like our merge operator.

Other Type Systems with Intersection Types. Refinement intersection [11, 13, 17] is the more conservative approach of adopting intersection types. Refinement intersections usually have a restriction on the formation of an intersection type $A\&B$. In refinement intersections $A\&B$ is a well-formed type if A and B are refinements of the same simple (unrefined) type. However this is a different restriction from disjointness. Refinement intersection increases only the expressiveness of types but not terms. But without a term-level construct like “merge”, it is not possible to encode various language features.

Coherence in other Type-Directed Mechanisms. Other type-directed mechanisms such as type classes [31] and, more generally, qualified types [19] also require special care to ensure coherence. For example, in Haskell, a well-known example of ambiguity [18] that could lead to incoherence is:
f :: String -> String
f s = show (read s)

Here the functions read and show have, respectively the types
Read a => String -> a and Show a => a -> String. The
constraints Read a and Show a represent requirements that the
compiler should implicitly infer. That is the compiler should find
a suitable implementation of the read and show functions for the
particular type a. The problem is that there is not enough type
information to determine what the type a should be. An arbitrary
choice of a could lead to different code being inferred depending on
the particular choice of a. In this case the behavior of the program
would be dependent on the particular choice made by the compiler.
As a result Haskell compilers, reject programs like the above.

Jones [18] provided a formal treatment of coherence for qualified
types and type classes, designing suitable restrictions that ensure
that incoherent programs are not accepted. In recent versions of
Haskell compilers, it is possible to use type annotations to remove
type ambiguity:

f :: String -> String
f s = (show :: Int -> String) (read s)

Here the type annotation instantiates a to Int, removing the ambi-
guity and allowing the program to be accepted. In λi we also use
annotations to remove type ambiguity. The bidirectional type sys-
tem ensures that the additional annotations required in terms are
sufficient to remove any type ambiguity in λi programs.

8. Conclusion and Future Work

This paper described λi: a coherent and type-safe core calculus that
combines intersection types and a merge operator. We investigated
different three variants of λi: two variants with a τ type; and an-
other one without. To ensure coherence the type system accepts
only disjoint intersections. For each variant of λi there is a differ-
et definition of disjointness. Nevertheless all definitions of dis-
jointness follow the same principle: they are defined in terms of the
subtyping relation; and they describe which common supertypes
are allowed in order for two types to be considered disjoint.

For the future, we would like to study the addition of union
types. This will also require changes in our notion of disjointness,
since with union types there always exists a type A/B, which is the
common supertype of two types A and B, and that is not a top-like
type. Another interesting challenge is to address the combination
between disjoint intersection types and polymorphism. A naive
combination does not seem to be difficult. Since an expression with
a polymorphic type can be instantiated to any type, a simple option
is simply to forbid polymorphic variables in intersections. However
this has limited expressiveness, and would prevent many useful
programs. More thought is needed to achieve more expressiveness.
Finally more work is needed to illustrate the practical applicability
of this calculus. One direction that we started exploring is the
design of object-oriented languages with sophisticated multiple
inheritance mechanisms. The idea is to use the merge operator,
combined with fixpoints, to encode multiple inheritance. The role
of disjointness is then to remove the ambiguity caused by multiple
inheritance.

Acknowledgments

We would like to thank the ICFP reviewers for their helpful com-
ments. This work has been sponsored by the Hong Kong Research
Grant Council Early Career Scheme project number 27200514.

References

19th International Workshop on Foundations of Object-Oriented
Languages, 2012.
on Object Oriented Programming Systems Languages & Applications,
2014.
S. Weirich. Engineering formal metatheory. In G. C. Necula and
P. Wadler, editors, Proceeding of the 35th ACM SIGPLAN-SIGACT
International Conference on Functional Programming, ICFP
'03, 2003.
Polymorphic functions with set-theoretic types: Part 1: Syntax,
semantics, and evaluation. In Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
'14, 2014.
and multiple inheritance. Mathematical Structures in Computer Sci-
ence, 1996.
ters of solvable terms. Mathematical Logic Quarterly, 27(2–6):45–58,
1981.
[10] P-L. Curienl and G. Ghelli. Coherence of subsumption. In CAAP '90:
15th Colloquium on Trees in Algebra and Programming, Copenhagen,
Mellon University, 2005.
effects. In Proceedings of the Fifth ACM SIGPLAN International
Conference on Functional Programming (ICFP'00), 2000.
H. Xi, editors, Programming Languages meets Program Verification
(PLPV '07), Freiburg, Germany, Oct. 2007.
[15] J. Dunfield and F. Pfenning. Type assignment for intersections and
unions in call-by-value languages. In A. Gordon, editor, Foundations of
Software Science and Computation Structures (FOSSACS ’03),
pages 250–266, Warsaw, Poland, Apr. 2003. Springer-Verlag LNCS
2620.
ings of the 21st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’04, 2004.
[17] T. Freeman and F. Pfenning. Refinement types for ML. In Proceed-
ings of the SIGPLAN ’91 Symposium on Language Design and Implemen-
YALEU/DCS/RR-989, Yale University, 1993.
logical framework for deductive systems. In H. Ganzinger, editor,

