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Abstract

Over the years a lot of effort has been put on solving exten-
sibility problems, while retaining important software engi-
neering properties such as modular type-safety and separate
compilation. Most previous work focused on operations that
traverse and process extensible Abstract Syntax Tree (AST)
structures. However, there is almost no work on operations
that build such extensible ASTs, including parsing.

This paper investigates solutions for the problem of mod-
ular parsing. We focus on semantic modularity and not just
syntactic modularity. That is, the solutions should not only
allow complete parsers to be built out of modular parsing
components, but also enable the parsing components to be
modularly type-checked and separately compiled. We present
a technique based on parser combinators that enables modu-
lar parsing. We show that Packrat parsing techniques, pro-
vide solutions for such modularity problems, and enable
reasonable performance in a modular setting. Extensibility
is achieved using multiple inheritance and Object Algebras.
To evaluate the approach we conduct a case study based
on the “Types and Programming Languages” interpreters.
The case study shows the effectiveness at reusing parsing
code from existing interpreters, and the total parsing code is
69% shorter than an existing code base using a non-modular
parsing approach.

CCS Concepts -« Software and its engineering — Ob-
ject oriented languages; « Theory of computation —
Object oriented constructs;

Keywords modular parsing, Object Algebras, semantic mod-
ularity
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1 Introduction

The quest for improved modularity, variability and extensi-
bility of programs has been going on since the early days of
Software Engineering [29]. Modern Programming Languages
(PLs) enable a certain degree of modularity, but they have
limitations as illustrated by well-known problems such as
the Expression Problem [47]. The Expression Problem refers
to the difficulty of writing data abstractions that can be easily
extended with both new operations and new data variants.
Traditionally the kinds of data abstraction found in func-
tional languages can be extended with new operations, but
adding new data variants is difficult. The traditional object-
oriented approach to data abstraction facilitates adding new
data variants (classes), while adding new operations is more
difficult.

To address the modularity limitations of Programming
Languages, several different approaches have been proposed
in the past. Existing approaches can be broadly divided
into two categories: syntactic or semantic modularization
techniques. Syntactic modularization techniques are quite
popular in practice, due to their simplicity of implemen-
tation and use. Examples include many tools for develop-
ing Feature-Oriented Software-Product Lines (SPLs) [1, 27],
some Language Workbenches [18], or extensible parser gen-
erators [23, 24, 35, 38, 44, 50]. Most syntactic approaches
employ textual composition techniques such as superimposi-
tion [1] to enable the development modular program features.
As Kastner et. al [27] note, a typical drawback of feature-
oriented SPL implementations, which more generally applies
to syntactic modularity approaches, is that such “implemen-
tation mechanisms lack proper interfaces and support neither
modular type checking nor separate compilation”.

Semantic modularization techniques go one step further in
terms of modularity, and also enable components or features
to be modularly type-checked and separately compiled. Mod-
ular type-checking and separate compilation are desirable
properties to have from a software engineering point-of-
view. Modular type-checking can report errors earlier and
in terms of the modular code programmers have written in
the first place. Separate compilation avoids global compila-
tion steps, which can be very costly. Furthermore semantic
modularization enables the composition of compiled binaries
as well as ensuring the type-safety of the code composed
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of multiple components. Examples of semantic modulariza-
tion techniques include various approaches to family poly-
morphism [15], virtual classes [16], as well as various tech-
niques for solving the Expression Problem [10, 33, 43, 48].
Semantic modularization techniques are less widely used in
practice than syntactic techniques. This is partly due to the
perceived need for more sophisticated type systems, which
are not available in mainstream languages and may require
more knowledge from users. However, recently, several light-
weight modularization techniques have been shown to work
in mainstream programming languages like Java or Scala.
Object Algebras [10] are one such technique, which works
in Java-like languages and uses simple generics only.

So far research on semantic modularization techniques
has focused on operations that traverse or process extensible
data structures, such as ASTs. Indeed many documented ap-
plications of semantic modularization techniques focus on
modularizing various aspects of PL implementations. How-
ever, as far as we know, there is little work on operations that
build/produce extensible ASTs, and guarantee type-safety.
Sloane and Roberts [40] briefly mention a near solution to
modular parsing by using case classes. However the solution
could be potentially unsafe since exhaustiveness of pattern
matching for extensible case classes is not guaranteed. The
problem of how to modularize parsing, including its algorith-
mic challenges, has not been studied well-studied yet. Other
techniques, such as NOA [23], employ a syntactic modular-
ity approach for parsing in combination with a semantic
modularity approach for defining operations that traverse or
process ASTs. Because parsing is a fundamental part of PL
implementations, it ought to be made semantically modular
as well, so that the full benefits of semantic modularity apply.

This paper presents a technique for doing semantically
modular parsing. That is, our approach not only allows com-
plete parsers to be built out of modular parsing components,
but also enables those parsing components to be modularly
type-checked and separately compiled. Developing techniques
for modular parsing is not without challenges. In developing
our techniques we encountered two different classes of chal-
lenges: algorithmic challenges; and typing/reuse challenges.

Algorithmic Challenges A first challenge was to do with
the parsing algorithms themselves, since they were usually
not designed with extensibility in mind. The most widely
used tools for parsing are parser generators, but they mostly
require full information about the grammar to generate pars-
ing code. Moreover, actions associated with grammar pro-
ductions are typically only type-checked after the parser
has been generated. Both problems go against our goals of
semantic modularity.

An alternative to parser generators are parser combina-
tors [7, 46]. At a first look, parser combinators seem very suit-
able for our purpose. Each parser combinator is represented
by a piece of code directly in the programming language.
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Thus, in a statically typed programming language, such code
is statically type-checked. However many techniques regu-
larly employed by parser combinators cause difficulties in a
modular setting. In particular, many parser combinator ap-
proaches (including Parsec [28]) routinely use lefi-recursion
elimination, priority-based matching, and avoid backtracking
as much as possible. All of these are problematic in a modular
setting as illustrated in Section 2.1.

To address such algorithmic challenges, we propose a
methodology for implementing modular parsers built on
top of an existing Packrat [19] parsing library for Scala [17].
Such a library directly supports left-recursion, memoization,
and a longest-match composition operator. We will see some
examples in Section 2.2.

Typing and Reusability Challenges The second class of
challenges was problems related to modularity, reusability
and typing of parsing code. An immediate concern is how to
extend a parser for an existing language or, more generally,
how to compose parsing code for two languages. It turns
out that OO mechanisms that provide some form of multiple
inheritance, such as traits/mixins [5, 37], are very handy for
this purpose. Essentially, traits/mixins can act as modules
for the parsing code of different languages. This enables an
approach where ASTs can be modelled using standard OO
techniques such as the CoMPOSITE pattern, while retaining
the possibility of adding new language constructs. Section 3
gives the details of this approach.

Our ultimate goal is to allow for full extensibility: it should
be possible to modularly add not only new language con-
structs, but also new operations. To accomplish this goal one
final tweak on our technique is to employ Object Algebras to
allow fully extensible ASTs. Thus a combination of Packrat
parsing, multiple inheritance and Object Algebras enables a
solution for semantically modular parsing. Section 4 gives
the details of the complete approach.

To evaluate our approach we conduct a case study based
on the “Types and Programming Languages” (TAPL) inter-
preters. The case study shows that our approach is effective
at reusing parsing code from existing interpreters, and the
total parsing code is 69% shorter than an existing code base
using non-modular parsing code’.

In summary our contributions are:

o A Technique for Modular Parsing: We present a tech-
nique that allows the development of semantically mod-
ular parsers. The technique relies on the combination of
Packrat parsing, multiple inheritance and Object Algebras.

o A Methodology for Writing Modular Parsers: We iden-
tify possible pitfalls using parser combinators. To avoid
such pitfalls, we propose guidelines for writing parsing
code using left-recursion and longest-match composition.

Ihttps://github.com/ilya-klyuchnikov/tapl-scala/
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e TAPL case study: We conduct a case study with 18 in-
terpreters from the TAPL book. The case study shows the
effectiveness of modular parsing in terms of reuse. The
TAPL case study is available online at:
https://github.com/lihuanglx/modular-parsing

All the code in the paper and the case study is written
in Scala, since its concise and elegant syntax is good for
presentation. Other languages that support some form of
multiple inheritance (including C++ or Java 8 with default
methods [22]) could in principle be used.

2 Packrat Parsing for Modularity

This section discusses the algorithmic challenges introduced
by modular parsing and argues that Packrat parser combi-
nators [19] are suitable to address them. The algorithmic
challenges are important because they rule out various com-
mon techniques used by non-modular code using parser
combinators. To avoid pitfalls related to those algorithmic
challenges, we propose the following methodology:

e Modular parsers should support left-recursion.

e Modular parsers should use a longest match compo-

sition operator.

Moreover, the underlying parsing formalism should make
backtracking cheap, due to its pervasiveness in modular pars-
ing. Although we chose Packrat parsing, any other parsing
formalism that provides similar features should be ok.

2.1 Algorithmic Challenges of Modularity

For the goal of modular parsing, parser combinators seem
suitable because they are naturally modular for parser com-
position, but also they ensure type safety. Unfortunately
many parser combinators have important limitations. In par-
ticular, several parser combinators including the famous
Parsec [28] library, require programmers to manually do
left-recursion elimination, longest match composition, and re-
quire significant amounts of backtracking. All of those are
problematic in a modular setting.

Left-Recursion Elimination The top-down, recursive de-
scent parsing strategy adopted by those parser combinator
libraries cannot support left-recursive grammars directly.
For instance, we start with a simple arithmetic language con-
taining only integers and subtractions. The grammar with
concrete syntax and part of the parsing code in Parsec are
presented below:

parseExpr =

parseSub <|> parselnt

parseSub = do
e <- parseExpr ...

(expr) == (int)
| (expr) ‘-’ (int)

Such a left-recursive implementation will cause an infinite
loop, since parseExpr and parseSub call each other and never
stop. A common solution is to rewrite the grammar into an
equivalent but non-left-recursive one, called left-recursion
elimination:
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(expr)y == (int) (expr’)

(expr’y = (empty)
| - (int) (expr’)

After left-recursion elimination, the structure of grammar
is changed, as well as its corresponding parser. In a modu-
lar setting, it is possible but unnecessarily complicated to
analyse the grammar and rewrite it when doing extensions.
Anticipating that every non-terminal has left-recursive rules
is helpful for extensibility but overkill, since it is inconve-
nient and introduces extra complexity for representation of
grammars and implementation of parsers.

Another issue of left-recursion elimination is that it re-
quires extra bookkeeping work to retain the original se-
mantics. For example, the expression 1 — 2 — 3 is parsed as
(1-2)—3in the left-recursive grammar, but after rewrite the
information of left-associativity is lost. The parse tree must
be transformed to recover the correct syntactic structure.

Longest Match Composition Another problematic issue
in parser combinator libraries is the need for manually pri-
oritizing/ordering alternatives in a grammar. Consider the
grammar:
(expr)y == (int)

| (int) ‘+ (expr)

In Parsec, for instance, the parser "parseInt <|> parseAdd"
will only parse the input "1 + 2" to "1", as parseInt success-
fully parses "1" and terminates parsing.

Traditional alternative composition will only find the first
parser that succeeds on a prefix of the input, even if subse-
quent parsers may parse the whole input. In contrast to the
previous parser, "parseAdd <|> parseInt" works as expected
with because the two cases are swapped. In this case, reorder-
ing the alternatives ensures that the longest match is picked
among the possible results. However, manual reordering for
the longest match is inconvenient, and worst still, it is es-
sentially non-modular. When the grammar is extended with
new rules, programmers should manually adjust the order
of parsers, by rewriting previously written code.

Backtracking The need for backtracking can also be prob-
lematic in a modular setting. Consider a grammar with "
import..from", and is extended with an "import..as" case:
(stmt) == ‘import’ (ident) ‘from’ (ident)

| ..
| ‘import’ (ident) ‘as’ (ident)
Since the two cases share a common prefix, when the former
fails, we must backtrack to the beginning. For example, the
choice combinator in Parsec only tries the second alternative
if the first fails without any token consumption. We have to
use try for explicit backtracking.

oldParser = parseImpFrom <[> ...

newParser = try parseImpFrom <|> ... <|> parseImpAs
Similarly, this violates a modular setting because it also

requires a global view of the full grammar. Hence the worst


https://github.com/lihuanglx/modular-parsing

SLE’17, October 23-24, 2017, Vancouver, Canada

import util.parsing.combinator.syntactical.
StandardTokenParsers
import util.parsing.combinator.PackratParsers

object Code extends StandardTokenParsers
with PackratParsers {
type Parser[E] = PackratParser[E]
def parse[E](p: Parser[E]): String => E = in => {
val t = phrase(p)(new lexical.Scanner(in))
t.getOrElse(sys.error(t.toString))
}

// Any Scala code in the paper comes here

}

Figure 1. Helper object for code demonstration in this paper.

case where all alternatives may share common prefixes with
future cases should always be anticipated. Therefore we need
to backtrack for all the branches. To avoid failures in the
future, we have to add try everywhere. However this results
in the worst-case exponential time complexity.

2.2 Packrat Parsing

Fortunately, some more advanced parsing techniques such
as Packrat parsing [19] have been developed to address limi-
tations of simple parser combinators. Packrat parsing uses
memoization to record the result of applying each parser at
each position of the input, so that repeated computation is
eliminated. Moreover, it supports both direct left-recursion
and (in theory) indirect left-recursion [49]. All of these prop-
erties are very suitable for modularity, thus we decided to use
Packrat parsers as the underlying parsing technique for mod-
ular parsing. Scala has a standard parser combinator library”
[31] for Packrat parsers. The library provides a number of
parser combinators, including the longest match alternative
combinator.

Code Demonstration For more concise demonstration, we
assume that all the Scala code in the rest of this paper are
in the object Code, as shown in Figure 1. It extends traits
StandardTokenParsers and PackratParsers from the Scala parser
combinator library. Furthermore, we will use parser as a type
synonym for PackratParser and a generic parse function for
testing.

Parsing a Simple Arithmetic Language Suppose we want
to parse a simple language with literals and additions. The
concrete syntax is:
(expr)y == (int)

| Cexpr) “+ (expr)

It is straightforward to model the abstract syntax by classes.
The ASTs support pretty-printing via the print method.
trait Expr { def print: String }
class Lit(x: Int) extends Expr {

def print = x.toString
}

Zhttps://github.com/scala/scala-parser-combinators
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Table 1. Common combinators from the Scala standard
parser combinator library.

def ~[U](q: =>Parser[U]): Parser[~[T, U]l]

- A parser combinator for sequential composition.

def " [U](f: (T)=>U): Parser[U]

- A parser combinator for function application.

def <~[U](q: =>Parser[U]): Parser[T]

- A parser combinator for sequential composition which
keeps only the left result.

def ~>[U](q: =>Parser[U]): Parser[U]

- A parser combinator for sequential composition which
keeps only the right result.

def ident: Parser[String]

- A parser which matches an identifier.

def |[U >:T](q: =>Parser[U]): Parser[U]

- A parser combinator for alternative composition.

def |||[U >:T](q0: =>Parser[U]): Parser[U]

- A parser combinator for alternative with longest match
composition.

class Add(el: Expr, e2: Expr) extends Expr {
def print = "(" + el.print + "+" + e2.print + ")"
}
Then we write corresponding parsers for all cases. Note
that a parser has type Parser[E] for some E, which indicates

the type of results it produces.
trait AParser {
lexical.delimiters += "+"
val plLit: Parser[Expr] = numericLit ™"
{ x => new Lit(x.toInt) }
val pAdd: Parser[Expr] = pExpr ~ ("+" ~> pExpr) ™"
{ case el ~ e2 => new Add(el, e2) }
def pExpr: Parser[Expr] = pLit ||| pAdd
}
In the trait AParser, lexical is used for lexing. pLit parses

an integer for the literal case. pAdd handles the addition case
and creates an object of Add. It parses two sub-expressions by
calling pExpr recursively. Finally pexpr composes pLit and pAdd
using the longest match alternative combinator || |. Table 1
shows common parser combinators from the library.

It is worth mentioning that the left-recursive grammar
above is well supported without extra code. The longest
match composition is also employed by using the combinator
|11. Furthermore, the parser does not suffer from the back-
tracking problem, as the memoization technique of Packrat
parsing guarantees reasonable efficiency.

The code below demonstrates how to parse a valid expres-

sion 1 + 2 using our parser.
val p = new AParser {}
val r = parse(p.pExpr) ("1 + 2").print // "(1+2)"

3 00 AST Parsing with Multiple Inheritance

Before we address the problem of full modular parsing, we
first address a simpler problem: how to parse Object-Oriented
ASTs. To solve this problem we employ multiple inheritance,
which is supported in Scala via traits.



Type-Safe Modular Parsing

Part of the modular parsing problem is how to obtain
an extensible parser. It is natural to make use of OO ASTs
because adding new data constructs is cheap for them. Hence
we have used OO traits and inheritance to represent the
AST in the last section. Furthermore, we would like to write
extensible parsing code on extensions of a grammar. That
is to say, new extensions would not require modifying the
existing code, and we can even reuse the old code.

To illustrate such extensibility, we continue with the old
example, and introduce variables as a new case. It is easy to
extend the corresponding OO AST together with its parser

in a modular way:
class Var(x: String) extends Expr {
def print = x
}
Here one may quickly define a new parser pvar in AParser

for variables, and parse new expressions with "pExpr |||
pvar". Unfortunately, even "1 + x" cannot be parsed, which
is obviously valid in the new grammar. The reason is that pAdd
makes two recursive calls to pexpr for parsing sub-expressions,
whereas the newly added pvar is not observed, unless we re-
place all the occurrences of pexpr with "pExpr ||| pvar". Yet
modifying existing code breaks semantic modularity.

Overriding for Extensibility It is actually quite simple to
let pexpr cover the newly extended case without modifying
existing code. Method overriding is a standard feature which
often comes with inheritance, and it allows us to redefine
an inherited method, such as pexpr. We can build the new

parser which correctly parses "1 + x" through overriding:
trait VarParser extends AParser {

val pVar: Parser[Expr] = ident ~~ (new Var(_))
override def pExpr: Parser[Expr] =
super.pExpr ||| pVar
}
val p = new VarParser {}

val r = parse(p.pExpr) ("1 + x").print // "(I1+x)"

Now varparser successfully represents the parser for the
extended language, because Scala uses dynamic dispatch for
method overriding in inheritance. When the input "1 + x"
is fed to the parser this.pExpr, it firstly delegates the work
to super.pExpr, which parses literals and additions. However,
the recursive call pexpr in pAdd actually refers to this.pExpr
again due to dynamic dispatch, and it covers the variable
case. Similarly, all recursive calls can be updated to include
new extensions if needed.

Independent Extensibility A nice feature of Scala is its

support for the linearized-style multiple inheritance on traits [17].

This can be very helpful when composing several languages,
and to achieve independent extensibility [33]. Suppose now
we want to compose the parsers for expressions from pre-
defined languages LanguageA and LanguageB using alternative.
The new parser can be built by inheriting both parsers at the

same time:

trait LanguageA {...}

trait LanguageB {...}

trait LanguageC extends LanguageA with LanguageB {

SLE’17, October 23-24, 2017, Vancouver, Canada

override def pExpr = super[LanguageA].pExpr ||| super[
LanguageB] .pExpr

The super[T].x syntax in Scala, so called static super ref-
erence, refers to the type or method x in the parent trait T.
Under multiple inheritance, it can be used to distinguish the
methods of the same name. Therefore in the new parser, we
use super to specify which pexpr we are referring to.

Conflicts and/or Ambiguity In a modular setting, con-
flicts and ambiguity could be introduced to the grammar.
In that case, the help parser combinators can offer is quite
restricted. Yet users can override those problematic methods
to resolve such conflicts, and rely on dynamic dispatch. We
will discuss it in Section 5.2.

As demonstrated, inheritance with method overriding is
the key technique to obtain semantic modularity. It enables
type-safe code reuse and separate compilation for parsing
0O style ASTs.

4 Full Extensibility with Object Algebras

The inheritance-based approach allows building extensible
parsers, based on an OO class hierarchy. Nevertheless, the
addition of new operations over ASTs is problematic using
traditional OO ASTs. In this section, we show how to sup-
port both forms of extensibility on ASTs (easy addition of
language constructs, and easy addition of operations) using
Object Algebras [10].

4.1 Problem with Traditional OO ASTs

The Expression Problem [47] illustrates the difficulty of ex-
tending data structures or ASTs in two dimensions. In brief,
it is hard to add new operations with traditional OO ASTs.
In the last section we have seen a language that supports
pretty-printing (in Expr). To modularly add an operation like
collecting free variables, one attempt would be extending
Expr with the new operation to obtain a new abstract type
for ASTs:

trait NewExpr extends Expr { def free: Set[String] }

Then all classes representing language constructs could be
extended to implement the operation. A first well-known
problem is that such approach is problematic in terms of
type-safety (but see recent work by Wang and Oliveira [48],
which shows a technique that is type-safe in many cases).
More importantly, a second problem is that even if that ap-
proach would work, the parsing code in varParser is no longer
reusable! The types Expr, Lit, Add, and so on, are all old
types without the free variables operation. To match the new
ASTs, we have to substitute Newexpr for Expr (the same for
Lit, Add, ...). This requires either code modification or type
casts. The goal of semantic modularity motivates us to find
a different approach for building ASTs.
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4.2 Object Algebras

Fortunately, Object Algebras [10] enable us to solve this
problem. They capture a design pattern that addresses the
Expression Problem, achieving two dimensions of extensi-
bility (language constructs and operations) in a modular
and type-safe way. The definition of data structures is sepa-
rated from their behaviours, and future extensions on both
dimensions no longer require existing code to be modified,
supporting separate compilation.

Using Object Algebras in Scala, ASTs as recursive data
structures are defined by traits, where each constructor cor-
responds to an abstract method inside. Essentially, Object
Algebras generalize the ABSTRACT FACTORY pattern [21], and
promote the use of factory methods, instead of constructors,
for instantiating objects. The example from Section 2.2 is
used here again for illustration. At first the language only
supports literals and additions:
trait Alg[E] {

def lit(n: Int): E

def add(el: E, e2: E): E
}
Here Alg is called an Object Algebra interface, parameterized
by the type E, which abstracts over the concrete type of the
AST.

Adding New Operations To realize an operation on ex-
pressions, we simply instantiate the type parameter by a
concrete type and provides implementations for all cases.
Below is an example of pretty-printing:
trait Print extends Alg[String] {

def lit(n: Int) = n.toString

def add(el: String, e2: String) =

"("+el+ "+ " +e2+")"

}
Here Print is called an Object Algebra. It traverses an ex-
pression bottom-up, and returns a string as the result. One
can also define an evaluation operation as a new trait that
extends Alg[Int]. Hence adding new operations is modular.
We omit that code due to space reasons.

Adding New AST Constructs Furthermore, new language
constructs can be added by extending Alg and adding new
cases only. Now we extend the language with variables. A
new Object Algebra interface varalg is defined as follows:
trait VarAlg[E] extends Alg[E] {

def varE(x: String): E
}
Now pretty-printing on the new language can be realized
without modifying existing code:
trait VarPrint extends VarAlg[String] with Print {

def varE(x: String) = x
}
An observation is that only the new case is implemented for
pretty-printing, and the others have been inherited. Thus
existing code was reused and was not modified!

To create an expression representing 1 + x, a generic method

is defined as follows:
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trait OAParser[E] {
lexical.delimiters += "+"
val alg: Algl[E]

val pLit: Parser[E] = numericLit "~
{ x => alg.lit(x.toInt) }
val pAdd: Parser[E] = pE ~ ("+" ~> pE) ™
{ case el ~ e2 => alg.add(el, e2) }
val pExpr: Parser[E] = pLit ||| pAdd
val pE: Parser[E] = pExpr
}

Figure 2. Pattern of modular parsing using Object Algebras.

def makeExp[E](alg: VarAlg[E]): E =
alg.add(alg.lit(1), alg.varE("x"))

Note how the construction of the abstract syntax happens
through the use of factory methods, instead of construc-
tors. To pretty-print the expression, the code "makeExp (new
VarPrint {})" resultsin (1 + x)" as expected.

4.3 Parsing with Object Algebras

Parsing produces ASTs as the result. When Object Algebras
are used to build ASTs, an Object Algebra containing the
constructor/factory methods has to be used by the parsing
function. Thus, a first attempt at defining the parser for the
small arithmetic language is:

trait Attempt[E] {
lexical.delimiters += "+"
val pLit: Alg[E] => Parser[E] = alg =>
numericLit ~ { x => alg.lit(x.toInt) }
val pAdd: Alg[E] => Parser[E] = alg =>
pExpr(alg) ~ ("+" ~> pExpr(alg)) **
{ case el ~ e2 => alg.add(el, e2) }
val pExpr: Alg[E] => Parser[E] = alg =>
pLit(alg) ||| pAdd(alg)
}
Such a parser looks fine, but it is not extensible. For example,
we have demonstrated in Section 3 that method overriding
is essential to update pexpr for an extended syntax. However,
trying to do a similar method overriding for pexpr would
require a type VarAlg[E] => Parser[E], which is a supertype of
the old type Alg[E] => Parser[E], since the extended Object
Algebra interface appears in contravariant position. This
violates overriding in Scala.

A Solution A solution to this problem is to declare a field
of Object Algebra interface in the parser. Figure 2 shows
the code of true modular parser, whose methods can be
overridden for future extension.

That is precisely the pattern that we advocate for mod-
ular parsing. One important remark is we introduce pe for
recursive calls. The reason why we use it as an extra and
seemingly redundant field, is due to a subtle issue caused by
Scala language and its parser combinator library. There is a
restriction of super keyword in Scala that super can only use
methods defined by keyword def, but cannot access fields
defined by vat, while the parser combinator library suggests
using val to define parsers, especially for left-recursive ones.
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Our workaround is that we use different synonyms for pE in
different traits, so that we can directly distinguish them by
names without using super.

Extensions Now let’s try on the variables extension:
trait VarOAParser[E] extends OAParser[E] {

override val alg: VarAlg[E]

val pVar: Parser[E] = ident ~* alg.varE

val pVarExpr: Parser[E] = pExpr ||| pVar

override val pE: Parser[E] = pVarExpr
}
The type of the Object Algebra field alg is first refined to
VarAlg[E], to allow calling the additional factory method for
variables. Unlike the previous attempt, such a type-refinement
is allowed. Now, the code for parsing variables (pvar) can
call alg.vart. The following code illustrates how to use the
parser from a client’s perspective:
val p = new VarOAParser[String] {

override val alg = new VarPrint {}

}
val r = parse(p.pE) ("1 + x") // "(1 + x)"

In the client code above, we pick the pretty-printing alge-
bra varprint to initialize the alg field, but any other Object
Algebra that implements varalg would work. With an in-
stance of varoAParser in hand, we can call pE to obtain the
parser to feed to the parse method. Such a pattern provides
modular parsing as expected.

Note that, similar to the approach in Section 3, indepen-
dent extensibility is also supported via multiple trait inheri-
tance. Since it is achieved using essentially the same tech-
nique as in Section 3, we omit the code here.

5 More Features

The use of inheritance-based approach and Object Algebras
enables us to build modular parsers, which are able to evolve
with syntax together. This section explores more interesting
features, including parsing multi-sorted syntax, overriding
existing parsing rules, language components for abstract-
ing language features, and alternative techniques under the
whole framework.

5.1 Parsing Multi-Sorted Syntax

Using Object Algebras, it is easy to model multi-sorted lan-
guages. If the syntax has multiple sorts, we can distinguish
them by different type parameters. For instance, we extend
the expression language from the end of Section 4, with a
primitive type int type and typed lambda abstractions:
(type) == ‘int’

(expry == .
|\ (ident) ‘1’ {type) ‘. (expr)

The code below illustrates the corresponding Scala code
that extends the Object Algebra interface, pretty-printing
operation and parser.
trait LamAlg[E, T] extends VarAlg[E] {

def intT(): T
def lam(x: String, t: T, e: E): E
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}
trait LamOAParser[E, T] extends VarOAParser[E] {
lexical.reserved += "int"

lexical.delimiters += ("->", "\\", ":", ".")
override val alg: LamAlg[E, T]
val pIntT: Parser[T] = "int" ~ { _ => alg.intT }

val pTypedLamT: Parser[T] = pIntT
val pLam: Parser[E] =

("\\" ~> ident) ~ (":" ~> pT) ~ ("." ~> pE) ~~
{ case x ~ t ~ e => alg.lam(x, t, e) }
val pTypedLamE: Parser[E] = pVarExpr ||| pLam

val pT: Parser[T] = pTypedLamT
override val pE: Parser[E] = pTypedLamE
}

We use two type parameters E and T for expressions and
types. The type system guarantees that invalid terms such as
int + int will be rejected. Besides lexing, the trait LamoAParser
also introduces parsers for types, and the new case for expres-
sions. We use pTypedLanT and pTypedLamE as copies of current
pT and pE, due to the issue with super in Scala (see discussion
in Section 4.3). pT and pE are used for recursion.

5.2 Overriding Existing Rules

As many syntactically extensible parsers, our approach also
supports modifying part of existing parsers, including updat-
ing or eliminating existing rules, but in a type-safe way. This
can be useful in many situations, for instance when conflicts
or ambiguities arise upon composing languages. As an il-
lustration, suppose we have an untyped lambda abstraction
case in a base parser, defined as a value:
val pLam: Parser[E] =

("\\" ~> ident) ~ ("." ~> pE) ~* ...
Here pLam parses a lambda symbol, an identifier, a dot and
an expression in sequence. Then we want to replace the
untyped lambda abstractions by typed lambdas. With in-
heritance and method overriding, it is easy to only change
the implementation of pLam in the extended parser. Due to
dynamic dispatch, our new implementation of lambdas will
be different without affecting the other parts of the parser.
override val plLam: Parser[E] =

("\\" ~> ident) ~ (":" ~> pT) ~ ("." ~> pE) ™ ...

One can even “eliminate” a production rule in the exten-
sion, by overriding it with a failure parser. The lexer can also
be updated, since keywords and delimiters are represented
by sets of strings.

5.3 Language Components

Modular parsing not only enables us to build a correspond-
ing parser which evolves with the language together, but
also allows us to abstract language features as reusable, inde-
pendent components. Generally, a language feature includes
related abstract syntax, methods to build the syntax (pars-
ing), and methods to process the syntax (evaluation, pretty-
printing, etc.). From this perspective, not only one language,
but many languages can be developed in a modular way,
with common language features reused.
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Instead of designing and building a language from scratch,
we can easily add a new feature by reusing the corresponding
language component. For example, if a language is composed
from a component of boolean expressions, including if-then-
else, it immediately knows how to parse, traverse, and pretty-
print the if-then-else structure. Grouping language features
in this way can be very useful for rapid development of DSLs.

For implementation, a language component is represented
by a Scala object, and it consists of three parts: Object Algebra
interface, parser, and Object Algebras.

e Object Algebra interface: defined as a trait for the ab-
stract syntax. The type parameters represent multiple sorts
of syntax, and methods are constructs.

e Parser: corresponding parser of the abstract syntax, writ-
ten in a modular way as we demonstrated before.

e Object Algebras (optional): concrete operations on ASTs,
such as pretty-printing.

We take the example in Section 4.3 again. It can be defined
as a language component varExpr. For space reasons we omit
some detailed code.
object VarExpr {

trait Alg[E] { // Abstract syntax
def lit(n: Int): E

}
trait Parse[E] { ... } // Parser
trait Print extends Alg[String] {
. // Pretty-printer
}
}

For the extension of types and lambda abstractions in
Section 5.1, instead of inheriting from the previous language
directly, we can define it as another independent language
component TypedLam.
object TypedLam {

trait Alg[E, T] { // Abstract syntax
def intT(): T

}
trait Parse[E, T] { ... } // Parser
trait Print extends Alg[String, String] {
. // Pretty-printer
}
}

The code below shows how we merge those two compo-
nents together to obtain the language we want. Furthermore,
the new language is still a modular component ready for
future composition. In that case modularity is realized over
higher-order hierarchies.
object VarLamExpr {

trait Alg[E, T] extends VarExpr.Alg[E]
with TypedLam.Alg[E, T]

trait Parse[E, T] extends VarExpr.Parse[E]
with TypedLam.Parse[E, T] {
override val alg: Alg[E, T]
override val pE: Parser[E] = ...
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trait Print extends VarExpr.Print
with TypedLam.Print

The only drawback is that the glue code of composition
appears to be boilerplate. As shown above, we are combining
ASTs, parsers and pretty-printers of varexpr and TypedLam re-
spectively. Such a pattern refers to family polymorphism [15]
which is unfortunately not fully supported in Scala, since
nested classes/traits have to be manually composed.

5.4 Alternative Techniques

Our prototype uses Packrat parsing as the underlying pars-
ing technique, OO inheritance for composing and extending
parsers, and Object Algebras for parsing extensible ASTs. Yet
such a framework is itself flexible and modular, because those
techniques can have alternatives. For example, as we men-
tioned before, any parsing library that resolves the algorith-
mic challenges in modular parsing can work well. Regarding
OO inheritance for the extensibility, an alternative approach,
called open recursion [8] can be used in other languages, by
introducing explicit “self-reference” parameters for the re-
cursion. Furthermore, besides Object Algebras, Data types d
la carte (DTC) [41] and the Cake pattern [33] also support
extensible data structures. For the goal of modular parsing a
custom combination of those alternatives can be adopted.

6 Case Study

To demonstrate the utility of our modular parsing approach,
we implemented parsers for the first 18 calculi * from the
Types and Programming Languages (TAPL) [36] book. We
compared our implementation with a non-modular imple-
mentation available online, which is also written in Scala and
uses the same Packrat parsing library. We counted source
lines of code (SLOC) and measured execution time for both
implementations. The result suggests that our implementa-
tion saves 69% code comparing with that non-modular one,
but there is a 43% slowdown due to code modularity.

6.1 Implementation

TAPL introduces several calculi from simple to complex, by
gradually adding new features to syntax. These calculi are
suitable for our case study for mainly two reasons. Firstly,
they capture many of the language features required in real-
istic programming languages, such as lambdas, records and
polymorphism. Secondly, the evolution of calculi in the book
reveals the advantages of modular representation of abstract
syntax and modular parsing, which is the key functionality
of our approach. By extracting common components from
those calculi and reusing them, we obtain considerably code
reuse as shown later.

3There are some more calculi in the book, but they are either not ported by
the implementation we compare with, or just repeats the syntax of former
ones.
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We extract reusable components from all the calculi using
the pattern demonstrated in Section 5.3. Each component,
which may contain several syntactical structures, represents
a certain feature. They are combined together as needed
to build a calculus. For example, the calculus untyped in our
case study, representing the famous untyped lambda calculus,
consists of component varapp (for variables and applications)
and component UntypedAbs (for untyped lambdas).

Figure 3 shows the dependency of all the components and
calculi in our case study. Grey boxes are calculi and white
boxes are components. An arrow starting from box A to box
B denotes that B includes and thus reuses A.

Each component or language is represented by a Scala
object which includes Alg for the abstract syntax, Print for
pretty-printing, and Parse for parsing. Since calculi and com-
ponents have similar signatures, each calculus can also be
extended and reused directly. For example, calculus FullRef
extends from calculus FullSimple.

6.2 Comparison

We compared our implementation (named Modga) with an
implementation available online* (named NonMod). NonMod
is suitable for comparison, because it is also written in Scala
using the same parser combinator library. NonMod imple-
ments parsers 18 calculi in TAPL in a non-modular way.
Thus NonMod is not able to reuse existing code when those
calculi share common features. Modga implements the same
18 calculi, but reuse is possible due to modularity.

The comparison is made from two aspects. First, we want
to discover the amount of code reuse using our modular
parsing approach. For this purpose, we measured source
lines of code (SLOC) of two implementations. Second, we
are interested to assess the performance penalty caused by
modularity. Thus we compared the execution time of parsing
random expressions between two implementations.

Standard of Comparison Interms of SLOC, all blank lines
and comments are excluded, and we formatted the code
of both implementations to ensure that the length of each
line does not exceed 120 characters. Furthermore, because
NonMod has extra code like semantics, we removed all irrele-
vant code, only kept abstract syntax definition, parser and
pretty-printer for each calculus, to ensure a fair comparison.

For the comparison of execution time, we built a generator
to randomly generate valid expressions for each calculus,
according to its syntax. These expressions are written to
test files, one file per calculus. Each test file consists of 500
expressions randomly generated, and the size of test files
varies from 20KB to 100KB. We run the corresponding parser
to parse the file and the pretty-printer to print the result. The
average execution time of 5 runs excluding reading input
file was calculated, in milliseconds.

“https://github.com/ilya-klyuchnikov/tapl-scala/
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Comparison Results Table 2 shows results of the compari-
son. Let us only check Modga and NonMod for now. The overall
result is that 69.2% of code is reduced using our approach,
and our implementation is 42.7% slower.

The good SLOC result is because of that the code of com-
mon language features are reused many times in the whole
case study. We can see that in the first two calculi Arith and
Untyped we are not better than NonMod, because in such two
cases we do not reuse anything. However in the following 16
calculi, we indeed reuse language components. In particular,
the calculi EquiRec and some others are only 22 lines in our
implementation, because we only compose existing code.

To discover the reasons of slower execution time, we made
experiments on two possible factors, which are Object Alge-
bras and the longest match alternative combinator. We use
Object Algebras for ASTs and the longest match alternative
combinator ||| for parsing, while NonMod uses case class
and the ordinary alternative combinator. Therefore, we im-
plemented two more versions. One is a modified version of
our implementation, named Modc ass, with Object Algebras
replaced by case class for the ASTs. The other is a modi-
fied version of NonMod, named NonMod ||, using the longest
match alternative combinator instead of the ordinary one.

The right part of Table 2 suggests that the difference of
running time between using Object Algebras and class is lit-
tle, roughly 1%. The use of longest match combinator slows
the performance by 7%. The main reason of slower execution
time may be the overall structure of the modular parsing ap-
proach, because we indeed have more intermediate function
calls and method overriding. However, it is worth mention-
ing that because of the memoization technique of Packrat
parsers, we are only constant times slower, the algorithmic
complexity is still the same. Since the slowdown seems to
be caused by extra method dispatching, in future work we
wish to investigate techniques like partial evaluation or meta-
programming to eliminate such cost. The work by Béguet
and Manohar [4] is an interesting starting point.

7 Related Work

Our work touches upon several topics including extensible
parsing, parser combinators and extensibility techniques.

Safely Composable Type-Specific Languages There isal-
most no work on semantically modular parsing. A notable
exception is the work on safely composable type-specific
languages [34]. In this work the extensible language Wyvern
supports the addition of new syntax and semantics, while
preserving type-safety and separate compilation. However
this approach and our work have different goals: their ap-
proach is aimed at supporting extensibility of Wyvern with
new syntax; whereas our approach is a general technique
aimed at modular parsing of any languages. In contrast to
their modular parsing approach, which is directly built-in to
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Figure 3. Dependency graph of all calculi and components. Grey boxes are calculi; white boxes are components.

Table 2. Comparison of SLOC and execution time.

Calculus Name SLOC Time (ms)

NonMod Modoa (+/-)% | NonMod | Modgp (+/-)% | NonMod ||| (+/-)% | ModcLass (+/-)%
Arith 77 77 +0.0 741 913 +23.2 793 +7.0 932 +25.8
Untyped 48 53 +10.4 770 1018 +32.2 821 +6.6 1007 +30.8
FullUntyped 131 75 -42.7 1297 1854 +42.9 1343 +3.5 1767 +36.2
TyArith 89 54 -39.3 746 888 +19.0 772 +3.5 918 +23.1
SimpleBool 90 42 -53.3 1376 1782 +29.5 1494 +8.6 1824 +32.6
FullSimple 244 127 -48.0 1441 2270 +57.5 1574 +9.2 2226 +54.5
Bot 87 48 -44.8 1080 1287 +19.2 1078 -0.2 1306 +20.9
FullRef 277 65 -76.5 1438 2291 +59.3 1544 +7.4 2142 +49.0
FullError 112 41 -63.4 1410 1946 +38.0 1524 +8.1 1981 +40.5
RcdSubBot 125 22 -82.4 1247 1524 +22.2 1285 +3.0 1612 +29.3
FullSub 225 22 -90.2 1320 1979 +49.9 1393 +5.5 1899 +43.9
FullEquiRec 250 36 -85.6 1407 2200 +56.4 1561 +10.9 2156 +53.2
FulllsoRec 259 40 -84.6 1492 2253 +51.0 1648 +10.5 2236 +49.9
EquiRec 81 22 -72.8 994 1254 +26.2 1048 +5.4 1304 +31.2
Recon 138 22 -84.1 1044 1482 +42.0 1128 +8.0 1506 +44.3
FullRecon 142 22 -84.5 1094 1645 +50.4 1161 +6.1 1652 +51.0
FullPoly 248 68 -72.6 1398 2086 +49.2 1511 +8.1 2019 +44.4
FullOmega 315 68 -78.4 1451 2352 +62.1 1582 +9.0 2308 +59.1
Total 2938 904 -69.2 21746 31024 +42.7 23260 +7.0 30795 +41.6

the Wyvern language, our approach is library-based and can
be used by many mainstream OO languages.

Syntactically Extensible Parsing Extensible parser gen-
erators [23, 24, 35, 38, 44, 50] are a mainstream area of mod-
ular syntax and parsing. They allow users to write modular
grammars, where new non-terminals and production rules
can be introduced, some can even override existing rules in
the old grammar modules. For instance, Rats! [24] constructs
its own module system for the collection of grammars, while
NOA [23] uses Java annotation to collect all information
before producing an ANTLR [35] grammar and the pars-
ing code. Those parser generators focus on the syntactic
extensibility of grammars: they rely on whole compilation
to generate a global parser, even if there is only a slight

modification in the grammar. Some of those parser genera-
tors may statically check the correctness and unambiguity
of grammars. In contrast, because our approach is based
on parser combinators, there is no support for ambiguity
checking. However, as far as we are aware, no extensible
parser generators support separate compilation or modular
type-checking. It is worth mentioning that in [44], users can
define grammar fragments as typed Haskell values, and com-
bine them on the fly. Later they are processed by a typed
parser generator. Nevertheless this requires a lot of advanced
language features, making client complex. Our approach is
simple and a straightforward use of OO programming, and
makes parsing code directly reusable.
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Macro systems like the C preprocessor, C++ templates and
Racket [42], and other meta-programming techniques are a
similar area aiming at syntactic extensibility. Sugar] [14] con-
veniently introduces syntactic sugar for Java using library
imports. Composition of syntactic sugar is easy for users,
but it requires many rounds of parsing and adaption, hence
significantly affects the efficiency of compilation. Since the
implementation was based on SDF [25] and Stratego [45],
it does not support separate compilation. Racket adopts a
macro system for library-based language extensibility [42].
It uses attributed ASTs for contextual information, and ex-
tensions can be integrated in a modular way. However such
modularity is not flexible enough for language unification, as
the syntax is only built from extensions. Extensible compilers
like JastAdd [13] and Polyglot [32] also support extensible
parsing, but it is mostly done using parser generators. They
focus on the extensions to a host language. Those techniques
are short of type safety in a modular setting as well.

Extensible Parsing Algorithms Parse table composition [6,
39] is an approach where grammars are compiled to modular
parse tables. Those parse tables are expressed as DFAs or
NFAs, and later they can be composed by an algorithm, to
provide separate compilation for parsing. The generation
of parse tables can be quite expensive in terms of perfor-
mance. The approach is quite different from ours, since it
uses parse tables, whereas we use parser combinators. Our
approach supports both separate compilation as well as modu-
lar type-checking, and is commonly applicable OO languages.
Moreover, the extensibility of parsing is further available at
language composition.

Parser Combinators Parser combinators have become more
and more popular since [7, 46]. Many parsing libraries pro-
duce recursive descent parsers by introducing functional
monadic parser combinators [26]. Parsec [28] is perhaps the
most popular parser combinator library in this line. It is
widely used in Haskell (with various “clones” in other lan-
guages) for context-sensitive grammars with infinite looka-
head. Nevertheless, Parsec users suffer from manual left-
recursion elimination, high cost for backtracking and longest
match composition issues, as we discussed in Section 2.1.
Those limitations make Parsec (and similar parsing tech-
niques) inadequate for modular parsing.

Some recent work on parser combinators [19, 20, 30] pro-
posed a series of novel parsing techniques that address the
issue of left-recursion. We chose Packrat parsing due to its
simplicity in Scala, but in general there are alternatives to it.

Extensibility Various design patterns [21] in multiple lan-
guages, have been proposed over the years to address extensi-
bility problems, such as the Expression Problem [47]. The fa-
mous “Datatypes a la Carte” (DTC) [41] approach represents
modular ASTs using co-products of every two functors. Sev-
eral variants of DTC have been later proposed [2, 3, 11]. All
of that work essentially covers how to traverse and consume
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extensible ASTs. However they do not address the problem
of modularly parsing extensible ASTs. Only in Bahr’s [3] work
unfolds is briefly mentioned, yet it does not cover parsing.

There are also many design patterns in OO languages
that achieve type-safe extensibility [9, 10, 33, 43, 48]. We
chose Object Algebras [10] because the pattern is relatively
lightweight and makes good use of existing OO features, such
as inheritance, generics and subtyping. As seen throughout
the paper, the parsing code is concise and expressive using
Object Algebras.

Case classes in Scala can encode algebraic datatypes that
allow the addition of new constructors. However such “open”
case classes do not enforce exhaustiveness of pattern match-
ing for extensible operations, and thus do not provide a
full solution to the Expression Problem. Nevertheless case
classes are widely used in practice, and a solution for parsing
open case classes (and composing such parsers) is quite rele-
vant in practice. The techniques in Section 3 can be readily
adapted to work with case classes. The work by Sloane and
Roberts [40] on a modular Oberon compiler applied simi-
lar techniques with packrat parsers and case classes. In our
work we use Object Algebras for full extensibility and type
safety, and we have well studied the algorithmic challenges
of parsing in a modular setting.

8 Conclusion

This paper presents a solution for type-safe modular parsing.
Our solution not only enables parsers to evolve together
with the abstract syntax, but also allows parsing code to be
modularly type-checked and separately compiled.

We identify the algorithmic challenges of building modu-
lar parsers, and use standard OO techniques including inher-
itance and overriding for our goal. However, the extensibility
issue of traditional OO ASTs motivates us to adopt Object
Algebras for full extensibility and more useful features. Then
language feature abstraction further enhances code reuse
and modularity. The TAPL case study demonstrates that a
lot of boilerplate can be reduced by modular parsing.

There are certainly some aspects that can be improved.
We observed that the glue code of composition appears to
be boilerplate, for which family polymorphism [15] is a po-
tential solution. Moreover, we can possibly adopt the Shy
framework [51] and algebra composition patterns [12], to
improve the usage of Object Algebras. For future work, it
will be interesting to see how modular parsing appears in
functional programming languages, as they usually do not
support subtyping or inheritance. Potentially open recur-
sion [8] can contribute.
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