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ABSTRACT

Finding motifs is an important problem in computational
biology. Our paper makes two major contributions to this
problem. Firstly, we better characterize the types of prob-
lem instances that cannot be solved by most existing meth-
ods of finding motifs. Secondly, we introduce a different
method, which is shown to succeed for various problem in-
stances for which popular existing methods fail.

Most existing computational methods to finding motifs are
based on the strong-signal model wherein only strong-signal
sequences (i.e. those that are known to contain binding sites
very similar to the motif) are considered as input and weak-
signal sequences (i.e. those do not contain any sub-string
similar to the motif) are disregarded.

Buhler and Tompa have studied the limitations of meth-
ods based on the strong-signal model. They characterized
the problem instances for which the motif is unlikely to be
found in terms of the number of input (strong-signal) se-
quences needed under the assumption that each input se-
quence contains exactly one binding site. They further gave
a method to calculate the minimum number of input se-
quences required.

We re-characterize the limitations of the strong-signal model
in terms of the minimum total number of binding sites,
rather than the minimum number of strong-signal sequences,
required to be in the input data set. We use a probability
matrix to represent a motif instead of a string pattern to cal-
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culate the minimum total number of binding sites required.
This new characterization is shown to be more general and
realistic.

Next, we introduce a more general and realistic energy-
based model, which considers all available sequences (includ-
ing weak-signal sequences) with varying degrees of binding
strength to the transcription factors (as measured experi-
mentally by observed color intensity). Given varying degrees
of binding strength, our model can consider sequences rang-
ing from those that contain more than one binding site to
those that are weak sequences. By treating sequences with
different degrees of binding strength differently, we develop a
heuristic algorithm called EBMF (Energy-Based Motif Find-
ing algorithm) using an EM-like approach to find motifs
under our model. This EBMF algorithm can find motifs
for data sets that do not even have the required minimum
number of binding sites as previously derived for the strong-
signal model. Our algorithm compares favorably with com-
mon motif-finding programs Align ACE and MEME, which
are based on the strong-signal model. In particular, for some
simulated and real data sets, our algorithm finds the motif
when both AlignACE and MEME fail to do so.

Categories and Subject Descriptors

J.3 [Computer Applications]: Life And Medical Sciences—
Biology and genetics

General Terms
Algorithms

Keywords

Motif Finding, Transcription Factor, DNA Microarray, Bind-
ing Energy

1. INTRODUCTION

One great challenge in molecular biology is to understand
the regulation of gene expression - the process by which
a segment of DNA is decoded to form a protein. Two
main steps for gene expression are transcription and transla-
tion. During the transcription process, an mRNA molecule
is formed by copying a gene from the DNA. During the trans-
lation process, the mRNA is decoded to produce a protein.

To start the transcription process for a particular gene, one
or more corresponding proteins, called transcription factors,



have to bind to several specific regions, called binding sites,
in the promoter region of the gene. A transcription factor
can bind to multiple binding sites, but these sites typically
have similar length (usually about 8 to 20 bp) and a com-
mon DNA sequence pattern. For most transcription factors,
the common patterns for their corresponding binding sites,
simply referred to as the motifs, are still unknown. Many
laboratory-based methods for motif identification have been
developed. However, these experimental methods are both
expensive and time-consuming.

A recent trend in motif-finding is to make use of compu-
tational methods based on microarray data. Most existing
computational methods [1, 2, 6, 7, 10, 11, 13, 15] are based
on having a set of sequences that are known to contain bind-
ing sites with strong signals (i.e. the strong-signal model)
as input. These approaches assume that a sufficient num-
ber of such strong-signal sequences are available. However,
this assumption may not be valid for some transcription
factors, and the number of strong-signal sequences may be
too small to successfully find the motif using existing meth-
ods. Some motif-finding algorithms also consider sequences
that are known not to contain any binding sites, in addition
to strong-signal sequences [3, 8]. However, for these algo-
rithms, the number of weak-signal sequences with plausible
binding sites is used in the hyper-geometric analysis in or-
der to compute the probability of such occurrences under the
null-hypothesis. The lower the probability, the more plau-
sible that such occurrences are not artifacts. No attempt is
made to exploit the patterns of sequences without binding
sites in order to find the motifs more effectively. Sequences
without binding sites should not contain any patterns sim-
ilar to the motif, and this can be a useful form of infor-
mation. In fact, all sequences, strong-signal or weak-signal,
with multiple occurrences of binding sites or without bind-
ing sites contain different information about the motifs in
various forms and can be useful for motif-finding.

In this paper, we focus on finding motifs for data sets that
contain insufficient number of sequences with strong signals.
We first study the limitations of existing methods that are
based on the strong-signal model. Then we introduce a more
general and realistic energy-based model for dealing with
data sets containing insufficient number of sequences with
strong signals. The approach we use is different from that
in [3, 8] in the sense that our model can handle sequences
containing a varying amount of signal, i.e. varying from se-
quences contain multiple binding sites to sequences without
any binding sites. Last, we show how our algorithm finds the
correct motif under those situations that algorithms based
on strong-signal model fail to do so.

1.1 Better Characterization for Strong-Signal
M odel

Buhler and Tompa [6] have studied the limitations of compu-
tational approaches based on the strong-signal model. They
proposed a method to calculate the minimum number of in-
put sequences required and showed that, if the number of
input sequences is less than the minimum requirement, it
is unlikely that there exists a computational approach that
can identify the motif.
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One important assumption in their study is that each input
sequence contains exactly one binding site. In real situa-
tions, there can be multiple occurrences of binding sites, or
multiple binding sites, for the same transcription factor in
one sequence [4, 5, 12]. In other words, even if the num-
ber of strong-signal sequences in the input data set is small,
there may still be enough binding sites or signals to enable
the discovery of the motif. This observation is supported by
an experiment using only three very special sequences with
strong signal as input to identify the motif for GAL4, where
each of the three sequences contained multiple binding sites
(see Section 2 for more details). We tested this input set
on two common motif-finding programs, AlignACE [7, 15]
and MEME [1], which are based on the strong-signal model.
We found that both programs could successfully identify the
motif. Some natural questions to ask are then: how do we
decide whether an input data set has enough signals for mo-
tif recovery, and what are the limitations of strong-signal
model if we allow multiple binding sites in each sequence?

Our first contribution is to improve Bulher and Tompa’s
results by allowing multiple binding sites in each sequence.
We characterize the limitations of the strong-signal model in
terms of the minimum total number of binding sites, rather
than the minimum number of strong-signal sequences, re-
quired to be in the input data set. Bulher and Tompa rep-
resent a motif of length [ by a length-/ string. A more general
representation, which is used by most existing approaches,
makes use of a probability matrix. The probability matrix is
a 4 x [ matrix where the rows are indexed by the nucleotides
“A” “C” “G”,“T” and each entry in the k-th column of the
matrix represents the probability of the nucleotide’s occur-
rence at position k of the binding site. So we represent a
motif by a matrix instead of a string. Our characterization
on the limitation of the strong-signal model is confirmed by
some data sets on programs AlignACE and MEME.

1.2 Energy-Based Model

Existing algorithms are not effective to identify the motif
for input data sets that contain insufficient number of se-
quences with strong signals (see Section 2 for experimental
results). Our main contribution is a new approach to solv-
ing this problem.

Existing algorithms have the following problems. They as-
sume that each binding site in the strong-signal model con-
tains the same amount of signals. However, in reality, differ-
ent binding sites have different binding strengths with the
transcription factor, thus contain different amounts of sig-
nals. Also, sequences having comparatively weak signals (in-
cluding sequences with a weak binding to the transcription
factor and sequences without binding sites) are not used. In
fact, these ignored weak-signal sequences also carry useful
information for identifying the motif.

In our model, we introduce a more general and realistic
energy-based model to capture previously-ignored informa-
tion. We make use of the additional information from exper-
iments and consider the binding strength (as measured ex-
perimentally by observing color intensity) of each available
sequence. Intuitively the binding strength should relate to
the degree of similarity between the motif and the binding



site in each sequence. Based on the binding strength, our
model considers the amount of signals that a sequence actu-
ally contains. This allows us to make use of sequences with
not so strong or even weak signals.

We then formulate the motif-finding problem in a way that
allows multiple occurrences of binding sites in each sequence.
We develop a heuristic algorithm call EBMF (Energy-Based
Motif Finding algorithm) to solve the problem. We com-
pare the performance of EBMF with those of AlignACE and
MEME. EBMF is shown to be effective on both simulated
and real data when the data sets contain insufficient num-
ber of sequences with strong signals. In particular, in our
test cases, EBMF is able to identify the motif while both
AlignACE and MEME fail to do so.

Our paper is organized as follows. Section 2 discusses the
limitations of the strong-signal model when given input se-
quences with multiple binding sites. Section 3 presents the
energy-based model. We also show how to convert existing
experimental data to fit our model. A heuristic algorithm
EBMF is given in Section 4. Section 5 compares the perfor-
mance of EBMF with AlignACE and MEME. A conclusion
is given in Section 6.

2. THELIMITATION OF THE
STRONG-SIGNAL MODEL WITH
MULTIPLE BINDING SITES

With the assumption that each sequence contains exactly
one binding site (a substring which is close to the motif in
hamming distance), Buhler and Tompa [6] have studied the
minimum number of input sequences required for finding
the motif based on strong-signal model. In this section, we
use a probability matrix to represent a motif and improve
their results by allowing multiple binding sites in a sequence.

Let a motif of length [ be represented by a 4 x [ probability
matrix M where M(c,j) represents the occurrence proba-
bility of the nucleotide ¢ in the j-th position of a binding
site. Given t input sequences each of length n, those algo-
rithms based on strong-signal model want to find a prob-
ability matrix M and a background probability Py (which
represents the occurrence probabilities of “A”, “C”, “G”,
“T” in the non-binding regions), which maximize the log
likelihood (see [1]) of the ¢ sequences generated according to
the background probability Py with implanted binding sites
generated according to matrix M. Formally, the log likeli-
hood of a binding site b generated according to matrix M
is L(b,M) = Zi’:l log M (b[i], ). Assuming the background
occurrence probabilities of “A”, “C”, “G”, “T” are equal,
i.e., each with 0.25 occurrence probability, the log likelihood
of t length-n input sequences generated according to M and
Po is

Liotar(M) = max {Z L(bk, M) + (tn — Bl) 10g(0.25)}
k=1

among all possible sets of B non-overlap binding sites {bx}
in the t sequences.

Suppose the input sequences are generated based on this
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model, that is, we generate ¢t random sequences of length n
based on the probability distribution Py and plant in them
B™ instances of a motif randomly generated according to
an arbitrary profile matrix M*. Intuitively, if B* is small
or M* looks too much like the background distribution, no
algorithms can possibly pick out the B* instances from the
sequences without knowing M*. It is because there exist
many matrices M different from M* (in the sense that the
most probable strings generated according to M are quite
different from those generated according to M), which have
a log likelihood no less than Liotqi(M ™). Therefore, the ex-
pected number of matrices, whose log likelihood are no less
than Liotqr(M™), gives us an idea if it is possible to find the
motif M™* from the input sequences. If the expected num-
ber of matrices is large, then finding the motif is impossible,
otherwise it is highly probable.

Given a string @ of length | and a Hamming distance d,
we define a probability matrix Mg 4 such that for any j-th
column of the matrix, the entry corresponding to the j-th
character in @ is (I — d)/l while the other entries in the
same column are d/3l. We want to find the expected num-
ber of matrices in this format which have log likelihood no
less than Liotai(M™). If the expected number of matrices
even in this restricted format and with log likelihood no less
than Liotqr(M™) is large, it is impossible to find the motif
M™* without extra information.

Assume the correct matrix is M™ and the expected log like-
lihood of a binding site b generated according to the matrix
M* is Lg. If the t sequences contain exactly B* binding
sites with respect to M™, we can calculate the log like-
lihood of the ¢ sequences generated according to M* as
Liotal(M*) = B*Lg + (nt — B*1)log(0.25). Now let us con-
sider the log likelihood of a probability matrix Mg q. If
the Hamming distance between a binding site b and @ is
within d for d < 31/4, then we can show that L(b, Mg,q4) >
(I—d)log[(l—d)/l]+dlog(d/3l). The log likelihood of the ¢ se-
quences generated according to Mg q is Liotai(Mg,a) which
is no less than BL(b, Mg q4) + (nt — Bl)log(0.25) if the input
sequences contain B non-overlap substrings whose Hamming
distances from @ are within d (B can be different from B*).
Any Mg.q may be considered as a possible solution for the
motif-finding algorithm if Liotai(Mg,a) > Liotar(M™).

Given string @ and a random substring b (both of length-I
and with equal occurrence probabilities for “A”  “C”, “G”,
“T”), the probability that the Hamming distance between
Q@ and b is at most d where 0 < d <1 is

n=x (DG G

i=0
Let X be the sequence formed by concatenating the ¢ input
sequences (the length of X is nt) and b; be the i-th substring
in X such that the Hamming distance between b, and @ is
at most d.

We want to partition the sequence X into several non-overlap
segments X [k;—1 +1...k;] such that at the end of each seg-
ment, there exists exactly one substring b; = X[k; — 1 +
1...k;] whose Hamming distance with a fixed string @ is at
most d. Let Bpos(p,q) be the probability for the substring



XIp...q] such that the Hamming distance between @ and
X[j...j+1—1], where p < j < g—1, is larger than d while
the Hamming distance between Q and b; = X[g—1+1...¢]
is at most d. We have Bpos(p,q) = (1 — pa)? P "'p,.

Consider the probability Pg,p that X contains exactly B
non-overlap substrings b; at the positions X[k; — 14+ 1... k]
such that the Hamming distance between b; and @ is no
more than d while all other length-I substrings in X are of
Hamming distance more than d from @. Depending on the
position of the last substring bg, there are two cases to be
considered.

Case I: kg > nt — [ (the substring in X after the last bind-
ing site has length less than [, so it is impossible to have a
binding site after kg)

B
Po.5 = [ [ Bpos(ki-1 + 1, ki) = (1 = pa)"#~"'p7

i=1

Case II: kp < nt —1

B
Py = (1 - pd)ntikBiHl H BpOS(ki—l +1, kz)
i=1

= (1= )" (L= o)

Note that the probability Pg,p is independent of the posi-
tions of the substrings b; but depends on the ending position
of the last binding site kg. The probability Pg g can then
be expressed in term of the position of the last binding site
j, the Hamming distance d and the number of binding sites
B as follow,

(1 —pa)P'pg
(1= pa)™ 9711 =

The probability of X that contains exactly B non-overlap
substrings b; (without considering the positions of the sub-
strings) such that the Hamming distance between b; and
Q@ < d is the sum of probabilities Py g for all possible posi-
tions for the set of substrings {b;}

(

Assume X contains exactly B non-overlap substrings {b;}
such that the Hamming distance between b, and @ is no
more than d. For each substring b;, L(b;, Mg.a) > (I —
d)log[(l — d)/1] + dlog(d/3l). Thus the log likelihood
Luotat(Ma.a) > B(l — d) log{(l — d) /1] + dlog(d/31)] + (nt —
Bl)log(0.25).

j—BIl, B

pg otherwise

PB(j,d,B) = { pa)

nt

>

j=Bl

j—Bl+B-1

51 )PB(j,d,B)]

The probability of X such that Liotai(Mg,q) > Liotar(M™)

1S
Int/l] nt .
S A (PRI ) et
k=B’ | j=Fk

where B’ is the smallest number of binding sites for a ma-
trix Mg,q such that the log likelihood of the t sequences
generated according to Mg q is no less than Lot (M), i.e.

B'[(1—d)log 54 + dlog £ ]
> B*Lg + (nt — B*1)1og(0.25) ... (1)

j>nt—1
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By considering all possible substrings @ of length [ and Ham-
ming distance d, the expected number of matrices Mg q such
that Liotai(Mq,d) > Liotar(M™) is approximately

E(Lg,B")
[31/4] |nt/1] nt .

. j—kl+k—1 )

= S S (IR ) pagan)
d=0 k=B’ j=kl

According to Equation (1), B’ is a function of Lg and B*.
(This is an approximation because the log likelihood of a
given motif Mg a4, Liotat(M@Q,d) > Liotar(M™) does not oc-
cur independently)
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Figure 1: E(Lg,B*) for different values of B* and En
where Ly = En x [, t =10, n =700, [ = 17
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Figure 2: E(Lg, B*) for different values of l and En where
Lg=Enxl, t=10, n="700, B* =10

Figure 1 shows the expected number E(Lg, B*) of matri-
ces Mg,q with a log likelihood Liotai(M@,q) > Liotai(M™) for
10 input sequences, each of length 700 and the length of the
motif is 17. It shows that the minimum required number of
binding sites in the input sequences should be 7, 8, 9 (when
the expected number of matrices E(Lg, B*) < 1) for En
=-0.5,- 0.6, - 0.7 and L = -8.5, -10.2, -11.9 respectively,
where Lg is the expected log likelihood of a binding site and
En = Lg/l is the expected log likelihood of a nucleotide in
a binding site (note that it is negative of the entropy of a
column in M™). If the value of En increases, it means that
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Figure 3: E(Lg,B*) for different values of ¢t and En
where Ly = En x 1, n =700, | =17, B* =10

each binding site contains more signal and less binding sites
are required for finding motif. In other words, if the in-
put sequences do not contain the least amount of binding
sites, it is unlikely that any motif-finding algorithms based
on strong-signal model can identify the real motif without
extra information. Figure 2 shows the minimum required
length of the motif for 10 input sequences of length 700
with 10 binding sites in total. As indicated in Figure 2, the
shorter the motif, the less likely that the motif can be iden-
tified. For En = -0.5, -0.6, -0.7, the minimum lengths of
the motif are 11, 13 and 15 respectively. Figure 3 shows the
tendency of the values of E(Lg,B*) for different numbers
of sequences of length 700 when the length of the motif is
17 and there are 10 binding sites in total. As indicated in
Figure 3, if the total number of binding sites is fixed, the
more the number of sequences in the input, the more noise
in the data and the more difficult to find the motif.

We can also confirm our analysis by experiments which il-
lustrate the limitations of existing programs, such as Alig-
nACE and MEME. Gal4 is a well-studied transcription fac-
tor which activates genes necessary for galactose metabolism.
Bing Ren et al.[14] found 10 genes to be bound by Gal4 and
induced in galactose. The exact binding sites for most of
these genes can be found in [4, 5, 12]. Given the 9 sequences
of the intergenic regions (the gene Gall and Gall0 share one
intergenic region), we want to test whether MEME and Alig-
nACE can find the published motif pattern CGGN11CCG
of Gal4 in different input sequences with different values of
B*. From the published binding sites, we calculate the ex-
pected log likelihood Lg of a binding site which is -11.47
(En = —0.67). Table 1 confirms our analysis that motif can
be found in the first three cases and definitely not in the
last case. In the first three cases, the values of F(Lg, B*)
are very small and the numbers of binding sites in the input
data are more than the minimum number required. On the
other hand, in the last case, E(Lg, B*) is much larger than
1 and the number of binding sites is less than the minimum
number required, so it is difficult to find the correct motif
pattern.
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Table 1: Results of AlignACE and MEME on Gal4

0 B | Min B E(Lg, B) AlignACE MEME
Find? rank | Find? rank

9 seq. | 762 | 18 9 3.055 x 10 02 yes 1 yes 1
3seq. | 787 | 11 7 1.490 x 10— 23 yes 1 yes 1
8 seq. | 736 | 13 9 2.301 x 10 22 yes 1 yes 1
7 seq. | 746 | 9 9 2.298 x 107 yes 1 no
6 seq. | 749 | 7 9 2532 no B no

Min B is the minimum value of B such that F(Lg, B) < 1.

3. OUR ENERGY-BASED MODEL AND
PROBLEM DEFINITION

In order to make use of the information contained in weak-
signal sequences for motif finding, we propose a more general
energy-based model in this section. In the next subsection,
we show an example how to estimate the binding energy
between a sequence and a transcription factor from a real
experiment.

3.1 Applying the Model to a Real Case

In the microarray experiment, multiple copies of a transcrip-
tion factor TF are added to a solution of genome of a par-
ticular organism. At the equilibrium state, some copies of
transcription factor may bind to the binding sites of different
sequences s; in the genome while some copies of the tran-
scription factor and sequences are free. Let e; be the average
binding energy between the transcription factor TF and se-
quence s;, then e; = —In(K.) where the binding constant
K. = [TF e s;]/[TF][s;] (number of sequences bound to the
transcription factors over number of free sequences) with
the binding reaction modeled by TF + s; <= TF e s; [9].
Note that the unit of e; is in (RT') where T is the constant
temperature throughout the experiment and R is a constant.

For each sequence in the genome of a particular organism,
we will get from the experiment a color intensity which rep-
resents the value of K.. Therefore, the color intensity can
be used to estimate the binding energy between the tran-
scription factor and each input sequence.

3.2 Energy-Based M odel

In our model, we do not treat the input sequences equally.
Each sequence is associated with a value e; which represents
the binding energy between the transcription factor and its
binding sites (which can be multiple). Let sequence s; con-
tain B; binding sites and E(b;j, M) be the binding energy
between the transcription factor and the j-th binding site
bi; in sequence s;. The probability that the transcription
factor binds to b;; [9] is

e~ B(bij, M)

Pi=—
B, _E(b;,,M) "’
Dkl € (b M)

-(2)

We use a 4 x [ energy matrix M to represent the motif where

the row of this matrix is indexed by “A”,“C” ,“G”,“T”. M (¢, j)

represents the binding energy of the transcription factor
and the nucleotide ¢ at the j-th position of the binding
site. The total binding energy between binding site b and
the transcription factor can be approximated by E(b, M) =
22:1 M (b[j], j) where b[j] is the j-th character of b.




The set of substrings in a sequence s;, which are likely to
be bound by the transcription factor, is said to be the bind-
ing sites of s;. For a sequence s;, the binding sites b;; are
those substrings with E(b;;, M) < a where « is a determined
threshold. If s; does not contain any substring b such that
E(b,M) < «, the substring b with the lowest E(b, M) will
be chosen as its binding site. As for those binding sites that
are too close to each other, i.e., the distance between each of
two binding sites is less than some determined value dmin,
we assume that there will not be two or more transcription
factors bound to these binding sites simultaneously. While
for those binding sites whose distances are larger than dpin,
each of them can be bound by a transcription factor at the
same time. We define Eyotq1(ss, M) to be the expected bind-
ing energy between the transcription factor and sequence s;
given that at least one binding site in s; is bound by the
transcription factor.

3.3 Problem Definition

Given the length of binding sites [, an energy threshold «, a
distance threshold dmin, t sequences S = {s;} in which each
sequence s; has a corresponding binding energy e;, we want
to find a 4 X | energy matrix M to minimize the prediction
error
t
Z(Etotal(siy M) - ei)2

i=1

4. ENERGY-BASED FINDING MOTIF
ALGORITHM

EBMF tries to predict the 4 x [ energy matrix M from the
input sequences using two steps. In the first step, we iden-
tify a set of candidate matrices based on the strings that
occur frequently in the input sequences of strong signal. In
the second step, we refine each candidate matrix using an
EM-like iteration, which can be described as follows. Based
on the candidate matrix, find the best possible binding sites
for each sequence (see Section 4.2). These binding sites to-
gether with the given binding energy for each sequence are
used to calculate another energy matrix so as to minimize
the prediction error. The iteration process is repeated until
there is no further decrease in the prediction error or the
number of iterations reaches a certain value. After process-
ing all candidate matrices, the top 10 matrices that give the
smallest prediction errors are considered as the actual en-
ergy matrices. We first describe the details of an EM-like
step in refining the candidate matrix.

4.1 Refinethe Candidate Motif

Let the B; best possible binding sites be b1, . .., b, for each
sequence s; with respect to candidate matrix M. Based on
the user input dm.n, we estimate the expected binding en-
ergy Eiotai{si, M'} for an arbitrary matrix M’ as follows.
We divide the B; binding sites b;; into several groups de-
scribed by subsets BSi1, ..., BS;, of binding sites b;; where
BS;1U...UBSip = {bi1,...,bin, }. For any two binding sites
in the same group BS;k, the distance between them is within
dmin (i.e. if bim, bin € BSik then the distance between bim
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and bin < dmin) while the distance between any two bind-
ing sites in different groups is larger than dmin. Note that
BSi1,...,BSi, may not be disjoint; however, in practice,
they are disjoint in most cases. The expected binding en-
ergy of a transcription factor bound to a binding site in B.S;x
is ZbijeBS,',k P E(b;;, M') where P;; is given in Equation
(2). Given that at least one binding site is bound by the
transcription factor, the expected binding energy between
the transcription factor and sequence s; can be calculated
as follows:

>

Py E(bij, M)

b;; €EBS;k
Etotal(sivM/) = Z -
all BS;
LS SR ot
all BS; b;;€EBS;i
> PyBE(by, M)
_ je{1,...,B;}
TN CED o
all BS; bi; €BS;x

We then formulate an equation by setting this expected
binding energy equal to the given binding energy of that se-
quence, that is, Fiota(si, M') = e;. With ¢ input sequences,
we have a system of ¢t equations. We use QR decomposition
to solve this system of equations to obtain all 4] entries of
the new energy matrix M’ that minimizes the predication
error.

Technically, we convert each character in b;; for any j in
BS;k to a 4-dimensional vector by using (1,0,0,0), (0,1,0,0),

(0,0,1,0) and (0,0,0,1) to represent “A”, “C”, “G” and “T”

respectively. The resultant 4/-dimensional vector v;; is used
to represent the binding site b;; of length [. For example, we
convert “ATC” to a 12-dimensional vector (1,0,0,0,0,0,0,1,0,1,
0,0). Then, the equation for sequence s; can be represented
as follows,

1 —
b

xV(M)T =e;

X Vij

Jj=1 1— H

all BS;

>

Pim

imEBS;k )
where P;; is the probability that the transcription factor
is bound to bj; w.r.t. M (see Section 2.2) and V(M') =
(M'(1,1), M'(2, 1), M'(3,1), M’ (4, 1), M'(1,2), ..., M'(4,1))
represents the vector formed by concatenating the column
entries of M.

4.2 Finding Candidate Matrices

When the algorithm based on the energy model is applied
to find the motif, not all the initial matrices can converge
to the correct matrix M™*. The success of the algorithm
depends very much on the set of candidate matrices chosen
as “seed”. For example, if we use a random string @ of
length [ to construct a 4 x [ matrix M as the seed where
M(QJi],i) = —1 for 1 < i <! and 0 for all other entries, it
can be confirmed from experiments that the success rate is



very low at about 0.3%. In the following, we show a better
method of finding the seeds.

4.2.1 Improved Method for Finding Seed

Our approach to find a seed matrix is to select the most
likely string @ among the 4' possible strings by voting. Each
substring o of length | appearing in the input sequences will
give a score to every string @ with similar pattern (that is,
the hamming distance between o and @ is within a given
threshold). The set of strings received the highest scores
will be chosen for converting to seed matrices. However,
the votes should carry different weights depending on the
binding energy e; of the sequence from where o is derived.
In our experiment, we have defined the score function as
follows.

—ei/ TIV2, Po(Q[K))

Score(s;, Q) =
0 otherwise

where H (o, Q) defines the hamming distance between o and
Q and Py(c) the occurrence probability of ¢ in X where c is
“A77 , “C” , “G77 , or “T” )

In general, it is very time-consuming to find the highest
scoring @ among the 4' (= 234 if [ = 17) possible strings. In
order to reduce the number of tests, we need to reduce the
length of the “seed”. Omne way to do this is the following.
Given a string @ of length I, we project the [/2 characters
at the odd positions of C' to form a representative string of
length [/2. For example, when [ = 8, we will use “ACAC” to
represent “ATCGATCG”. We modify the scoring function
such that H (o, Q) is the hamming distance between the rep-
resentative string of o and @, and we calculate the product
of Py(Q[k]) for odd number k only. Instead of finding the
scores of all the 4! possible strings of length [, we find the
scores for the 42 representative strings of length /2 and
use those representative strings with high scores to predict
the candidate matrices. Similarly, we can get another set
of candidate matrices if we project the even positions of a
string to form the representative string.

5. EXPERIMENTAL RESULTS

We have implemented EBMF in C++ and tested it on both
real data and simulated data. We compare EBMF with com-
mon motif-finding programs AlignACE and MEME. The re-
sults show that EBMF is effective and compares favorably
with these programs.

5.1 Simulated Data

Let m be the total number of sequences, n be the length
of each sequence, t be the number of sequences with bind-
ing sites and B* be the number of binding sites in the ¢
sequences, we generate the simulated data as follow. A
4 x | energy matrix E* is generated randomly and a cor-
responding probability matrix M™ is constructed such that
for each column j in M™*, the probability of the occurrence
of a nucleotide c is directly proportional to e P73 Then
we generate m sequences of length n where each nucleotide
occurs with equal probability, and plant B* binding sites

if 3 a substring o in s; s.t. H(o,Q) < |I/8]
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Table 2: Results of the algorithms on simulated data for
200 sequences of length 700 where 10 of them contain B
binding sites of length 17 with expected likelihood -10

E(Lg, B) EBMF AlignACE MEME
Find?  rank | Find?  rank | Find?  rank
B =7 149475 yes T no no
B =38 0.000439 yes 1 no yes 1
B =9 | 7.70349 x 10" yes 1 yes 1 yes 1

Table 3: Results of the algorithms on simulated data for
200 sequences of length 700 where 10 of them contain B
binding sites of length 17 with expected likelihood -8.8

E(Lg, B) EBMFE AlignACE MEME
Find?  rank | Find?  rank | Find?  rank

B =26 619609 yes 1 no no

B=7 0.000439 yes T o yes T

B =8 | 7.70353 x 10~/ yes 1 yes 1 no

(generated according to the probability matrix) in these t
sequences at random positions. Finally, we use the energy
matrix E* to calculate the energy level e; = Fiotai(si, E*)
of each sequence s;.

Tables 2 and 3 show the results of AlignACE, MEME and
EBMF on the simulated data. There are situations in which
EBMF finds the motif while AlignACE and MEME fail to
do so. This is because when the number of binding sites in
the sequences is small, there exist many matrices whose log
likelihoods are no smaller than that of matrix M ™. In fact,
there is an infinite number of such matrices. When these
matrices in turn represent many different strings, Align ACE
and MEME will fail. The EBMF algorithm can help in these
situations by using weak-signal sequences to eliminate the
number of matrices and, more importantly, the number of
different strings they represent, to the extent that the motif
can be found.

5.2 Real Data

Using Gal4 as an example, we know from Section 2 that
once we remove several sequences containing multiple bind-
ing sites, both MEME and AlignACE cannot find the motif
pattern CGGN11CCG. [4, 5, 12]. In this section, we test
whether our algorithm can discover the correct pattern in
similar situation.

From the mircoarray experiment (data from [14]), we ob-
tained 6000 intergenic regions (the length of the sequences
is in the range [100, 1000]), each with a color intensity. Af-
ter sorting the sequences according to their color intensities
in decreasing order, we remove the 2,34 and 6 sequences
from the data set, which contain multiple binding sites with
strong signal. We want to find the motif using this weak
data set.

For AlignACE and MEME, no matter how we set the thresh-
old for selecting the top strong-signal sequences, the mo-
tif cannot be found. However, since the EBMF algorithm
take advantage of weak-signal sequences, we can find the
CGGN11CCG pattern using the top 100 sequences(Table
4).



Table 4: Results of the algorithms on Gal4

Our Algorithm AlignACE MEME
Find? rank Find? rank Find? rank
Using the top 100 sequences yes 2 yes 1 yes 1
in the original data
Using the top 100 sequences yes 1 no no
except sequences 2,3,4 and 6
Using the top 100 sequences yes 10 no no
except sequences 1 to 6
Using the top 100 sequences yes 5 no no
except sequences 1 to 8

We set the numbers of input sequences be different values for
AlignACE and MEME. We say AlignACE and MEME can find
the motif if they can find the CGGN11CCG pattern in at least
one setting.

6.

CONCLUSION

In this paper, we have characterized data sets for which
existing motif-finding algorithms, which are based on the
strong-signal model, succeed to find the motif in terms of
the minimum number of binding sites the data set must
have. This characterization provides a better description of
the data set for which we can expect success.

Commonly-used motif-finding programs, such as AlignACE
and MEME, are based on strong-signal model, where the
patterns of weak-signal sequences are ignored. Clearly, weak-
signal sequences, such as sequences without binding sites,
also contain information about motif in the negative sense,
although possibly less than information from strong-signal

sequences.

For data sets which do not have the minimum

number of binding sites, we have proposed a new EMBF al-
gorithm for finding motifs, which makes use the information
of weak-signal sequences in order to outperform Align ACE
and MEME. However, our EBMF algorithm in its present
state has two shortcomings which require attention and will
be addressed in our future papers.

1. Comparatively, our EBMF algorithm is rather slow

7.
1]

2]

3]

and takes a much longer time to identify the motif
than other motif-finding algorithms. We believe, how-
ever, time improvement can be realized through a more
efficient way of finding “seed” matrices (Section 4.2.1).

. For most data sets, exact information about each se-

quence’s binding energy is not available. It is then
desirable to devise another approach to address data
sets with only two groups of sequences - those with
and those without binding sites.
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