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The constrained multiple sequence alignment problem is to align a set of sequences of
maximum length n subject to a given constrained sequence, which arises from some
knowledge of the structure of the sequences. This paper presents new algorithms for this
problem, which are more efficient in terms of time and space (memory) than the previous
algorithms,15 and with a worst-case guarantee on the quality of the alignment. Saving
the space requirement by a quadratic factor is particularly significant as the previous
O(n4)-space algorithm has limited application due to its huge memory requirement.
Experiments on real data sets confirm that our new algorithms show improvements in
both alignment quality and resource requirements.

Keywords: Multiple sequence alignment; approximation algorithm.

1. Introduction

Multiple sequence alignment (MSA) is one of the problems in computational biol-
ogy that have been studied extensively.2,3,6,8,10,13,14 Roughly speaking, given a
set of k ≥ 2 sequences, the MSA problem is to align similar subsequences in
the same region. From the computational point of view, the optimal alignment
of two sequences can be found in O(n2) time, where n is the length of the longer
sequence. Yet, for three or more sequences, it has been proved that finding the
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optimal alignment is NP-hard,2,17 i.e., intractable.a In the literature, there are a
number of MSA algorithms that attempt to approximate the optimal alignments,
some of them can provide a worst-case approximation ratio,1,5,12 while some others
work well in practice.11,16 Notice that with all these algorithms, users (biologists)
can only control the alignment results by adjusting parameters like the scoring func-
tion and gap penalty. In other words, users could not incorporate their knowledge
of the functionalities or structures of the input sequences, which is indeed very use-
ful for accurate and biologically meaningful alignment. This naturally triggers the
studies of sequence alignment that allow users to provide additional constraints.

Tang et al.15 were the first to investigate the MSA problem with an additional
input of a constrained sequence, which imposes a structure on the alignment by
requiring every character in the constrained sequence to appear in an entire column
in the alignment of the multiple sequences. As an example, Tang et al. considered
the alignment of RNase sequences. Such sequences are all known to contain three
active-site residues His(H), Lyn(K), His(H) that are essential for RNA degrading.
Therefore, one would expect that in an alignment of RNase sequences, each of these
three residues should be aligned in the same column, i.e., an alignment satisfying
the constrained sequence “HKH”.

Tang et al.15 presented the first algorithm for finding an optimal constrained
sequence alignment for two sequences; both the time and space (memory) require-
ments of the algorithm are O(αn4), where α is the length of the constrained
sequence. For aligning k ≥ 3 sequences, they gave a heuristic algorithm (called
progressive alignment algorithm) with time and space requirements being O(αkn4)
and O(αn4), respectively. When applied to aligning multiple RNase sequences, this
algorithm produces satisfactory alignments. Yet the application of the algorithm
is limited as the memory requirement is too large and it runs too long. For exam-
ple, for aligning sequences of length 250 with a constraint of length 3, the memory
requirement already exceeds 15 Gigabytes. Nowadays ordinary workstations are
equipped with at most 4 Gigabytes.

This paper attempts to improve the results of Tang et al. from a theoreti-
cal as well as a practical point of view. For pair-wise alignment, we give a new
algorithm for finding the optimal constrained alignment that uses O(αn2) time and
O(αn2) space. Based on this result, we can immediately improve the time and space
complexities of the progressive alignment algorithm by a quadratic factor. Further-
more, we give an algorithm, called center-star, for constrained multiple sequence
alignment with worst-case performance guarantee; more precisely, for aligning k

sequences, the new algorithm can produce an alignment that approximates the
optimal alignment within a factor of

(
2 − 2

k

)
. This algorithm adopts the framework

of Gusfield’s (unconstrained) multiple sequence alignment algorithm.5 The time and

aThere are several possible ways to define the optimal alignment. In this paper we adopt the
widely-used Sum-of-Pair (SP) score, which asks for an alignment that minimizes the sum of the
alignment cost of all pairs of sequences.
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Table 1. Performance of constrained multiple sequence alignment approximation algorithms on k
sequences of maximum length n, with a constrained sequence P of length α. C is the total number
of occurrences of the constrained sequence P in all sequences.

Time Space Approximation
Complexity Complexity Ratio

Tang et al.’s algorithm15 O(αkn4) O(αn4) —
Improved Tang et al.’s algorithm (this paper) O(αk2n2) O(αn2) —

Center-star (this paper) O(Ckn2) O(n2) 2 − 2
k

Table 2. Alignment scores of CMSA algorithms.

Tang’s Algorithm Center-star Algorithm

Time Space Time Space
Score (second) (MB) Score (second) (MB)

7 sequences 46319 127 425 40051 12 1.9
max length 125
α = 3

6 sequences 71208 381 1192 49875 46 2.0
max length 185
α = 3

6 sequences 63315 254 654 45241 54 2.0
max length 186
α = 4

5 sequences — Memory exhausted — 57325 208 2.3
max length 327
α = 3

space complexities of the new algorithm are respectively O(Ckn2) and O(n2), where
C is the total number of occurrences of the constrained sequence in all sequences.
The improved memory requirement allows us to handle sequences with thousands
of characters on ordinary workstations. See Table 1 for a summary of these results.

We have implemented all the algorithms mentioned above and tested them with
several real data sets. In all data sets, the center-star algorithm shows improvement
in all aspects. In particular, the quality of the alignment is 13% to 30% better, while
the memory requirement is at most one-percent of Tang et al.’s algorithm. Results
are briefly summarized in Table 2. More details will be given in Sec. 6.

The rest of this paper is organized as follows. Section 2 defines the constrained
sequence alignment problem, and Sec. 3 presents a new algorithm that computes
the optimal constrained pair-wise sequence alignment. Section 4 presents algorithms
for constrained multiple sequence alignment (CMSA). In Sec. 5, an approximation
algorithm is given with an approximation ratio

(
2 − 2

k

)
. We report empirical results

of our developed CMSA tools in Sec. 6. Finally, in Sec. 7, we conclude this paper
by giving some further research directions in CMSA.
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2. Preliminaries

Let Σ be the set of characters (residues), S = {S1, S2, . . . , Sk} be a set of k

sequences, with maximum length n, over Σ. Let Si[x . . . y] denote the substring
of Si from the xth character to the yth character of Si, where 1 ≤ x ≤ y ≤ n. In
particular, let Si[x] denote the xth character in the sequence Si.

We define the pair-wise sequence alignment of two sequences S1 and S2 as two
equal-length sequences S′

1 and S′
2 such that |S′

1| = |S′
2| = n′, and removing all

space characters “−” from S′
1 and S′

2 gives S1 and S2, respectively. For a given
distance function δ(x, y) which measures the mutation distance between two char-
acters, where x, y ∈ Σ∪{−}, the pair-wise score of two length-n′ sequences S′

1 and
S′

2 is defined as
∑

1≤x≤n′ δ(S′
1[x], S′

2[x]). In the multiple sequence alignment (MSA)
problem, we are given k sequences S = {S1, S2, . . . , Sk}, an MSA is an alignment
matrix A, with k rows and n′(≥ n) columns, such that removing space charac-
ters from the ith row of A gives Si for 1 ≤ i ≤ k. We denote by A[x, y] the
character at the xth row and yth column of A. The sum-of-pair (SP) score of an
MSA A is defined as the sum of the pair-wise scores of all pairs of the sequences, i.e.∑

1≤p<q≤k

∑
1≤y≤n′ δ(A[p, y], A[q, y]). It has been shown that finding the alignment

matrix with the minimum sum-of-pair alignment score is NP-complete.2,17

In the constrained multiple sequence alignment problem (CMSA), we are
given, in addition to the inputs of the MSA problem, a constrained sequence
P = (P [1], P [2], . . . , P [α]), where P is a common subsequence of all Si ∈
{S1, S2, . . . , Sk}. The solution of a CMSA problem is a constrained alignment matrix
A which is an alignment matrix such that each character in P appears in an
entire column of A and also in the same order, i.e. there exists a list of integers
{r1, r2, . . . , rα} where 1 ≤ r1 < r2 < · · · < rα ≤ n′, such that for all 1 ≤ i ≤ k and
all 1 ≤ γ ≤ α, we have A[i, rγ ] = P [γ].

Consider a constrained alignment matrix A for S = {S1, S2, . . . , Sk} and the
constrained sequence P . Denote by sp score(A) the SP score of the constrained
alignment matrix A. Let A∗

S be the optimal constrained alignment matrix for S

and A′
S be the constrained alignment matrix derived by some approximation algo-

rithm. The approximation algorithm is said to have an approximation ratio φ if
sp score(A′

S)
sp score(A∗

S) ≤ φ for all S and P .

3. Constrained Pair-Wise Sequence Alignment (CPSA)

3.1. Problem definition

The constrained pair-wise sequence alignment (CPSA) problem is a special case
for CMSA problem with k = 2. Given two sequences S1 and S2, a constrained
sequence P (with length α) and a distance function δ, the problem is to compute
an optimal CPSA,

(
S′

1
S′

2

)
, such that |S′

1| = |S′
2| = |n′|, and

∑
1≤i≤n′ δ(S′

1[i], S′
2[i])

is minimized subject to P [γ] = S′
1[rγ ] = S′

2[rγ ] for some rγ , 1 ≤ γ ≤ α and
1 ≤ r1 < r2 < · · · < rα ≤ n′. Note that removing all spaces in S′

1 and S′
2 gives S1

and S2 respectively.
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3.2. Optimal constrained pair-wise sequence alignment

Tang et al.15 presented an algorithm to compute the optimal constrained pair-wise
alignment with time and space complexities O(αn4) and O(αn4), respectively. This
algorithm first computes the O(n4) pair-wise alignment scores of all substrings in
S1 and all substrings in S2 and then further determines the best positions such that
the constrained characters are aligned. The overall time complexity is O(αn4). To
improve the time complexity, our algorithm takes into consideration the constrained
alignment as we compute the alignment score. This approach makes it not necessary
to consider all the pair-wise alignments between every pair of substrings of S1

and S2, and thus, facilitates the reduction in the time complexity.
Below we show how to compute the sum-of-pair score of the optimal CPSA by

dynamic programming and how to obtain the alignment by backtracking through
the path of computation of the score. Recall that for any sequence S, S[x..y] denotes
the substring of S starting at the xth character and ending at the yth charac-
ter of S. The dynamic programming computes the optimal CPSA incrementally
by considering the pair-wise alignments of S1[1 . . . 1] with S2[1 . . . 1], . . . , S1[1 . . . i]
with S2[1 . . . j] and so on, for 1 ≤ i ≤ |S1| and 1 ≤ j ≤ |S2|.

We denote by D(i, j, γ) the optimal constrained pair-wise sequence alignment
score of sequences S1[1..i] and S2[1..j] with constrained characters P [1..γ] matched.
In particular, D(n1, n2, α) is the optimal CPSA score of S1 and S2 with respect to
the constrained sequence P , where |S1| = n1, |S2| = n2 and |P | = α. The following
theorem gives a recurrence formula for D(i, j, γ) in terms of D(i′, j′, γ′) where i′ ≤ i,
j′ ≤ j, and γ′ ≤ γ.

Theorem 1. For any 0 ≤ i ≤ n1, 0 ≤ j ≤ n2 and 0 ≤ γ ≤ α,

D(i, j, γ) = min




D(i − 1, j − 1, γ − 1) + δ(S1[i], S2[j]) if S1[i] = S2[j] = P [γ],
D(i − 1, j − 1, γ) + δ(S1[i], S2[j]) if i, j > 0,

D(i − 1, j, γ) + δ(S1[i],−) if i > 0,

D(i, j − 1, γ) + δ(−, S2[j]) if j > 0,

with boundary conditions D(0, 0, 0) = 0, D(i, 0, γ) = ∞ for γ ≥ 1, 0 ≤ i ≤ n1, and
D(0, j, γ) = ∞ for γ ≥ 1, 0 ≤ j ≤ n2.

Proof. There are four cases to align {S1[1..i], S2[1..j]} with respect to P [1..γ],

• If S1[i] = S2[j] = P [γ], we can align S1[i] and S2[j] while aligning {S1[1..(i− 1)],
S2[1..(j−1)]} with P [1..(γ−1)] matched. Then, the score is D(i−1, j−1, γ−1)+
δ(S[i], S[j]).

• If i, j > 0, we can align S1[i] and S2[j] while aligning {S1[1..(i−1)], S2[1..(j−1)]}
with P [1..γ] matched. Then the score is D(i − 1, j − 1, γ) + δ(S[i], S[j]).

• If i > 0, we can align S1[i] with a space while aligning {S1[1..(i − 1)], S2[1..j]}
with P [1..γ] matched. Then the score is D(i − 1, j, γ) + δ(S[i],−).

• If j > 0, we can align S2[j] with a space while aligning {S1[1..i], S2[1..(j − 1)]}
with P [1..γ] matched. Then the score is D(i, j − 1, γ) + δ(−, S[j]).
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The alignment to be chosen is the one such that the new score is minimum. There-
fore, D(i, j, γ) can be computed by taking the minimum of the above four values.

Based on Theorem 1, we can compute the sum-of-pair score of the optimal CPSA
using dynamic programming (see Algorithm 1). After filling in the three dimensional
table D(i, j, γ), we can obtain the CPSA by backtracking through the computation
path from D(n1, n2, α) to D(0, 0, 0). Let S′

1 and S′
2 be the aligned sequence for

S1 and S2, respectively. Initially, set S′
1 and S′

2 to two empty strings, and start
backtracking from D(n1, n2, α). If D(i, j, γ) is computed from D(i − 1, j − 1, γ) or
D(i−1, j−1, γ−1), prepend S1[i] and S2[j] to S′

1 and S′
2, respectively. If D(i, j, γ) is

computed from D(i− 1, j, γ), prepend S1[i] and a space to S′
1 and S′

2, respectively;
similarly, if D(i, j, γ) is computed from D(i, j − 1, γ), prepend a space and S2[j] to
S′

1 and S′
2, respectively. Repeat backtracking until reaching D(0, 0, 0), and

(S′
1

S′
2

)
is

the optimal constrained sequence alignment of {S1, S2} with P matched.

Theorem 2. The optimal constrained pair-wise alignment can be computed in
both O(αn1n2) time and space, where |S1| = n1, |S2| = n2 and |P | = α.

Proof. The 3-dimensional table D is of size ((n1 + 1) × (n2 + 1) × (α + 1)). The
computation of each entry D(i, j, γ) needs only the values of D(i − 1, j − 1, γ − 1),
D(i−1, j−1, γ), D(i−1, j, γ) and D(i, j−1, γ), thus, each D(i, j, γ) can be computed
in constant time. Therefore, the optimal CPSA score of two sequences of lengths
n1 and n2 and constrained sequence P of length α can be computed in O(αn1n2)
time. On the other hand, in each step of the backtracking from D(n1, n2, α) to
D(0, 0, 0), at least one of the indices i, j or γ is decreased by one. Thus, there are at
most (α + n1 + n2) steps. Notice that each step takes constant time. Therefore, the
backtracking takes O(α+n1 +n2) time. Thus, the whole algorithm takes O(αn1n2)
time. Table D has O(αn1n2) entries; each entry D(i, j, γ) requires constant amount

begin
// Initialization:
Initialize D(0, 0, 0), D(i, 0, γ), and D(0, j, γ), for 0 ≤ i ≤ n1, 0 ≤ j ≤ n2,
and 1 ≤ γ ≤ α, according to Theorem 1.
// Dynamic Programming:
for γ = 0 to α do

for i = 0 to n1 do
for j = 0 to n2 do

If D(i, j, γ) is not initialized, compute D(i, j, γ) according to
Theorem 1 in terms of D(i − 1, j − 1, γ − 1), D(i − 1, j − 1, γ),
D(i − 1, j, γ) and D(i, j − 1, γ).

end

Algorithm 1: Dynamic programming algorithm for the optimal CPSA score.
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of space (for storing the alignment score and the direction of the computation path).
Therefore, the algorithm requires O(αn1n2) space. Thus, the theorem follows.

Remarks: It is easy to see that computation of scores for row i (column j, respec-
tively) only depends on that for row i − 1 (column j − 1, respectively), hence, the
optimal score can be computed in O(α min (n1, n2)) space. By exploiting the idea
of Hirschberg’s algorithm,7 we can recover the alignment in O(α min (n1, n2)) space
while maintaining the time complexity.

4. Constrained Multiple Sequence Alignment (CMSA)15

In this section, we study the constrained multiple sequence alignment problem. In
Sec. 4.1, we reduce the time and space complexities of the progressive CMSA heuris-
tic algorithm15 presented by Tang et al. from O(αkn4) to O(αk2n2). In Sec. 4.2,
we show an algorithm that computes the optimal CMSA in O(αnk) time using the
sum-of-pair score.

4.1. Improved progressive CMSA algorithm

Tang et al.15 presented an O(αkn4) time and O(αn4) space progressive heuris-
tic algorithm for the CMSA problem for a set of k sequences of length at most
n and a constrained sequence P of length α. In Tang et al.’s algorithm, a k × k

distance matrix of the k sequences is constructed, where the (i, j) entry repre-
sents the pair-wise sequence alignment score of Si and Sj (note that this align-
ment score does not consider the constrained sequence P ). A minimum spanning
tree (MST) is then constructed using the Kruskal algorithm4 based on the dis-
tance matrix of these sequences. Sequences are then progressively aligned using
the CPSA algorithm in the order of the construction of MST. This algorithm per-
forms exactly (k− 1) constrained pair-wise sequence alignments. By using the con-
strained pair-wise alignment algorithm described in Sec. 3.2, the time and space
complexities can be improved from O(αkn4) and O(αn4) to O(αk2n2) and O(αn2),
respectively.

4.2. An algorithm for the optimal CMSA

In this section, we extend the optimal CPSA algorithm described in Sec. 3.2
to k sequences. This involves the construction of a (k + 1)-dimensional
matrix D, which takes O(αnk) time and space. More precisely, let the multi-
dimensional array D(i1, i2, . . . , ik; γ) be the optimal CMSA score matrix for
{S1[1..i1], S2[1..i2], . . . , Sk[1..ik]} with P [1..γ] aligned in γ columns. Then the
optimal alignment score for {S1 . . . Sk} with respect to the constrained sequence
P is given by D(n1, n2, . . . , nk; α), where ni = |Si| for 1 ≤ i ≤ k. D(i1, i2, . . . , ik, γ)
can be computed by the following recurrence,
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(i) D({0}k; 0) = 0, D(i1, i2, . . . , ik; γ) = ∞ if γ ≥ 1 and some but not all of ij’s
equal zero;

(ii) D(i1, i2, . . . , ik; γ) =

min




D(i1 − 1, i2 − 1, . . . , ik − 1; γ − 1) + δ(S1[i1], S2[i2], . . . , Sk[ik])
if S1[i1] = S2[i2] = · · · = Sk[ik] = P [γ],

min
ε∈{0,1}k−{0}k

{
D(i1 − ε1, i2 − ε2, . . . , ik − εk; γ)
+ δ(ε1S1[i1], ε2S2[i2], . . . , εkSk[ik])

}

where εj = 0 or 1, εjSj [ij] with εj = 0 representing a space character, and
δ(x1, . . . , xk) =

∑
1≤i<j≤k δ(xi, xj).

Based on the above recurrence, we have a dynamic programming formulation
that computes the optimal CMSA for multiple sequences, which is a generaliza-
tion of the dynamic programming formulation for the CPSA problem. Practically,
Lipman et al.9 noted that the optimal CMSA can be computed for less than 6 short
sequences of length at most 200. In the following section, we present an approxi-
mation algorithm for the CMSA problem.

5. An Approximation Algorithm for CMSA

Gusfield5 showed that the center-star algorithm (the idea of center-star originates
from Wong18) has an approximation ratio

(
2 − 2

k

)
for the unconstrained multiple

sequence alignment problem. Based on the center-star approximation algorithm,we
derive an approximation algorithm for CMSA that yields an approximation ratio(
2 − 2

k

)
. This algorithm runs in O(Ckn2) time, where C is the total number of

occurrences of the constrained sequence P in all sequences. Throughout this section,
we assume that the distance function δ(x, y) follows the triangle inequality, i.e.
δ(x, y) ≤ δ(x, z) + δ(z, y), for any x, y, z ∈ Σ ∪ {−}, and δ(−,−) = 0.

5.1. The center-star alignment approximation for CMSA

For a set of k sequences S = {S1 · · ·Sk}, the center sequence Sc ∈ S is the sequence
such that the sum of constrained pair-wise alignment scores to the other (k − 1)
sequences is minimized, with the additional constraint that P must appear in the
same list of positions of Sc in every constrained pair-wise alignment of Sc with Sj ,
where j �= c. The star-sum score of a CMSA with respect to a center sequence
Sc is the sum of pair-wise score of Sc with all Sj ∈ S − {Sc}. The constrained
center-star approximation algorithm is to find the CMSA and its center sequence
Sc such that the star-sum score with respect to Sc is minimized. The algorithm can
be summarized below,

(i) For each Si in S, treat Si as the center sequence and for each list of positions
(r1, r2, . . . , rα) that Si is aligned with P , i.e. P [γ] = Si[rγ ] ∀ 1 ≤ γ ≤ α, align
all other Sj with Si at the positions specified by (r1, r2, . . . , rα).

(ii) Find the Sc and (r1, r2, . . . , rα) with the minimum star-sum score.



FA 1
February 23, 2005 10:59 WSPC/185-JBCB 00097

Constrained Multiple Sequence Alignment 9

(iii) Merge the (k − 1) constrained pair-wise sequence alignments between Sc and
other Sj under the positions (r1, . . . , rα) into a constrained alignment matrix.

We elaborate on Steps (i) to (iii) of the above algorithm in the discussion
below.

(i) Aligning a candidate center sequence with another sequence under a list
of constrained positions (r1, . . . , rα) — WLOG, assume that the candidate cen-
ter sequence is S1. Given r1, r2, . . . , rα, we perform the CPSA algorithm on S1 with
S2 · · ·Sk under (r1, r2, . . . , rα), using a slightly modified recurrence in Theorem 1
treating Sc as S1 and Sp as S2 (2 ≤ p ≤ k). Below, D(i, j, γ) denotes the optimal
constrained pair-wise sequence alignment score of sequences S1[1..i] and S2[1..j]
with constrained characters P [1..γ] matched in positions r1, . . . , rγ , respectively.

D(i, j, γ) = min




D(i − 1, j − 1, γ − 1) + δ(S1[i], S2[j])
if rγ = I, S1[i] = S2[j] = P [γ],

D(i − 1, j − 1, γ) + δ(S1[i], S2[j]) if i, j > 0,

rγ = I ⇒ rγ = i

D(i − 1, j, γ) + δ(S1[i],−) if i > 0,

D(i, j − 1, γ) + δ(−, S2[j]) if j > 0,

(1)

with boundary conditions D(0, 0, 0) = 0, D(i, 0, γ) = ∞ for γ ≥ 1, 0 ≤ i ≤ n1, and
D(0, j, γ) = ∞ for γ ≥ 1, 0 ≤ j ≤ n2.

Suppose n1 = |S1| and n2 = |S2|. Notice that using the above recurrence, for
any 1 ≤ γ ≤ α, the computation path from D(n1, n2, α) to D(0, 0, 0) must pass
through some points D(rγ , j, γ) with 1 ≤ j ≤ n2. This implies that the alignment
occurs in S1 at the positions (r1, r2, . . . , rα).

(ii) Finding the optimal center sequence and the constrained positions —
Consider each sequence Si and a list of positions of occurrence (r1, r2, . . . , rα) of P

in Si where 1 ≤ i ≤ k. The combination (Si; r1, r2, . . . , rα) that gives the minimum
sum of constrained pair-wise alignment scores with other sequences under the posi-
tions (r1, r2, . . . , rα) is selected as the center sequence Sc and the list of positions
to be aligned with P .

(iii) Merging the (k−1) constrained pair-wise alignments — Based on the optimal
center sequence, we construct a CMSA, denoted by A. Suppose the center sequence
of S is S1 under a list of positions (r1, r2, . . . , rα). There are (k−1) constrained pair-
wise alignments, one for S1 aligning with each Sj , for 2 ≤ j ≤ k. Suppose |S1| = n,
and let Aj be the optimal constrained pair-wise alignment of S1 and Sj under
(r1, r2, . . . , rα). Define s0 and sn be the longest sequences of spaces inserted before
S1[1] and after S1[n] in all (k− 1) Aj ’s, respectively. Similarly for 1 ≤ i ≤ n− 1, let
si be the longest sequence of spaces between S1[i] and S1[i + 1] in all (k − 1) Aj ’s.
Initially, set A to contain a single row S′

1 = [s0 ⊕ S1[1] ⊕ s1 ⊕ S1[2] ⊕ · · · ⊕ si−1 ⊕
S1[i]⊕ si ⊕· · ·⊕S1[n]⊕ sn], where the ⊕ operator denotes the string concatenation
operation. Note that |S′

1| = |S1| +
∑

0≤i≤n |si|.
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For each Sj with 2 ≤ j ≤ k, add Sj to A according to the optimal constrained

pair-wise sequence alignment
(

S̄1
S̄j

)
of S1 and Sj , i.e. insert columns of spaces to(

S̄1
S̄j

)
until S̄1 is identical to S′

1.
Notice that the insertion of spaces during the construction of A does not change

the pair-wise alignment score of S1 with each of the other sequences with respect
to P under the positions (r1, r2, . . . , rα). Therefore, A is the constrained multiple
sequence alignment for S = {S1, . . . , Sk} and P with the minimum star-sum score.

5.2. Complexities of the center-star algorithm for CMSA

Based on the recurrence equation presented in Eq. (1), the optimal constrained pair-
wise alignment of S1 with S2, under a set of α positions {r1, . . . , rα} matching P

takes time and space O(αn2). This can be further reduced to O(n2) time and space.

Lemma 1. Consider two sequences S1 and S2, and a constrained sequence P with
|S1| = n1, |S2| = n2 and |P | = α. Given a list of positions r = (r1, . . . , rα) such
that S1[rγ ] is to match P [γ], for all 1 ≤ γ ≤ α, it suffices to compute only O(n1n2)
entries in the matrix D(i, j, γ) to obtain D(n1, n2, α).

Proof. Based on Eq. (1), we have the following three observations about the com-
putation of D(i, j, γ). Consider any 0 ≤ γ ≤ α, and any 1 ≤ j ≤ n2. (i) When i < rγ ,
D(i, j, γ) = ∞. (ii) When i = rγ , D(i, j, γ) is computed from D(i − 1, j − 1, γ − 1).
(iii) When i > rγ , D(i, j, γ) is computed from D(i′, j′, γ) for some i′ ≤ i and j′ ≤ j.
As a result, we can see that for any 0 ≤ γ ≤ α, we only need to compute the
entries D(i, j, γ) for all rγ ≤ i ≤ rγ+1 − 1 and all 1 ≤ j ≤ n2. (We set r0 = 0 and
rα+1 = n1 + 1 for the boundary case.) Therefore, the total number of entries that
we need to compute equals to

∑
0≤γ≤α+1(rγ+1 − rγ)n2 = O(n1n2).

Based on Lemma 1, we can compute the optimal constrained alignment
for S1 and S2 with P matched in a particular sequence of positions as shown
in Algorithm 2. In Step (i), we need to compute (k − 1) pair-wise alignments for
each combination (S; r1, . . . , rα) and there are C such combinations. Therefore, by
Lemma 1, Step (i) can be computed in O(Ckn2) time. To find the best combi-
nation, we only need to keep track of the current best one as we consider a new
combination. Therefore, Steps (i) and (ii) together takes O(Ckn2) time and O(n2)
space. For Step (iii), notice that the resulting sequence S′

1 has length at most kn.
If we store the whole resulting alignment matrix, we need O(k2n) space and the
merging would take O(k2n) time. However, we can simply store the locations of the
non-space characters of the sequences in the alignment matrix. Then the merging
can be done incrementally by adding each sequence in turn using O(n) time, i.e.
in total the merging takes O(kn) time. The space requirement can also be reduced
to O(kn). As a result, the overall time and space complexities of the center-star
algorithm is O(Ckn2) and O(n2), respectively.
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begin
// Initialization:
Initialize D(0, 0, 0), D(i, 0, γ), and D(0, j, γ), for 0 ≤ i ≤ n1, 0 ≤ j ≤ n2,
and 1 ≤ γ ≤ α, according to Equation 1.
// Dynamic Programming: set r0 = 0, rα+1 = n1

for γ = 0 to α do
for i = rγ to rγ+1 do

for j = 0 to n2 do
If D(i, j, γ) is not initialized, compute D(i, j, γ) according to
Equation 1 in terms of D(i − 1, j − 1, γ − 1), D(i − 1, j − 1, γ),
D(i − 1, j, γ) and D(i, j − 1, γ).

end

Algorithm 2: The dynamic programming of Center-star alignment (Step (i)).

5.3. Performance of the center-star algorithm for CMSA

The following theorem shows that the center-star approximation algorithm for
CMSA has an approximation ratio

(
2 − 2

k

)
. Define the distance ∆(S′

i, S
′
j) of two

aligned sequences S′
i and S′

j as the sum of pair-wise distances between the two char-
acters at the same positions in S′

i and S′
j , i.e., ∆(S′

i, S
′
j) =

∑
1≤p≤|S′

i| δ(S
′
i[p], S′

j [p]).

Theorem 3. Given S = {S1, . . . , Sk} and a constrained sequence P . Suppose As

is the alignment output by the constrained center-star algorithm, and A∗ be the
optimal constrained alignment with respective to P . Then, sp score(As)

sp score(A∗) ≤ 2 − 2
k .

Proof. For any alignment matrix A, let Ai be the ith row of A, for 1 ≤ i ≤ k, and
ss scorei(A) be the star-sum score of A with Ai as the center sequence. Let Ac be
the optimal center sequence of A. Since A∗ is a CMSA for S and P , sp score(A∗) =∑

1≤i<j≤k ∆(A∗
i , A

∗
j ). Then,

sp score(A∗) =
1
2

∑
1≤i,j≤k,i�=j

∆(A∗
i , A

∗
j )

=
1
2

∑
1≤i≤k


 ∑

1≤j≤k,i�=j

∆(A∗
i , A

∗
j )




=
1
2

∑
1≤i≤k

(ss scorei(A∗))

≥ k

2
min

1≤i≤k
(ss scorei(A∗))

≥ k

2
(ss scorec(As)).
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On the other hand,

sp score(As) =
1
2

∑
1≤i,j≤k,i�=j

∆
(
As

i , A
s
j

)

≤ 1
2

∑
1≤i,j≤k,i�=j,i�=c,j �=c

(
∆(As

i , A
s
c) + ∆(As

c , A
s
j)

)

+
1
2


 ∑

1≤j≤k,j �=c

∆(As
c , A

s
j) +

∑
1≤i≤k,i�=c

∆(As
i , A

s
c)




=
2(k − 1)

2

∑
1≤i≤k,i�=c

∆(As
i , A

s
c)

= (k − 1)(ss scorec(As)).

Note that the inequality above (i.e., lines 1 and 2) is due to the triangle inequality.
Therefore, sp score(As)

sp score(A∗) ≤ 2(k−1)
k = 2 − 2

k , and the theorem follows.

6. Empirical Results

In Sec. 6.1, we evaluate the performance of our CPSA and CMSA algorithms using
four data sets of RNase sequences taken from the NCBI.b In Sec. 6.2, we show that,
in practice, C, the total number of occurrences of the constrained sequence as a
subsequence in all sequences, is much smaller than n2.

6.1. Experiments on CPSA and CMSA algorithms

All our experiments are conducted on an Intel workstation with 2.0 GHz CPU and
4 GB main memory. First, we use CPSA to align two RNase sequences (with lengths
about 150) with three constrained characters (α = 3), using our CPSA algorithm
(Sec. 3) and Tang et al.’s constrained pair-wise sequence algorithm.15 Tang et al.’s
CPSA algorithm took 127 seconds and 400 MB memory. For the same problem
instance, our CPSA algorithm ran within a fraction of second with only 1.5MB of
memory space. This shows the practicality of our CPSA algorithm especially for
long sequences and long constrained sequence.

To evaluate the performance of different CMSA algorithms, we implemented
the original Tang et al.’s progressive CMSA algorithm,15 the improved progressive
CMSA algorithm, and the constrained center-star algorithm. We ran these CMSA
algorithms on four sets of RNase sequences, summarized in Table 3. In data set 0,
we used the same set of 7 RNase sequences used by Tang et al.15 We obtained 3
other data sets of RNase sequences from the NCBI; data sets 1 and 2 contain
6 RNase sequences of lengths about 180, and data set 3 contains 5 long RNase
sequences (with maximum length 327). Since we cast the CMSA as a minimization

bNational Center of Biotechnology Information, URL: http://www.ncbi.nlm.nih.gov.
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Table 3. Sequences used in data sets 0 to 3.

Data Set 0 Data Set 1 Data Set 2 Data Set 3

Num Seq 7 6 6 5

Max seq len 125 185 186 328

Constrained HKH HKH HKSH HKH

Sequence

Sequence ID H-RNase3
H-RNase2
BP-RNaseA
BS-RNase
H-RNaseA
H-RNase4
RC-RNase

gi|119124|sp|
P12724|ecp human

gi|2500564|sp|
P70709|ecp rat

gi|13400006|
pdb|ldyt|

gi|20930966|ref|
xp 142859.1|

gi|20873960|ref|
xp 127690.1|

gi|20930966|ref|
xp 142859.1|

gi|20930966|ref|
XP 142859.1|

gi|119124|sp|
P12724|ECP HUMAN

gi|2500564|sp|
P70709|ECP RAT

gi|13400006|pdb
gi|20930966|ref|

XP 142859.1|
gi|20873960|ref|

XP 127690.1|

gi|10068295|gb|
AAE40716.1|

gi|17549935|ref|
NP 510780.1|

gi|28509297|ref|
XP 282983.1|

gi|28499937|ref|
XP 204162.2|

gi|4902995|dbj|
BAA77929.1|

Table 4. Alignment scores of CMSA algorithms.

Tang’s Alg. Improved Tang’s Alg. Center-star Alg.

Time Space Time Space Time Space
(sec) (MB) Score (sec) (MB) Score (sec) (MB) score

Data set 0 127 425 46319 <1 2.0 46319 12 1.9 40051
Data set 1 381 1192 71208 <1 2.6 71208 46 2.0 49875
Data set 2 254 654 63315 <1 2.7 63315 54 2.0 45241
Data set 3 — Memory exhausted — <2 6.2 60849 208s 2.3 57325

Table 5. Alignment scores of the two algorithms after the
refinement by ClustalW.

Tang’s Algorithm Center-star Algorithm

Data set 0 38668 38668
Data set 1 69368 47216
Data set 2 63315 31776

Data set 3 62966 59021

problem, we used a modified scoring function based on Pam70. These four data sets
were aligned using the CMSA algorithms, measuring the running time, memory
requirement and the modified minimizing-Pam70 alignment score. These alignments
were then post-processed using the web-tool ClustalWc as described by Tang et al.15

Table 4 summarizes the performance of the three different CMSA algorithms
on these data sets; while the performance of the algorithms after the ClustalW
refinement on these data sets is presented in Table 5. The alignments of data sets

cThe ClustalW web tool is provided by European Bioinformatics Institute,
URL: http://www.ebi.ac.uk/clustalw/.
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Fig. 1. Alignments of data sets 0 and 3.
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0 to 3, using the constrained center-star algorithm, are shown in Fig. 1. Due to
the page limit, the alignment matrices are divided into blocks of 90 characters, the
first 90 characters of each sequence are listed first before the subsequent blocks.
Columns that match the constrained characters are marked by an asterisk (∗).

Comparing the alignment matrices produced by center-star approximation algo-
rithm and Tang et al.’s progressive CMSA algorithm15 in data sets 1, 2 and 3, we
note that the constrained characters P [1]..P [α] are aligned at different columns of
the alignment matrices. Computationally, the center-star approximation algorithm
for CMSA produces alignments with better SP alignment scores (see Table 4).

6.2. Number of constraint occurrences

We refer to the paper by Tang et al.15 for an application used for CMSA. In
their experiments, seven RNase sequences were aligned so that the three active-site
residues, “HKH”, were in the same columns in the alignment matrix. This motivates
the CMSA problem as all RNase sequences contain the active-site residues “HKH”
that are essential for the main functionality of the RNase degrading to RNA. In
our experiment, we show that C, the total number of occurrences of the constraint
“HKH” in each sequence is reasonably small. Since the value of C is relatively small,
the running time of our center-star algorithm is more efficient than the O(αkn4)-
time algorithm described by Tang et al.15 There are totally 2351 sequences from
the NCBI. In these 2351 RNase sequences, a total of 1954 sequences, or 83%, con-
tain less than 500 residues. For each RNase, we measured the mean, mode and
average number of occurrences of the constraint “HKH” and the result is reported in
Table 6.

CMSA is usually done for a set of sequences of approximately the same length.
As shown in Table 6, for CMSA of k sequences with lengths below 500, we have
C ≤ 105k on average and C ≤ 241k for 90% of these RNase sequences. Even
among the longer RNase sequences, the average number of occurrences is only
about 464. Thus, the running time of our center-star algorithm is O((500k)kn2)
on average which is much shorter than the running time O(αkn4) of Tang et al.’s
algorithm.15

Table 6. Occurrences of constraint
“HKH” in RNase sequences from NCBI.

No. of samples 1954 2351
Percentage 83.11 100.0
Max sequence length 500 3989
Median occurrences 42 56
Average occurrences 105 464
80 Percentile 124 413
90 Percentile 241 1248
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7. Conclusion

Using traditional MSA tools, biologists have limited control over the output of the
sequence alignment. They can only choose high level alignment parameters such
as gap penalty, scoring function, etc. As such, they are unable to incorporate their
knowledge about the sequences, such as known functionalities and structures of the
input sequences for use by the sequence alignment tool. This information is essential
for accurate and biologically meaningful sequence alignment. Constrained sequence
alignment provides users with the ability to differentiate important residues that
need to be aligned together over other residues. This problem was first studied by
Tang et al.15 However, many existing techniques developed for MSA in the litera-
ture do not work for the CMSA problem due to the time and space complexities
of O(αn4). In this paper, we reduce the time and space complexities of solving
the optimal pair-wise constrained alignment from O(αn4) to O(αn2). With this
improvement, existing techniques for MSA can now be modified to solve the CMSA
problem. We have demonstrated how the center-star sequence approximation algo-
rithm can be applied to solve the CMSA problem. With the reduction in time and
space complexities, it is hoped that the improved quality of sequence alignment
can help biologists. It is worth-mentioning that the constrained center-star align-
ment problem can be shown to be NP-hard, exploiting approximation algorithms
of this problem for the constrained multiple sequence alignment problem would be
of theoretic and practical interest.

Acknowledgement

We thank the reviewer for pointing out that the space of our pair-wise constrained
alignment can be improved to O(αn).

References

1. V. Bafna, E.L. Lawler, and P.A. Pevzner. Approximation algorithms for multiple
sequence alignment. In Theoretical Computer Science, volume 182, issues 1-2, pages
233–244. ACM Press, Aug 1997.

2. P. Bonizzoni and G.D. Vedova. The complexity of multiple sequence alignment with
SP -score that is a metric. Theoretical Computer Science, 259(1–2):63–79, 2001.

3. P. Clote and R. Backofen. Computational Molecular Biology: An Introduction. John
Wiley and Sons, Ltd, Aug 2000.

4. T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Chapter 23: Minimum Span-
ning Trees, Introduction to Algorithms, Second Edition. The MIT Press, 2001.

5. D. Gusfield. Efficient methods for multiple sequence alignment with guaranteed error
bounds. In Bull. Math. Biol., 30, volume 30, pages 141–154, 1993.

6. D. Gusfield. Algorithms on Strings, Trees and Sequences. Cambridge U. Press, 1997.
7. D.S. Hirschberg. A linear space algorithm for computing maximal common subse-

quences. Commun. ACM, 18(6):341–343, 1975.
8. T. Jiang, M. Zhang, and Y. Xu, editors. Chapter 4: Algorithmic Methods for Multiple

Sequence Alignment, Current Topics in Computational Molecular Biology. The MIT
Press, 2002.



FA 1
February 23, 2005 10:59 WSPC/185-JBCB 00097

Constrained Multiple Sequence Alignment 17

9. D.J. Lipman, S.F. Altschul, and J.D. Kececioglu. A tool for multiple sequence align-
ment. In Proceedings of the National Academy of Sciences of the United States of
America, volume 86-12, pages 4412–4415, Jun 1989.

10. H.B. Jr Nicholas, A.J. Ropelewski, and D.W. Deerfield II. Strategies for multiple
sequence alignment. BioTechniques, 32:572–591, Mar 2002.

11. C. Notredame, D. Higgins, and J. Heringa. T-Coffee: A novel method for multiple
sequence alignments. In Journal of Molecular Biology, volume 302, page pp20, 2000.

12. P.A. Pevzner. Multiple alignment, communication cost, and graph matching. In SIAM
J. Applied Mathematics, volume 52, pages 1763–1779, 1992.

13. A. Phillips, D. Janies, and W. Wheeler. Multiple sequence alignment in phylogenetic
analysis. Molecular Phylogenetics and Evolution, 16-3:317–330, Sep 2000.

14. K. Reinert, H.P. Lenhof, P. Mutzel, K. Mehlhorn, and J.D. Kececioglu. A branch-
and-cut algorithm for multiple sequence alignment. In Proceedings of the 1st Annual
International Conference on Computational Molecular Biology (RECOMB), pages
241–250, Santa Fe, NM, 1997. ACM Press.

15. C.Y. Tang, C.L. Lu, M.D.T. Chang, Y.T. Tsai, Y.J. Sun, K.M. Chao, J.M. Chang,
Y.H. Chiou, C.M. Wu, H.T. Chang, and W.I. Chou. Constrained multiple sequence
alignment tool development and its application to RNase family alignment. In Pro-
ceedings of the First IEEE Computer Society Bioinformatics Conference (CSB 2002).
The full version appears in Journal of Bioinformatics and Computational Biology,
1(2):267–287., pages 127–137, 2002.

16. J.D. Thompson, D.G. Higgins, and T.J. Gibson. ClustalW: improving the sensitivity
of progressive multiple sequence alignment through sequence weighting, positions-
specific gap penalties and weight matrix choice. In Nucleic Acids Research, volume 22,
pages 4673–4680, 1994.

17. L. Wang and T. Jiang. On the complexity of multiple sequence alignment. In Journal
of Computational Biology, volume 1, pages 337–348, 1994.

18. R.T. Wong. Worst-case analysis of network design problem heuristics. SIAM J. Alg.
Disc. Meth., 1(1):51–63, 1980.

Francis Chin is the Chair of Computer Science, Taikoo Profes-
sor of Engineering and Associate Dean of the Graduate School
at The University of Hong Kong (HKU). Francis received his
B.Sc. from the University of Toronto, Canada, in 1972, and M.S.,
M.A. and Ph.D. from Princeton University, in 1974, 1975, and
1976, respectively. He became an IEEE Fellow in 1996. Before

joining HKU, he taught at the University of Maryland, Baltimore County;
University of California, San Diego; University of Alberta; and the Chinese
University of Hong Kong. He has also visited the City University of Hong Kong
and the University of Texas at Dallas. He was the Head of the Computer Science
at HKU for nearly 15 years until the end of 1999. His research interests include
Bioinformatics and Design and Analysis of Algorithms.



FA 1
February 23, 2005 10:59 WSPC/185-JBCB 00097

18 F. Y. L. Chin et al.

Tak-Wah Lam is an Associate Professor at the Department of
Computer Science of the University of Hong Kong. He received
his PhD degree from the University of Washington in 1988. His
current research interests include online algorithms and compu-
tational biology.

Ngai Lam Ho is an M.Phil. student at Department of Com-
puter Science of University of Hong Kong and is expected to
graduate in late 2004. He received his B.Sc. Computer Science
(Hon.) degree from National University of Singapore in 2001.
His research interests include computational biology, algorithms
and data structures.

Prudence Wong is a Lecturer at the Department of Computer
Science of the University of Liverpool. She received her PhD
degree from the University of Hong Kong in 2003. Before join-
ing the University of Liverpool in 2004, she was a Postdoctoral
Fellow at the University of Hong Kong. Her research interests
include on-line algorithms and computational biology.




