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We consider the following online scheduling problem. We are given a set of jobs, each
having an integral release time and deadline, unit processing length, and a nonnegative
real weight. In each time unit one job is to be scheduled, and the objective is to maximize
the total value (weight) obtained by scheduling the jobs. This problem arises in the
scheduling of packets in network switches supporting quality-of-service (QoS). Previous
algorithms for this problem are 2-competitive.

In this paper we propose a new algorithm that achieves an improved competitive ratio
when the importance ratio is bounded. Specifically, for job weights within the range
{1..B], our algorithm is 2 — 1/([lg B] + 2)-competitive, and the bound is tight.

Keywords: Online scheduling, competitive analysis, importance ratio, quality of service.

1. Introduction

We consider the following simple online scheduling problem. A job g is specified
by a release time r(q), a deadline d{q), both of which are integers, and a nonnegative
real weight w(q), which is the value obtained for processing ¢. All jobs are of unit
length, i.e., require one unit of time to finish execution. Scheduling is done in
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a uniprocessor setting, and one job can be processed at every unit of time. The
objective is to maximize the total value obtained in scheduling the jobs.

We sometimes denote a job by a 3-tuple (r,d, w) representing its release time,
deadline and weight. The span of a job, denoted by span{q), is the time interval
[r(¢),d(q)]- A job is pending if it is released, not completed and its deadline has
not been reached. The scheduling algorithm needs to schedule the jobs online,
i.e., the jobs are only known when they arrive and the algorithm cannot make
changes to the schedule in the past. When a job arrives, all its details are known.
Online algorithms are very commonly analyzed in terms of their competitive ratios,
introduced in [14]. An online algorithm is c-competitive if for any instance of jobs,
the value produced by the online algorithm is at least 1/c¢ that of the optimal
offline algorithm. Competitive analysis and various forms of online scheduling are
discussed in detail in [4, 13].

This unit job scheduling problem was first studied in [11] in relation to the
transmission of packets in network switches supporting Quality-of-Service (QoS).
In those networks, different users can have different guaranteed level of service, and
each packet has a weight representing its QoS value. Network switches use this
information to determine the priority of packet transmission.

One possible algorithm for this scheduling problem is a greedy one, which always
schedules the heaviest job. Another possible algorithm is that, at any time step,
schedule according to the optimal schedule of the pending jobs assuming no further
jobs will arrive. This optimal schedule can be computed as follows: starting from
the heaviest pending job, allocate each job to the latest possible timeslot within its
span. For example, given three jobs ¢ (0,1, 1),¢2(0,2,2) and ¢5(1, 2, 3}, the greedy
algorithm would schedule [go, ¢3] in this order, while the current-optimal algorithm
just mentioned would schedule [g1, ¢3]-

In fact, these two algorithms are described in [5], known as FIRSTFIT (FF) and
ENDFIT (EF) respectively. They are proposed in a slightly different context known
as scheduling with partial merits. In that problem, jobs can have arbitrary lengths,
and a partially processed job receives a partial merit proportional to its length
processed. This is unlike traditional scheduling {3, 12] in which incomplete jobs get
no merit. The partial merit scheduling problem first arises in multimedia content
transmission over a network with low bandwidth [5], but it also has other natural
applications. For more related results in the partial merit model, see [6, 7, §].

In [7] we proved a lower bound of (v/5+1)/2 =~ 1.618 on the competitive ratio for
the ‘non-timesharing’ version of the partial merit model, which can be carried over
to this unit job scheduling problem. (The same bound was proved independently
in [1] and [10].) The simple greedy algorithm that always schedules the heaviest
job is 2-competitive [11, 10]. Since then there are continued efforts to improve the
upper bound, but none of them can give competitive ratio 2 — ¢ for some constant
€*. Hence different special cases have been studied. For example, when all jobs have

aVery recently, Chrobak et al. [9] gives a 1.94-competitive algorithm, the first one to break the
bound of 2 on general instances. Still, our algorithm has better competitive ratio for reasonable
values of B.
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bounded span s, the competitive ratio is at most 2 —2/s + 0(1/s) [2]. In particular,
when s < 3 there is an optimal 1.618-competitive algorithm [2]. On the other hand,
if we allow randomization, a e/(e — 1) & 1.58-competitive algorithm exists {2].

In this paper, we consider the problem from another direction: the case of
bounded importance ratio, where the importance ratio is defined as the maximum
ratio of job weights. We propose an algorithm FIT based on FIRSTFIT and END-
FIT. Both FF and EF are shown to be 2-competitive and their bounds are tight
[5]. FF performs poorly when it schedules a job with far-away deadline that is only
slightly heavier than another job which is reaching its deadline. On the other hand,
EF performs poorly when a very light job is scheduled (because of its earlier dead-
line) instead of another much heavier job, but this heavy job is eventually discarded
because of the future arrival of some other heavy jobs. In fact, these two algorithms
seem complementary to each other, in the sense that ENDFIT performs well on
those instances which FIRSTFIT performs poorly and vice versa. This suggests
that a combination of those two algorithms might be a promising approach for a
new algorithm with better performance. The FIT algorithm is a combination of FF
and EF. It specifies a condition for choosing either FF or EF at every time step.
We show that in the general case, FIT is unfortunately also 2-competitive, and thus
no better than other algorithms. However, we are able to show that FIT performs
better when the importance ratio B is bounded.

The paper is organized as follows. In Section 2, we describe our new algorithm
FIT, and show that it is 2-competitive. In Section 3, we refine the analysis and
show that FIT is (2 — 1/([lg B] + 2))-competitive®. This competitiveness bound
is tight and can be much less than 2, e.g., FIT is 1.75-competitive when B = 4.
Section 4 concludes the paper.

2. Algorithm FIT

Intuitively, either ¢4z, the heaviest job, or ggp, the job planned in the first
position of the ENDFIT schedule®, is scheduled, based on their weights. gmaz 1S
scheduled when w{gmqz) is much larger than w(ggr), i.€., W(gmez) > 7-w(ger) for
some parameter r > 1, otherwise ggr is scheduled. Formally, for a fixed » > 1, our
algorithm FIT, behaves as follows:

At every integer time, let gnq, be the heaviest job, and ger be the
first job in an EF schedule. If w(¢er) < w{@maz)/Ts @maz is scheduled.
Otherwise gg is scheduled.

2.1. Preliminaries

Time is divided into timeslots (or simply slots) of unit length. For any two slots
s and s', s < s’ denotes s is earlier than s'. We also use s to denote an instance of

bThroughout this paper lg denotes log to base 2.

°For jobs with the same weight, we assume that ties are broken in a consistent manner; see [5].
Note that there may be no job planned in the first position in the EF schedule, in which case ¢gF
becomes a null job {—oo, 00,0).
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time: we say ‘time s’ to refer to the moment at the immediate beginning of slot s.

Let OPT and FIT denote the optimal offline schedule and the schedule produced
by FIT,, respectively. H(s) denotes the job in slot s in schedule H; in this paper
H = OPT or FIT. An FF-slot is a slot in FIT where ¢, is scheduled, and
similarly an EF-slot is a slot in FIT where ggr is scheduled. (If the two jobs are
the same job then it does not matter.)

Let EFplan denote the EF schedule that we compute at every time step. It
would be convenient to our analysis to sometimes think of the FIT algorithm as
a 2-stage process. Everytime FIT is invoked, it first goes into the EF-stage to
compute EFplan for all pending jobs (including the jobs just released), determines
geF, and then goes into the FF-stage to determine whether ¢4, is heavy enough
to be chosen instead. We use EFplan(t,s) with s > ¢ to denote the job in slot s
in this plan generated at time {. A pending job in EFplan is said to be planned.
In the proofs we sometimes need the notation EFplan*(t,s), which denotes the
EFplan we immediately recompute for the pending jobs after the FF-stage of time
t, but before the new jobs from time ¢ + 1 arrive. This may be different from
EFplan(t, s) since the job chosen in FF-stage is originally in EFplan but not so
after the FF-stage.

The main idea of the competitiveness proof is to ‘charge’ the jobs in OPT to jobs
in FIT. One straightforward charging scheme is, for every slot s, charge OPT(s) to
FIT(s) if OPT(s) is not too much heavier than FIT(s), otherwise charge OPT(s)
to itself in the FIT schedule. In the following we shall show that when the latter
case happens, OPT(s) must be in an FF-slot in the FIT schedule.

Lemma 1 If a new job arrives, the weight of jobs at any slot in EFplan would not
decrease.

Proof. Suppose a job z is planned in a slot s and after some new jobs arrive, job
y is planned in s instead, where w(y) < w(z). Since EF plans y in s, and z has
higher priority in EF, z must already be planned in some other slot s'. s’ cannot
be earlier than s because EF plans z in as late a slot as possible. s’ cannot be later
than s because if this was possible, then before the arrival of new jobs this should
also be possible, and the original EF'plan would not have planned z in s. Hence
contradiction. O

It is easy to see that if a slot sy is an EF-slot, FIT(s;) = g, then all slots within
span(q) are planned with jobs not lighter than ¢ at time s;. Lemma 2 shows that
this remains true for all later times, even after the arrival of new jobs and/or the
existence of some FF-slots in span(q).

Lemma 2 Let q be a job, [s1..51] be k consecutive slots within span{q), and FIT(s1)
=q. If s1 is an EF-slot, then for all slots s in [s1..54], w(EFplan(t,s)) > w{q) for
all t Z S1.

Proof. We prove by induction on k. The base case k = 2 is easy. Suppose the
claim is true for an interval of 2,3, ...,k — 1 slots. Now consider [s;..s;] where s; is
an EF-slot and FIT(s;) = ¢. By induction hypothesis, all slots s in [s;..sx—1] have
w(EFplan(t,s)) > w(q) for all £ > s;. Thus we only need to prove that

w(EFplan(t, sg)) > w(g) for all t > s (1)
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As explained before, at time s1, w{EFplan(sy, sg)) > w(g). Let S be the set of
jobs in EFplan(s;,s) for all s > s;. All jobs in S have weights < r - w(q), since
otherwise the heaviest one would be scheduled in s;.

Now (1) is true when ¢ = s;. Consider the next time unit s;. We have
w(EFplan(ss, sx)) > w(EFplan(si,sk)) > w(q) by Lemma 1. If so is an FF-
slot, then the job FIT(ss) cannot be from S since they are not heavy enough
( w(EFplan(sz,s2)) > w(g) by induction hypothesis while jobs in S are lighter
than 7 - w(q) ). Then w(EFplan*(sz,s)) > w(EFplan(sy,st)) > w(g). Hence
w(EFplan(ss, s)) > w(EFplant(ss, sx)) > w(q) (Lemma 1). We can therefore go
on to slot s3 and so on, each step still having a job no lighter than w(g) in EFplan
in slot sx. Thus (1) holds for any number of consecutive FF-slots after s;.

If we eventually arrive at some EF-slot s; < s, then consider the interval [s;..s54]:
by induction hypothesis w(EFplan(t, s¢)) > w(EFplan(s;,s;)) for all t > s;, which
is > w(q) by induction hypothesis. Thus (1) holds for ¢ > s;.

If all slots [s2..5x—1] are FF-slots, then none of these slots contain jobs in .S, thus
these jobs are still not scheduled. Thus w(EFplan(sk, sx)) > w(EFplan(sy,st)) >
w(g). Thus (1) holds for ¢ = s.

Therefore in all cases (1) holds. 0O

The following lemma is the contrapositive version of Lemma 2 (applied to a
particular slot sg). It shows that under certain conditions in s, s; must be an
FF-slot. Since it will be used frequently later, we state it explicitly.

Lemma 3 Suppose s; and sy, are slots (sy > s1), FIT(s1) = OPT(si) = ¢, and
q = FIT(st). If sk is an EF-slot and w(q) > w(q'), or sy is an FF-slot and
w(q) > w(q')/r, then s; must be an FF-slot.

Lemma 3 shows that when OPT(s) is not too light compared to FIT(s), and
OPT(s) is scheduled in FIT earlier, then it must be in an FF-slot. But it does not
guarantee the existence of the slot in the first place. The next lemma establishes
the existence of a FIT slot for charging jobs in OPT when, at a certain slot s,
OPT(s) is much heavier than FIT(s).

Lemma 4 For a slot s, if w(OPT(s))/w(FIT(s)) > r, then there exists an FF-slot
s' < s such that FIT(s') = OPT(s).

Proof. If OPT(s) is not in FIT before s, then it is still pending in FIT at time
s, thus the FF-stage of FIT would schedule it, or some heavier job, in s rather than
the current FIT(s). Therefore OPT(s) must be in a slot s’ in FIT before s. That
it is an FF-slot follows from Lemma 3, since we have w(FIT(s')) = w(OPT(s)) >
r - w(FIT(s)), and therefore satisfy the conditions (in fact, more than enough) in
Lemma 3, no matter s is an FF-slot or an EF-slot. O

2.2. Charging Groups

We want to ‘charge’ the jobs in OPT to jobs in FIT. To achieve a good com-
petitive ratio we need to guarantee that the jobs in OPT are not too much heavier
than those in FIT. Naturally, we can charge the OPT job to the FIT job in the
same slot. If the OPT job is much heavier, Lemma 4 tells us that this heavy job



586 S.P.Y. Fung, F. Y. L. Chin & H. Shen

‘40

D518k

H

1] "

i : A

G 5 H

I L H

i L’L/ :
:

paasE I Hilataod 2
EF (15;10) FF (15,21;21) FF (1,9:9) ggg};zlll))
FF (19.40:40) EF (18;18) FF (0.33) FF (19,40:40)
EF (O;1) EF (12:12)

(@) ®) «©) ()
Fig. 1. Charging groups. Numbers represent job weights and we assume r = 2.

appeared in FIT in an earlier FF-slot, and we may charge to there instead. This
leads us to define the following charging rule:

Charging Rule.

For every slot s, if OPT(s) appears in an FF-slot s’ in FIT, charge OPT(s)
to FIT(s') (note that s’ may be earlier than, same as or later than s).
Otherwise charge OPT (s) to FIT(s).

Fig. 1 shows some possible scenarios. It is easy to see that all jobs in OPT are
charged. Each EF-slot in FIT is charged at most once, each FF-slot is charged at
most twice, and charging to a different slot is possible only if the slot being charged
is an FF-slot.

A charging group of a slot s consists of the job FIT(s) and the jobs in OPT
that charge to it. An FF charging group of s (or FF-group for short) consists of a
job y in an FF-slot s, the same job y in OPT in (possibly) another slot s', and may
also include a job z in OPT(s) charging to y in FIT. We denote this by (z,y;y).
An EF charging group of s (or EF-group) consists of a job y in an EF-slot s and
the job z in OPT(s) charging to y. We denote this by (z;y). If the group does not
have some charging jobs, we denote it by e.g. (0,y;y) or (0;y). When no confusion
arises, the z and y inside the symbols (z, y; y) and (z;y) may also denote the weight
of a job instead of the job itself. Fig. 1 shows some charging groups. Define the
charging ratio of a charging group to be the sum of job weights in OPT to the job
weight in FIT of that charging group, i.e., (w(z) + w(y))/w(y) for an FF-group
and w(z)/w(y) for an EF-group.

Lemma 5 The charging ratio of any charging group is at most max(2,r).
Proof. Consider any slot s in FIT, and let z = OPT(s),y = FIT(s).
(i) If s is an EF-slot and
(a) wlz)/wly) < r (e.g., Fig. 1(a) first slot), the charging group is (z;y) and
the claim holds.
(b) w(z)/w(y) > r (e.g., Fig. 1(a) third slot), then z must exist in an FF-slot
s' < sin FIT (Lemma 4). z is therefore charged to FIT(s") and not y.
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Thus the charging group is (0; y), with charging ratio = 0.
(i) if s is an FF-slot and
(a) w(z)/w(y) <1 (eg., Fig. 1(a) second slot), the charging group is (z,y;y)
with charging ratio = (w(z) + w(y))/w(y) < 2.
(b) w(z)/w(y) > 1 (e.g., Fig. 1(c) second slot), then z must exist in a slot
s’ < s in FIT (otherwise y is not the heaviest pending job at time s),
and s’ must be an FF-slot (Lemma 3). Therefore z is charged to FIT(s')
and not to y. Thus the charging group is (0, y; y), giving a charging ratio
of 1. ]
Note from above that an FF-group (z,y;y) cannot have w(z) > w(y), because
in this case z would be charged to another FF-group. Similarly an EF-group (z;y)
cannot have w(z) > r - w(y).

Theorem 1 FIT, is 2-competitive and the bound is tight. In fact FIT, is no better
than 2-competitive for any value of r.

Proof. By setting r = 2, all charging groups have their charging ratios bounded
by 2 (Lemma 5). Thus FIT; is 2-competitive.
Suppose r > 2. We consider the following instance for large k:
2% copies of (0,281 1);
fori =k,k—1,...,0, 2% copies of (2k+1 — 2i+1 2k+1 pk+l-iy,
1 copy of (2k+1 — 1, 2k+1 pk+1y
Fig. 2 shows the instance and the schedules for £ = 2. FIT chooses qgr in all slots.
The competitive ratio is

2r 4o art o g b (142 5 4 _r+r(1_l—2/r)

2k oo Ark=2 4 2rk=1 4 gk 4 pktl T r+(l+2+ 5+ ,.+(IT12/7)

=2

Suppose r < 2. Consider the following instance: (Fig. 3)

fori=k,k—1,...,0, 2% copies of (2k+1 — 2i+1 2k+1 nk—i),

1 copy of (2F+1 — 1, 2k+1 k),

for 0 <4 <2811, (5,i+2%514+1 770 +¢) where f(i) = k+1—[lg(2¥*1—4)].
FIT chooses gmaz in all slots. The competitive ratio is (neglecting the small ¢)

20rF + 27Kt 4k o 2F) ph kL 2 2(2/r)R T 1 - 2/r 41
(rk +2rk—1 4 qpk=2 4 ... 4 2k) 4 pht1 1—(2/r)k+l 47— 2

when k is large and 7 < 2, (2/7)* dominates, giving a ratio of 2.
When r = 2, both schedules gives a competitive ratio 2 when k is large enough.
a

3. Competitiveness of FIT with Bounded B

Let B denote the maximum ratio of job weights, i.e., all job weights w satisfy 1 <
w < B. This is called the importance ratio. The constructions in Theorem 1 produce
instances with unbounded importance ratio. In real applications, the importance
ratio tends to be a small constant or may be known in advance; hence B can be
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considered as part of the input and bounded. The following subsections show that
charging groups can be ‘linked’ together, and prove that such linkages can be used
to lower the competitive ratio in the analysis.

3.1. Links

When we consider each individual charging group, the charging ratio 2 is tight
only in case (i)(a) and (ii)(a) of Lemma 5. In those cases where the OPT job,
charging to the FIT job in the same slot, is sufliciently large, the OPT job is actually
planned in a later slot in EFplan at that time. For example, in Fig. 1(a),(b), the
job with weight 15 is originally planned in the second slot, only to be discarded later
due to arrival of a heavier job. This heavier job belongs to another charging group.
In the following, we show that when a charging group has charging ratio larger than
a certain value, a ‘link’ can be generated to connect it to another charging group
(later we will see that this value is 1 for EF-group and 1 + 1/r for FF-group). We
shall make sure that the charging group being connected to is ‘heavier’ than the
previous group. The links may continue (i.e., this group may link to yet another
group), but this linking cannot be continued indefinitely because there is a bound
on B. It will terminate when it reaches a group that has a small charging ratio.
We show that, when we consider the linked charging groups together (rather than
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each one separately), the overall charging ratio is smaller.

Formally, a link z; — y; points from the OPT job of a charging group (‘z;’ in
a FF-group (z;,y;;¥:) or EF-group (z;;y:)) to the FIT job y; of another charging
group at a later slot. Initially, it represents the situation that the OPT job is
planned in a later slot in FIT while OPT schedules it in the current slot. These
planned jobs, however, may later be dropped out of the schedule because of the
arrival of heavier jobs. To model this, we require all links to satisfy the following
two link constraints:

o (weight constraint) For any link z; — y;, if y; is in an EF-slot, then
w(y;) > w(x;); if y; is in an FF-slot, then w(y;) > - w(z;).

o (span constraint) For all links z; — y;, y; must be in a slot within span(x;).

We construct the links incrementally. We simulate the operation of FIT slot-by-
slot and sweep the OPT and FIT schedules from beginning to end. We maintain
that at any time, all links satisfy the link constraints. As we will see shortly, some
links point to unswept slots (i.e. in EFplan) during this process, and therefore
these links have to satisfy the weight constraints for EF-slots.

When a slot s is first swept, the following linking rules are used to determine
when links are generated and where they initially point to. (This refers to the time
after the EF-stage. The location may need to be changed subsequently when we
come to the FF-stage, or when we further sweep the schedules; see Lemma 7.)

Linking Rules. For each FIT slot s, a link is generated if and only if:
(1) sis an EF-slot in a charging group (z;¥), 1 < w(z)/w(y) <.
(ii) sis an FF-slot in a charging group (z,y;y), 1/r < w(z)/w(y) < 1.

In both cases, link = to FIT(s"), where s" is a FIT slot such that
EFplan(s,s") = z.

The following lemma shows that charging groups that have a charging ratio ‘too
large’ must be able to generate a link according to the above rules.
Lemma 6 For any EF-group with charging ratio > 1, or any FF-group with charg-
ing ratio > 1+ 1/r, a link can always be generated according to the above rules,
while satisfying the link constraints.

Proof. It is clear that any charging group with ratio larger than the specified limits
belongs to either one of the cases in the linking rules, and that the link generated
satisfies the link constraints. It remains to prove that z is in EFplan.

(i) s is an EF-slot in a charging group (z;y), 1 < w(z)/w(y) < r. If z is not
pending at time s, i.e., it exists in FIT in a slot s’ < s, then s’ must be
an FF-slot (Lemma 3). Hence z is charged to FIT(s') instead, contradicting
{(z;y) being a charging group. Thus z is still pending, and must be planned
in a slot s > s (otherwise y will not be scheduled in s since w(z) > w(y)).
Thus there must be such a slot s” to be linked. (e.g., Fig. 1(a) first group.)

(if) sis an FF-slot in a charging group (z,y;y), 1/r < w(z)/w(y) < 1. The proof
is similar to (i): If = is not pending at time s, i.e., it exists in a slot s’ < s in
FIT, then s’ must be an FF-slot (Lemma 3). Hence z is charged to FIT(s')
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instead, contradicting (z, y; y) being a charging group. If z is scheduled in slot
s in FIT (i.e. © = y), the charging group is actually (0, y;y) with charging
ratioc = 1 (and hence no link). Otherwise, z is still pending, and z must be
planned in a slot 8" > s, since w(z) > w(y)/r > (r - w(EFplan(s,s)))/r =
w(EFplan(s, s)). Thus there must be such a slot s” to be linked. (e.g.,
Fig. 1(b) first group.)

All links generated as above satisfy the weight constraint (since both ends of the
link are actually the same job) and the span constraint (since the OPT job must
be planned in a feasible slot). O

A linking slot is a slot s such that OPT'(s) has a link pointing out. Other slots
are called non-linking slots. When EFplan changes (e.g. updated to EFplant
after the FF-stage, or a new slot is swept), links may need to be rearranged to
satisfy the weight constraints. We only change links that point to slots after the
currently-swept slot. In the following, we show that links can be rearranged when
sweeping the schedules to maintain the following invariants:

o Only the current slot is pointed to by at most two links; all other future slots
are pointed to by at most one link.
o All links satisfy the link constraints.

For each slot s being swept, we invoke the link-rearranging algorithm Link-
Arrange, described as follows:

Case 1. If s is an EF-slot and generates a new link z — y;, and if there is an
existing link z — y;, then relink z to EFplan(s,z), or to s if z is not planned at
time s. Repeat this relink process if there is another link pointing to EFplan(s, 2},
until finally such a link is relinked to slot s.

Case 2. If s is an FF-slot, perform the same operation as if s is an EF-slot,
based on EFplan (not EFplan®, the updated EFplan after the FF-stage). After
we update EFplan to EFplan™, it is possible that some links now violate the weight
constraint for EFplan™. For every such link z — yy, it can be shown that z must
be planned in a slot after y; (Claim 1 below). If no link points to this slot, move
the link to point to this slot (i.e., 2 — yx becomes z — z). Otherwise we have a
link z’ ~— z. Swap the links to get 2 — 2 and 2’ — y;. Repeat the process if this
new link 2’ — y; violates the weight constraint.

We first observe the following, which follows from the definition of links:
Observation 1 If an OPT slot contains the ‘y’-job in an FF-group (z,y;y), no
links are generated from this OPT slot.

Claim 1 If a link z — yi, violates the weight constraint, z must be planned in a
slot after yy,.
Proof. Consider where z is in FIT. There are only four possibilities, the first
three satisfying the weight constraints:
(i) If z is already scheduled in FIT, it must be in an EF-slot (Observation 1),
and by Lemma 2 , w(z) < w(yx);
(ii) If z is planned in EFplan™ earlier than (or same as) the position of yi, then
the slot of y; is within the span of z by span constraint. By the property of
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Fig. 4. Arranging links: (a) after two slots are swept; (b} after three slots are
swept.

EF, w(z) < wyk);
(iii) If z is not in EFplan™, then by the property of EF, w(z) < w(yg);
(iv) z is planned in a slot after yy. 0
Fig. 4 shows an example of arranging links.

Lemma 7 By the above algorithm, the links are arranged so that after each slot is
swept, each linking slot is pointed to by at most two links, and each non-linking slot
is pointed to by at most one link. All link constraints are satisfied.

Proof. It is easy to see that the first invariant is maintained by the algorithm
after sweeping every slot. It can also be seen from the algorithm that a non-linking
slot will not be pointed to by more than one link. These imply the first part of
the lemma. The second part of the lemma is true if we can maintain the second
invariant. Suppose the invariant holds before we sweep slot s. Now we come to slot
s. Let x = OPT(s).

Case 1: s is an EF-slot. It is easy to see that the link constraints are satisfied
if z does not generate a new link, or generates a link to a slot not pointed by other
links. We just keep the link positions unchanged, although EFplan has possibly
changed (thus links may point to some other jobs). By Lemma 1 the job weights
at any slot will not decrease, thus all links still satisfy the weight constraint.

The invariant is also maintained when links are redirected to other slots as long
as the job is in EFplan. However if the redirection finishes at slot s because a link
z - y; cannot be redirected, i.e., z is not in EFplan, then either
a. z is already scheduled in FIT before s. It is not an FF-slot since no link is
generated from this job in a FF-group (Observation 1). Thus it is an EF-slot, then
by Lemma 2, w(FIT(s)) > w(z); or
b. z is pending but not in EFplan. Then we also have w(FIT(s)) > w(z), or else
z would be scheduled in s since this is within its span.

In both cases w(FIT(s)) > w(z), thus satisfying the weight constraint.

Case 2: s is an FF-slot. The proof is similar to that of Case 1, except that the
weight of the job in s is at least r times heavier and the link(s) to s should also
satisfy the weight constraint. We now show that the redirection (swapping) of links
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Fig. 5. The ‘worst’ charging tree. (a) T1; (b) Tn.

in the extra step for Case 2 of Link-Arrange ensures that the link constraints
are satisfied and that it must terminate. If no link points to z, moving the link
2z = yr to z — z maintains the invariants. Otherwise suppose z’ — z. We swap
the links z — y; and 2z’ — z to become z — z and z' — y;. Both links satisfy
the span constraint. If w(z') < w(yk), we are done. Otherwise Link-Arrange
similarly finds where 2’ occurs in FIT, and continues moving/swapping links until
the weight constraint is satisfied. This process must terminate since there is a finite
number of jobs in EFplan and each move/swap increase the number of links of the
form z — 2. O

3.2. Charging Trees

A charging tree is a binary tree whose nodes are either EF-groups (called EF-
nodes) or FF-groups (called FF-nodes). Nodes in the tree are connected by links,
that connect charging groups as described in the previous subsection. That is,
each non-root EF-node is represented by (z;;y;) with y; < z; < ry; and non-root
FF-node by (z;,y:;y:) with y;/r < z; < y;. The links have to satisfy the weight
constraint: a link x; — y; from node ¢ to node j will ensure that z; < y; if j is an
EF-node, and rz; < y; if j is an FF-node. The charging ratio of a charging tree is

defined as
Y FFrode (-'L'i + yz) + Y EFnode (mz)

Y FFnode(¥i) + XEFnode(Ys)
summing over all nodes in the tree.

Given a pair of OPT and FIT schedules, the charging groups are linked together
to form a forest of charging trees, as described in the previous subsection. Each
such charging tree is a binary tree since each charging group can be pointed by at
most two links (Lemma 7). However the root cannot have two children because, by
Lemma, 7, it would then generate another link itself and thus not a root. If we can
bound the charging ratio of each charging tree, then the competitive ratio of FIT
is also bounded by the same ratio.

From now on we set r = 2, and for simplicity assume B = 2" for some positive
integer n.

Consider the charging tree T, for B = 2™ in Fig. 5. T, is a full binary tree
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(except at the root). All nodes in the same level are identical. All nodes are FF-
nodes, ‘doubling’ the job weights at all levels (except the root), and has n + 1
levels of nodes. We will see later that T, is indeed realizable, i.e., there exists an
instance of jobs such that the OPT and FIT schedules produce charging groups
and links corresponding to this tree. We are going to show that any charging tree
with importance ratio bounded by B will not have a charging ratio larger than that
of T,, thus providing an upper bound of the competitive ratio.

The following two lemmas, with proof in Appendix, help us identify charging
trees with the maximum possible charging ratio.

Lemma 8 Given any charging tree T with importance ratio B, there always exists
a full charging tree (except at the root), with the same nodes at each level, such that

its importance ratio is no more than B and has charging ratio no less than that of
T.

Lemma 9 To find the charging tree with the mazimum charging ratio, we only need
to consider those having the following properties:

Property 1: All nodes are FF-nodes. For any FF-node (z,y;y) with y < B/2, we
have x = y.

Property 2: There are at least two levels of nodes, with leaves (1,1;1) and parents-
of-leaves (x,2;2) for some x.

Property 3: It has 2! = B/2 leaves.

Hence, we denote a charging tree by a sequence of nodes [(z1,y1;91) - - - (Zk, Yk; Y)},
with (z1,y1;y1) on the leaves side and (zk, yx; yx) being the root.

Lemma 10 The charging tree T,, has the mazimum possible charging ratio among
all charging trees with importance ratio B = 2™.

Proof. We only need to consider those charging trees with properties as stated in
Lemmas 8 and 9. We prove the lemma by induction on n. For the base case n = 1,
i.e. B =2, we show that T1 = [(1,1;1) (1,2;2)] is a worst tree (Fig. 5(a)), as follows.
Consider a tree [(1,1;1) (£,2;2) ...]. We have z > 1 or otherwise the importance
ratio is greater than 2. If these are the only two nodes, then we have z = 1, and
we are done. So suppose there are more nodes. We still have £ = 1, since if x > 1
the next FF-node must be (z’,y;y) with y > 2 = B. The next node must be of
the form (z',2;2) again, since it must be an FF-node with job weights restricted by
importance ratio and weight constraints. We can similarly show that ' = 1. Hence
the tree is [(1,2;2)...(1, 2;2)], which has the same charging ratio as 7;.

Suppose T, is the tree having the maximum charging ratio for B = 2. We want
to find the worst charging tree with importance ratio 2B = 2PT!. We know by
Lemma 9 that the leaves of this tree are (1,1;1), and parents of leaves are (x,2;2).
Since n > 1, we can apply Property 1 of Lemma 9 to show that z = 2. Consider
the subtree T’ of this tree by ignoring the leaves. It is easy to see that no jobs
in T’ have weights smaller than 2, in order for T” to satisfy the weight constraint.
T' must itself be a worst tree, i.e., having the maximum charging ratio among all
trees with job weights between 2 and 2B. This is because, if there is another such
tree T' with a larger charging ratio, then T' can be replaced by T" as long as both
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having the same number of leaves. This increases the overall charging ratio. That
they have the same number of leaves is guaranteed by Property 3 of Lemma 9.

By induction hypothesis, the worst tree with job weights between 1 and B is T},.
Therefore, the worst tree with job weights between 2 and 2B is a scaled-up version
of this, i.e. {(2,2;2) ...(B, B; B)(B,2B;2B)]. Combining with the leaves, the worst
tree with job weights between 1 and 2B is [(1,1;1) (2,2;2) ... (B, B; B)(B, 2B; 2B)],
which is Tp4,. Thus the claim is true. a
Lemma 11 T, has a charging ratio of (2lgB + 3)/(lg B + 2) when B = 2™,
Proof. T, consists of one root node (B/2, B; B), one node (B/2,B/2; B/2),
two nodes (B/4, B/4; B/4), ..., 2*~! nodes (B/2%, B/2¥; B/2%), ..., and 2"~ leaf
nodes (1,1;1). Thus the charging ratio of T, is

. Sr_ i 21(B/2* + B/2*) + (B/2+B) nB+3B/2 2m+3 2lgB+3
Bl S, 25"1(B/2%)+ B T nB/2+B n+2 1gB+2

]

Theorem 2 FIT, gives a competitive ratio of 2 —1/([lg B] +2), and the bound is
tight.

Proof. The competitive ratio of FIT is bounded by the charging ratio of T5,.
When B is not an exact power of 2, we can replace B by the smallest power of 2
that is larger than B. Thus the result follows from Lemma 11. The bound is tight,
as the worst-case charging tree T;, corresponds to the instance in Fig. 3 by putting
r=2. O

3.83. Comparisons

Comparing to the FIRSTFIT and ENDFIT algorithms, FITy performs better in
the bounded importance ratio case. It is easy to see that FF remains 2-competitive
even when the importance ratio B is very small, but EF might perform better when
B is bounded. However we still have:

Lemma 12 The competitive ratio of EF is at least 2 —1/(B + 1).

Proof. Consider three jobs ¢1 = {0,1,1),¢92 = (0,2, B) and ¢3 = (1,2, B). OPT
schedules g2 and g3 giving total value 2B while EF schedules ¢; and ¢z giving total
value 1+ B. O

Fig. 6 shows a comparison between EF and FIT; for bounded B. FIT; outper-
forms EF in the competitive ratio when B > 11.

4. Concluding Remarks

In this paper we give a new algorithm for the online scheduling of unit length
jobs. We show that it is 2-competitive in general, and has improved competitive
ratio 2 — 1/([lg B] + 2) when the importance ratio B of the jobs is bounded. There
were no deterministic algorithm having competitive ratio 2 — ¢ for constant € > 0,
until a very recent paper that gives a 1.94-competitive algorithm [9]. The best lower
bound for this problem is 1.618. How to close this gap remains an open problem.
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Appendix A: Proofs of Lemmas

Lemma 8 Proof. We show that any charging tree can be transformed to a
full binary tree with the same nodes at each level. For any subtree rooted at an
internal node v, consider the left and right subtrees (including empty subtrees).
If the two subtrees are not identical, replace the left subtree with an identical
copy of the right subtree, or vice versa; one of these operations will increase the
charging ratio. The reason is as follows. Suppose a node contributes z and y to the
numerator and denominator, respectively, of the charging ratio. The left subtree
contribute a (resp. b) to the numerator (resp. denominator) to the charging ratio,
and similarly ¢,d for the right subtree. (An empty subtree contributes 0 to both
numerator and denominator.) Charging ratio = 2+, Replace right subtree by left

y+b+-d”

z42a : : z+2a z+2¢
Trob Without loss of generality, assume S5 > iid

: : z+42a z+2a+r+2c z+42¢
Then by simple property of ratios we have viob > pobiytod 2 e and hence

% > Zigj; Thus this replacement will not decrease the charging ratio. Apply
this process to all nodes level-by-level, starting from the leaves, gives a full binary
tree (except at the root) with same nodes in the same level. O
Lemma 9 Proof. We show that any charging tree not satisfying the properties
can be transformed into another one that satisfies them, such that the charging
ratio of the whole charging tree would not decrease, and no link constraints are
violated. We use the fact that whenever we add 26 or more to the numerator of
the charging ratio and § to the denominator, for any positive §, the charging ratio
would not decrease. (Note that the charging ratio is, by Theorem 1, at most 2.)
Property 1: First, we show that the root is an FF-node. Suppose the root is an
EF-node (z;y). Without loss of generality we can change it to (y;y). Denote its
single child node v by (z;w) or (z,w;w), where z < y. Again we can increase z
to y. Now, replace the root with an FF-node (y/2,y;y) and change v to (y/2;w)
or (y/2,w;w). This does not change the charging ratio. All links are still valid.
If the charging ratio of v is too small, i.e. w > y/2 for an EF-node or w > y for
an FF-node, we increase the value of y to restore them. It can be verified that
the charging ratio would not decrease. If the charging ratio of v is too large, i.e.

subtree changes the ratio to
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w < y/4 for an EF-node or w < y/2 for an FF-node, we increase the value of w and
change its children v’. For example, if its children are (p;q), we increase w by 6 so
that the charging ratio of v is within limit, and increase p by /2. Similar change
applies when v’ are FF-nodes. It can be verified that this does not decrease the
charging ratio. We may need to change v’ in turn if its charging ratio is too large,
and so on.

Second, we change the rest of EF-nodes to FF-nodes. Because of weight con-
straint and the fact that the root is an FF-node, all EF-nodes (z;;y;) in the tree
have y; < B/2. Each of them can be changed into an FF-node (z;,2y;;2y;). It is
easy to see that this does not violate any weight or span constraints.

All nodes now become FF-nodes. Finally we show that node (z,y;y) can be
changed to (y,y;y) if y < B/2. Consider a node v;(z1,y1;¥1) in a charging tree,
with parent ve(z2,y2;¥2) (11 < B/2). We show how to transform v; and v such
that v; becomes (y1,¥1;y1)-

(a) Suppose vy has two vy as children. Increase z; to yi, then increase y2 to
2y; if y2 < 2y1 (otherwise do nothing to y2). Addition to numerator =
2(y1 — 1) + (2y1 —y2). Addition to denominator = (2y; —y2). Since 2z; < ya,
we have 2(y1 — 1) > 2y;1 — y2. This implies addition to numerator at least
twice the addition to denominator. (This is also trivially true for the case of
y2 not increased.) Thus this will not decrease the charging ratio.

{b) Suppose v, only has one v; as a child, i.e. vy is the root. In this case, we can
change z, without affecting any links. Increase z; to y;, then increase y; to
2y, and z2 to y1 if yo < 2y; (otherwise do nothing to z2 and y2). Addition
to numerator = (y; — z1) + (211 — y2) + (y1 — 22). Addition to denominator
= 2y; — yo. Since 2z5 < y2,221 < Yo, we have x1 + 22 < y. This implies the
addition to numerator is at least twice the addition to denominator.

Property 2: Suppose it only has one level (i.e. a root node). The maximum
charging ratio is attained by the node (1,2;2), and thus we can add a leaf (1,1;1) to
this node.

Suppose the leaves are (z1,y1;¥1). By changing them to (z1,z1; 1), the charg-
ing ratio is increased. Next consider the parents of the leaves, (x2,y2;y2) where
1o > 2z because of the weight constraint. If y» > 2z, we can, without decreasing
the charging ratio, scale up the leaves from (z1,z1;21) to (y2/2,y2/2;y2/2), and
then scale down the whole tree so that the lowest two levels are (1,1;1), (z,2;2)
(because of the fact that the leaves have charging ratio exactly 2, while all other
nodes have charging ratio at most 2).

Property 3: If a charging tree has more than 2"~ leaves, then by Lemma 8 and
Properties 1, 2 above, it must have at least 2" leaves and the importance ratio will
be larger than B.

Suppose a tree T has fewer than 2"~! leaves. We construct another tree having
double the number of leaves and the same charging ratio. Let R be the root of T
and T' be the tree formed by removing R from T (since R has only one child, T’
is still a tree). Consider a tree U formed by root R, root’s only child R’ = R, and
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the two subtrees of R’ being both T”. This is a valid charging tree satisfying all
link constraints, and has double the number of leaves than that of T'. Repeat the
construction as necessary until the number of leaves is sufficient. O



