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ABSTRACT

A molecule called transcription factor usually binds to a set of promoter sequences of
coexpressed genes. As a result, these promoter sequences contain some short substrings, or
binding sites, with similar patterns. The motif discovering problem is to find these similar
patterns and motifs in a set of sequences. Most existing algorithms find the motifs based on
strong-signal sequences only (i.e., those containing binding sites very similar to the motif).
In this paper, we use a probability matrix to represent a motif to calculate the minimum
total number of binding sites required to be in the input dataset in order to confirm that the
discovered motifs are not artifacts. Next, we introduce a more general and realistic energy-
based model, which considers all sequences with varying degrees of binding strength to
the transcription factors (as measured experimentally). By treating sequences with varying
degrees of binding strength, we develop a heuristic algorithm called EBMF (Energy-Based
Motif Finding Algorithm) to find the motif, which can handle sequences ranging from those
that contain more than one binding site to those that contain none. EBMF can find motifs for
datasets that do not even have the required minimum number of binding sites as previously
derived. EBMF compares favorably with common motif-finding programs AlignACE and
MEME. In particular, for some simulated and real datasets, EBMF finds the motif when
both AlignACE and MEME fail to do so.

Key words: motif finding(discovering), transcription factor, DNA microarray, binding site,
binding energy.

1. INTRODUCTION

One great challenge in molecular biology is to understand the regulation of gene expression—the
process by which a segment of DNA is decoded to form a protein. Two main steps for gene expres-

sion are transcription and translation. During the transcription process, an mRNA molecule is formed by
copying a gene from the DNA. During the translation process, the mRNA is decoded to produce a protein.

To start the transcription process for a particular gene, one or more corresponding proteins, called
transcription factors, have to bind to several specific regions, called binding sites, in the promoter region
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of the gene. A transcription factor can bind to multiple binding sites, but these sites typically have similar
length (usually about 8 to 20 bp) and a common DNA sequence pattern. For most transcription factors, the
common patterns for their corresponding binding sites, simply referred to as the motifs, are still unknown.
Many laboratory-based methods for motif identification have been developed, however, these experimental
methods are both expensive and time consuming.

A recent trend in motif finding is to make use of computational methods based on microarray data. Most
existing computational methods (Bailey and Elkan, 1994, 1995; Buhler and Tompa, 2002; Chin and Leung,
2005b; Hughes et al., 2000; Lawrence et al., 1993; Liu et al., 1995; Pevzner and Sze, 2000; Roth et al.,
1998) are based on having a set of sequences that are known to contain binding sites with a very similar
pattern (i.e., the strong-signal model) as input. These approaches assume that a sufficient number of such
strong-signal sequences are available. However, this assumption may not be valid for some transcription
factors, and the number of strong-signal sequences may be too small to successfully find the motif using
existing methods. Some motif-finding algorithms also consider sequences that are known not to contain any
binding sites, in addition to strong-signal sequences (Barash et al., 2001; Jakt et al., 2001; Sinha, 2003).
However, for these algorithms, the number of weak-signal sequences (sequences that should not contain
substring similar to the motif) with plausible binding sites is used in the hypergeometric analysis in order
to compute the probability of such occurrences under the null hypothesis. The lower the probability, the
more confident we are about the discovered motif. No attempt is made to exploit the patterns of sequences
without binding sites in order to find the motifs more effectively. Weak-signal sequences should not contain
any patterns similar to the motif, and this can be a useful form of information. In fact, all sequences, strong-
signal or weak-signal, with multiple occurrences of binding sites or without binding sites, contain different
information about the motifs in various forms and can be useful for motif finding. Some researchers (Segal
et al., 2002; Segal and Sharan, 2004) adopted this information by assigning probabilities to each input
sequence si which represents the probability that si contains at least one binding sites. However, these
probabilities are assigned artificially by people and the value of these probabilities are usually either 0 or 1.

In this paper, we focus on finding motifs for datasets that contain insufficient number of sequences with
strong signals. We first study the limitations of existing methods that are based on the strong-signal model,
i.e., the minimum required information in the input sequences in order to identify the motif. Then we
introduce a more general and realistic energy-based model for dealing with datasets containing insufficient
number of sequences with strong signals. The approach we use is different from that of Barash et al.
(2001), Jakt et al. (2001), and Sinha (2003) in the sense that our model can handle sequences containing
a varying amount of signal, i.e., varying from sequences that contain multiple binding sites to sequences
without any binding sites. It is also different from the approaches of Segal et al. (2002) and Segal and
Sharan (2004) in the sense that no artificial assignment of probabilities is needed. Last, we show how our
algorithm finds the correct motif in those situations where algorithms based on the strong-signal model
fail to do so.

1.1. Better characterization for strong-signal model

Buhler and Tompa (2002) have studied the limitations of computational approaches based on the strong-
signal model. They proposed a method to calculate the minimum number of input sequences required and
showed that, if the number of input sequences is less than the minimum requirement, it is unlikely that
there exists a computational approach that can identify the motif.

One important assumption in their study is that each input sequence contains exactly one binding site.
In real situations, there can be multiple occurrences of binding sites, or multiple binding sites, for the same
transcription factor in one sequence (Bram and Kornberg, 1984; Bram et al., 1986; Magdolen et al., 1990).
In other words, even if the number of strong-signal sequences in the input dataset is small, there may still
be enough binding sites or signals to enable the discovery of the motif. This observation is supported by
an experiment using only three very special sequences with strong signal as input to identify the motif for
GAL4, where each of the three sequences contained multiple binding sites (see Section 2 for more details).
According to the results of Buhler and Tompa (2002), these sequences are much less than the minimum
number of input sequences required, which is four, and it should be theoretically impossible to find the
motif for this input set (We set n = 787, t = 3, l = 13 and d = 2). However, we tested this input set
on two common motif-finding programs, AlignACE (Hughes et al., 2000; Roth et al., 1998) and MEME
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(Bailey and Elkan, 1994), which are based on the strong-signal model. We found that both programs could
successfully identify the motif. Some natural questions to ask are then: how do we decide whether an
input dataset has enough signals for motif recovery, and what are the limitations of strong-signal model,
i.e., minimum information, if we allow multiple binding sites in each sequence?

Our first contribution is to improve Buhler and Tompa’s results by allowing multiple binding sites in each
sequence. We characterize the limitations of the strong-signal model in terms of the minimum total number
of binding sites, rather than the minimum number of strong-signal sequences, required to be in the input
dataset. Buhler and Tompa represent a motif of length l by a length-l string. A more general representation,
which is used by most existing approaches, makes use of a probability matrix. The probability matrix is a
4× l matrix where the rows are indexed by the nucleotides A, C, G, T and each entry in the j -th column of
the matrix represents the probability of the nucleotide’s occurrence at position j of the binding site. So we
represent a motif by a matrix instead of a string. Our characterization on the limitation of the strong-signal
model is confirmed by some datasets on programs AlignACE and MEME.

1.2. Energy-based model

Existing algorithms are not effective to identify motifs for input datasets that contain insufficient number
of strong-signal sequences (see Section 2 for experimental results). Our main contribution is a novel
approach to solving this problem.

Existing algorithms have the following problems. They assume that each binding site in the strong-signal
model contains the same amount of signals. However, in reality, different binding sites have different bind-
ing strengths with the transcription factor, and thus contain different amounts of signals. Also, sequences
having comparatively weak signals (including sequences with a weak binding to the transcription factor
and sequences without binding sites) are not used. In fact, these ignored weak-signal sequences also carry
useful information for identifying the motif.

In our model, we introduce a more general and realistic energy-based model to capture previously ignored
information. We make use of the additional information from experiments and consider the binding strength
(as measured experimentally) of each available sequence. Intuitively the binding strength should relate to
the degree of similarity between the motif and the binding site in each sequence. Based on the binding
strength, our model considers the amount of signals that a sequence actually contains. This allows us to
make use of sequences with not so strong or even weak signals.

We then formulate the motif-finding problem in a way that allows multiple occurrences of binding sites
in each sequence. We develop a heuristic algorithm call EBMF (Energy-Based Motif Finding Algorithm)
to solve the problem. We compare the performance of EBMF with those of AlignACE and MEME. EBMF
is shown to be effective on both simulated and real data when the datasets contain an insufficient number
of sequences with strong signals. In particular, in our test cases, EBMF is able to identify the motif while
both AlignACE and MEME fail to do so.

Our paper is organized as follows. Section 2 discusses the limitations of the strong-signal model when
given input sequences with multiple binding sites. Section 3 presents the energy-based model. We also
show how to convert existing experimental data to fit our model. A heuristic algorithm EBMF is given in
Section 4. Section 5 compares the performance of EBMF with AlignACE and MEME. A conclusion is
given in Section 6.

2. THE LIMITATION OF THE STRONG-SIGNAL MODEL WITH
MULTIPLE BINDING SITES

With the assumption that each sequence contains exactly one binding site (a substring which is close
to the motif in Hamming distance), Buhler and Tompa (2002) have studied the minimum number of
input sequences required for finding the motif based on a strong-signal model. In this section, we use a
probability matrix to represent a motif and improve their results by allowing multiple binding sites in a
sequence.

Let a motif of length l be represented by a 4 × l probability matrix M where M(c, j) represents the
occurrence probability of the nucleotide c in the j -th position of a binding site. Given t input sequences
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each of length n, those algorithms based on a strong-signal model want to find a probability matrix
M and a background probability P0 = {P0(A), P0(C), P0(G), P0(T )} (which represents the occurrence
probabilities of A, C, G, T in the nonbinding regions), which maximize the log likelihood (see Bailey and
Elkan [1994]) of the t sequences generated according to the background probability P0 with implanted
binding sites generated according to matrix M . Formally, the log likelihood of a binding site b generated
according to matrix M is

L(b, M) =
l∑

i=1

log M(b[i], i).

The log likelihood of the nonbinding regions generated according to the background probability P0 =
{P0(A), P0(C), P0(G), P0(T )} is

LB = nA log P0(A) + nC log P0(C) + nG log P0(G) + nT log P0(T )

where nA, nC, nG, and nT are the numbers of A, C, G, and T in the nonbinding regions respectively. Since
the length (tn−Bl) of nonbinding regions is usually quite long (over several thousand), it is expected that
nA = P0(A)(tn − Bl), nC = P0(C)(tn − Bl), nG = P0(G)(tn − Bl), nT = P0(G)(tn − Bl) and

LB = (tn − Bl)En0

where En0 = P0(A) log P0(A) + P0(C) log P0(C) +P0(G) log P0(G) +P0(T ) log P0(T ) which is the
negative of the entropy of a nucleotide in nonbinding regions. The log likelihood of t length-n input
sequences generated according to M and P0 is

Ltotal(M) = max

{
B∑

k=1

L(bk, M) + (tn − Bl)En0

}

among all possible values of B and sets of B nonoverlapping binding sites {bk} in the t sequences.
Suppose the input sequences are generated based on this model; that is, we generate t random sequences

of length n based on the probability distribution P0 and plant in them B∗ instances of a motif randomly
generated according to an arbitrary profile matrix M∗. Intuitively, if B∗ is small or M∗ looks too much
like the background distribution, no algorithms can possibly pick out the B∗ instances from the sequences
without knowing M∗. It is because there exist many matrices M different from M∗ (in the sense that the
most probable strings generated according to M are quite different from those generated according to M∗),
which have a log likelihood no less than Ltotal(M

∗). Therefore, the expected number of matrices with
different consensus patterns, whose log likelihoods are no less than Ltotal(M

∗), gives us an idea whether
it is possible to find the motif M∗ from the input sequences. If the expected number of matrices is large,
then finding the motif is impossible; otherwise, it is highly probable.

Given a string Q of length l and a Hamming distance d, we define a probability matrix MQ,d such that
for any j -th column of the matrix, the entry corresponding to the j -th character in Q is (l − d)/ l while
the other entries in the same column are d/3l. We want to find the expected number of matrices in this
format which have log likelihood no less than Ltotal(M

∗). If the expected number of matrices even in this
restricted format and with log likelihood no less than Ltotal(M

∗) is large, it is impossible to find the motif
M∗ without extra information.

Assume the correct matrix is M∗ and the expected log likelihood of a binding site b generated according
to the matrix M∗ is LE . If the t sequences contain exactly B∗ binding sites with respect to M∗, we can
calculate the log likelihood of the t sequences generated according to M∗ as Ltotal(M

∗) = B∗LE +
(nt − B∗l)En0. Now let us consider the log likelihood of a probability matrix MQ,d . If the Hamming
distance between a binding site b and Q is within d for d ≤ 3l/4, then we can show that L(b, MQ,d) ≥
(l − d) log[(l − d)/ l] + d log(d/3l). The log likelihood of the t sequences generated according to MQ,d

is Ltotal(MQ,d) which is no less than BL(b, MQ,d) + (nt − Bl)En0 if the input sequences contain B

nonoverlapping substrings whose Hamming distances from Q are within d (B can be different from B∗).
Any MQ,d may be considered as a possible solution for the motif-finding algorithm if Ltotal(MQ,d) ≥
Ltotal(M

∗).
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Given a length-l random string Q with equal occurrence probabilities for A, C, G, T and a length-l
random substring b generated according to the background probabilities P0, we show in the appendix that
the probability that the Hamming distance between Q and b is at most d where 0 ≤ d ≤ l is

pd =
d∑

i=0

(
l

i

) (
3

4

)i (
1

4

)l−i

.

Let X be the sequence formed by concatenating the t input sequences (the length of X is nt) and bi be
the i-th substring in X such that the Hamming distance between bi and Q is at most d.

We want to partition the sequence X into several nonoverlapping segments X[ki−1 + 1 . . . ki] such that
at the end of each segment, there exists exactly one substring bi = X[ki − l + 1 . . . ki] whose Hamming
distance with a fixed string Q is at most d . Let Bpos(p, q) be the probability for the substring X[p . . . q]
such that the Hamming distance between Q and X[j . . . j + l − 1], where p ≤ j ≤ q − l, is larger than
d while the Hamming distance between Q and bi = X[q − l + 1 . . . q] is at most d. Using the same
assumption as Buhler and Tompa (2002) that the Hamming distance between Q and X[j . . . j + l − 1] is
independent for each substring in X, we have Bpos(p, q) = (1 − pd)q−p+1−lpd .

Consider the probability PQ,B that X contains exactly B nonoverlapping substrings bi at the positions
X[ki − l + 1 . . . ki] such that the Hamming distance between bi and Q is no more than d while all other
length-l substrings in X are of Hamming distance more than d from Q. Depending on the position of the
last substring bB , there are two cases to be considered.

Case I: kB > nt − l (the substring in X after the last binding site has length less than l, so it is impossible
to have a binding site after kB )

PQ,B =
B∏

i=1

Bpos(ki−1 + 1, ki) = (1 − pd)kB−BlpB
d

Case II: kB ≤ nt − l

PQ,B = (1 − pd)nt−kB−l+1
B∏

i=1

Bpos(ki−1 + 1, ki)

= (1 − pd)nt−kB−l+1(1 − pd)kB−BlpB
d

Note that the probability PQ,B is independent of the positions of the substrings bi but depends on the
ending position of the last binding site kB . The probability PQ,B can then be expressed in term of the
position of the last binding site j , the Hamming distance d and the number of binding sites B, as follows:

PB(j, d, B) =
{

(1 − pd)j−BlpB
d j > nt − l

(1 − pd)nt−j−l+1(1 − pd)j−BlpB
d otherwise.

The probability that X contains exactly B nonoverlapping substrings bi (without considering the positions
of the substrings) such that the Hamming distance between bi and Q ≤ d is the sum of probabilities PQ,B

for all possible positions for the set of substrings {bi}:
nt∑

j=Bl

[(
j − Bl + B − 1

B − 1

)
PB(j, d, B)

]
.

Assume X contains exactly B nonoverlapping substrings {bi} such that the Hamming distance between
bi and Q is no more than d . For each substring bi , L(bi, MQ,d) ≥ (l − d) log[(l − d)/ l] + d log(d/3l).
Thus, the log likelihood

Ltotal(MQ,d) ≥ B[(l − d) log[(l − d)/ l] + d log(d/3l)] + (nt − Bl)En0.
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The probability of X such that Ltotal(MQ,d) ≥ Ltotal(M
∗) is

�nt/ l�∑
k=B ′

⎧⎨
⎩

nt∑
j=kl

[(
j − kl + k − 1

k − 1

)
PB(j, d, k)

]⎫⎬
⎭

where B ′ is the smallest number of binding sites for a matrix MQ,d such that the log likelihood of the
t sequences generated according to MQ,d is no less than Ltotal(M

∗); i.e.,

B ′
[
(l − d) log

l − d

l
+ d log

d

3l

]
+ (nt − B ′l)En0 ≥ B∗LE + (nt − B∗l)En0. (1)

By considering all possible substrings Q of length l and Hamming distance d, the expected number of
matrices MQ,d such that Ltotal(MQ,d) ≥ Ltotal(M

∗) is approximately

E(LE, B∗) = 4l

�3l/4�∑
d=0

⎧⎨
⎩

�nt/ l�∑
k=B ′

⎧⎨
⎩

nt∑
j=kl

[(
j − kl + k − 1

k − 1

)
PB(j, d, k)

]⎫⎬
⎭

⎫⎬
⎭ .

According to Equation (1), B ′ is a function of LE and B∗. (This is an approximation because the log
likelihood of a given motif MQ,d , Ltotal(MQ,d) ≥ Ltotal(M

∗) does not occur independently. For example,
if Ltotal(MQ,d) ≥ Ltotal(M

∗) when Q = AAAAAA, it is likely that Ltotal(MQ,d) is also greater than or
equal to Ltotal(M

∗) when Q = AAAAAC).
Figure 1 shows the expected number E(LE, B∗) of matrices MQ,d with a log likelihood Ltotal(MQ,d) ≥

Ltotal(M
∗) for 10 input sequences when P0 = {0.25, 0.25, 0.25, 0.25}. The length of each sequence is 700

and the length of the motif is 17. It shows that the minimum required number of binding sites in the input
sequences should be 7, 8, 9 (when the expected number of matrices E(LE, B∗) ≤ 1) for En = −0.5, −0.6,
−0.7, and LE = −8.5, −10.2, −11.9, respectively, where LE is the expected log likelihood of a binding
site and En = LE/l is the expected log likelihood of a nucleotide in a binding site (note that it is the
negative of the entropy of a column in M∗). If the value of En increases, it means that each binding site

FIG. 1. E(LE, B∗) for different values of B∗ and En where LE = En × l, t = 10, n = 700, l = 17, P0 =
{0.25, 0.25, 0.25, 0.25}.
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FIG. 2. E(LE, B∗) for different values of l and En where LE = En × l, t = 10, n = 700, B∗ = 10, P0 =
{0.25, 0.25, 0.25, 0.25}.

FIG. 3. E(LE, B∗) for different values of t and En where LE = En × l, n = 700, l = 17, B∗ = 10, P0 =
{0.25, 0.25, 0.25, 0.25}.
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Table 1. Results of AlignACE and MEME on Gal4a

AlignACE MEME

n B∗ Min B E(LE , B∗) Find? Rank Find? Rank

9 seq. 762 18 9 3.055 × 10−52 Yes 1 Yes 1
3 seq. 787 11 7 1.491 × 10−23 Yes 1 Yes 1
8 seq. 736 13 9 8.925 × 10−25 Yes 1 Yes 1
7 seq. 746 9 9 2.298 × 10−7 Yes 1 No —
6 seq. 749 7 9 2534 No — No —

aMin B is the minimum value of B such that E(LE, B) ≤ 1. The background probabilities P0 are {0.2, 0.3, 0.3, 0.2}
which are calculated according to the number of A, C, G, and T occurrences in the intergenic regions of yeast.

contains more signal and fewer binding sites are required for finding motifs. In other words, if the input
sequences do not contain the least amount of binding sites, it is unlikely that any motif-finding algorithms
based on a strong-signal model can identify the real motif without extra information. Figure 2 shows the
minimum required length of the motif for 10 input sequences of length 700 with 10 binding sites in total
when P0 = {0.25, 0.25, 0.25, 0.25}. As indicated in Fig. 2, the shorter the motif, the less likely that the
motif can be identified. For En = −0.5, −0.6, −0.7, the minimum lengths of the motif are 11, 13, and 15,
respectively. Figure 3 shows the tendency of the values of E(LE, B∗) for different numbers of sequences
of length 700 when P0 = {0.25, 0.25, 0.25, 0.25}, the length of the motif is 17, and there are 10 binding
sites in total. As indicated in Fig. 3, if the total number of binding sites is fixed, the greater the number
of sequences in the input, the more noise in the data and the more difficult it is to find the motif.

We can also confirm our analysis by experiments which illustrate the limitations of existing programs,
such as AlignACE and MEME. Gal4 is a well-studied transcription factor which activates genes necessary
for galactose metabolism. Ren et al. (1993) found 10 genes to be bound by Gal4 and induced in galactose.
The exact binding sites for most of these genes can be found in Bram and Kornberg (1984), Bram et al.
(1986), and Magdolen et al. (1990). Given the nine sequences of the intergenic regions (the gene Gal1 and
Gal10 share one intergenic region), we want to test whether MEME and AlignACE can find the published
motif pattern CGGN11CCG of Gal4 in different input sequences with different values of B∗. From the
published binding sites, we calculate the expected log likelihood LE of a binding site which is −11.47
(En = −0.67). Table 1 confirms our analysis that motifs can be found in the first three cases and definitely
not in the last case. In the first three cases, the values of E(LE, B∗) are very small and the numbers of
binding sites in the input data are more than the minimum number required. On the other hand, in the last
case, E(LE, B∗) is much larger than 1 and the number of binding sites is less than the minimum number
required, so it is difficult to find the correct motif pattern. Although the intergenic regions may not be
randomly generated, our calculations can still be applied as both AlignACE and MEME assuming each
nucleotide in the nonbinding regions is generated according the background probabilities independently.

3. OUR ENERGY-BASED MODEL AND PROBLEM DEFINITION

In order to make use of the information contained in weak-signal sequences for motif finding, we propose
a more general energy-based model in this section. In the next subsection, we show an example how to
estimate the binding energy between a sequence and a transcription factor from a real experiment.

3.1. Applying the model to a real case

Consider the scenario that multiple copies of a particular DNA fragment si are mixed with multiple
copes of a particular transcription factor of interest. At the equilibrium state, some copies of DNA frag-
ment si are bound by transcription factors while some copies are free. Let ei be the average binding
energy between the transcription factor TF and DNA fragment si ; then ei = −ln(Keq) where the binding
constant Keq = [TF • si]/[TF][si] (ratio of the number of bounded copies over the number of free copies)
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with the binding reaction modeled by TF + si ⇐⇒ TF • si (Klotz, 1986). Note that the unit of ei is in
(RT ) where T is the constant temperature throughout the experiment in degrees Kelvin and R is the gas
constant 0.001987 kcal/mol K.

In the genomewide location analysis (Ren et al., 1993), cells were fixed with formaldehyde, harvested,
and disrupted by sonication. The DNA fragments cross-linked to the transcription factor of interest were
labeled with a fluorescent dye (Cy5) with the use of ligation-mediated polymerase chain reaction (LM-PCR)
while the rest of the DNA fragments were subjected to LM-PCR in the presence of a different fluorophore
(Cy3). Both pools of labeled DNA were hybridized to a single DNA microarray containing all yeast
intergenic sequences. For each sequence si , we get an average color ratio of red intensity (Cy5) and green
intensity (Cy3) which represents the number of copies of si bound by the transcription factor over the
number of copies of si that are not bound by the transcription factor. However, errors such as background
subtraction, hybridization nonuniformities, fluctuations in the dye incorporation efficiency, scanner gain
fluctuations, etc. may introduce inaccuracy in the value of color ratio. With the application of the single
array error model (Roberts et al., 2000), a p-value is calculated to represent the confidence level of the
color ratio for each sequence. A small p-value means that we are confident with the color ratio. Those
DNA fragments with small p-values are chosen as the input sequences for the EBMF algorithm and their
corresponding color ratios are used as the values of Ke, which estimate the binding energy between the
transcription factor and each input sequence si .

3.2. Energy-based model

In our model, we do not treat the input sequences equally. Each sequence is associated with a value
ei which represents the binding energy between the transcription factor and its binding sites (which can
be multiple). Let sequence si contain Bi binding sites and E(bij , M) be the binding energy between the
transcription factor and the j -th binding site bij in sequence si . The probability that the transcription factor
binds to bij (Klotz, 1986) is

Pij = e−E(bij ,M)

Bi∑
k=1

e−E(bik,M)

. (2)

We use a 4× l energy matrix M to represent the motif where the row of this matrix is indexed by A, C, G,
T and let M(c, j) represent the binding energy of the transcription factor and the nucleotide c at the j -th
position of the binding site. The total binding energy between binding site b and the transcription factor
can be approximated by E(b, M) = ∑l

j=1 M(b[j ], j) where b[j ] is the j -th character of b.
The set of substrings in a sequence si , which are likely to be bound by the transcription factor is said to

be the binding sites of si . For a sequence si , the binding sites bij are those substrings with E(bij , M) ≤ α

where α is a determined threshold. If si does not contain any substring b such that E(b, M) ≤ α, the
substring b with the lowest E(b, M) will be chosen as its binding site. As for those binding sites that are
too close to each other, i.e., the distance between each of two binding sites is less than some determined
value dmin, we assume that there will not be two or more transcription factors bound to these binding
sites simultaneously. While for those binding sites whose distances are larger than dmin, each of them can
be bound by a transcription factor at the same time. We define Etotal(si , M) to be the expected binding
energy between the transcription factor and sequence si given that at least one binding site in si is bound
by the transcription factor.

3.3. Problem definition

Given the length of binding sites l, an energy threshold α, a distance threshold dmin, and t sequences
S = {si} in which each sequence si has a corresponding binding energy ei , we want to find a 4 × l energy
matrix M to minimize the prediction error

t∑
i=1

(Etotal(si , M) − ei)
2.
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Note that we try to minimize the mean square error because we assume the binding energy to follow the
normal distribution. Factors such as concentration of transcription factor and temperature are not taken
into account as we assume the binding energies {ei} are coming from experiments in the same condition.
Although these factors may affect the values of each entry in the energy matrix M , they have a linear
effect on all entries and will not affect the pattern of the motif.

4. ENERGY-BASED MOTIF FINDING ALGORITHM

EBMF tries to predict the 4 × l energy matrix M from the input sequences using two steps. In the
first step, we identify a set of candidate matrices based on the strings that occur frequently in the input
sequences of strong signal. In the second step, we refine each candidate matrix using an EM-like iteration,
which can be described as follows. Based on the candidate matrix, find the best possible binding sites
for each sequence (see Section 4.2). These binding sites, together with the given binding energy for each
sequence, are used to calculate another energy matrix so as to minimize the prediction error. The iteration
process is repeated until there is no further decrease in the prediction error or until the number of iterations
reaches a certain value. After processing all candidate matrices, the top 10 matrices that give the smallest
prediction errors are considered as the actual energy matrices. We first describe the details of an EM-like
step in refining the candidate matrix.

4.1. Refine the candidate motif

Let the Bi best possible binding sites be bi1, . . . , biBi
for each sequence si with respect to candidate

matrix M . Based on the user input dmin, we estimate the expected binding energy Etotal(si , M
′) for an

arbitrary matrix M ′ as follows. We group the Bi binding sites bij into p subsets BSi1, . . . , BSip where
BSi1∪. . .∪BSip = {bi1, . . . , biBi

}. For any two binding sites in the same group BSik , the distance between
them is within dmin (i.e., if bim, bin ∈ BSik then the distance between bim and bin ≤ dmin) while the
distance between any two binding sites in different groups is larger than dmin. Note that BSi1, . . . , BSip are
disjoint and each contains only one binding site in practice. The expected binding energy of a transcription
factor bound to a binding site in BSik is

∑
bij ∈BSik

PijE(bij , M
′) where Pij is given in Equation (2). Given

that at least one binding site is bound by the transcription factor, the expected binding energy between the
transcription factor and sequence si can be calculated as follows:

Etotal(si , M
′) =

∑
all BSik

⎡
⎢⎢⎢⎢⎢⎢⎣

∑
bij ∈BSik

PijE(bij , M
′)

1 −
∏

all BSik

⎛
⎝1 −

∑
bij ∈BSjk

Pij

⎞
⎠

⎤
⎥⎥⎥⎥⎥⎥⎦

=

∑
j∈{1,...,Bi }

PijE(bij , M
′)

1 −
∏

all BSik

⎛
⎝1 −

∑
bij ∈BSik

Pij

⎞
⎠

.

The expected binding energy Etotal(si , M
′) is the sum of the expected binding energy between the tran-

scription factor and each group of binding sites given that the transcription factor has bound to at least one
binding site in the sequence. The sum

∑
bij ∈BSik

PijE(bij , M
′) is the expected binding energy between the

transcription factor and a binding site in group BSik and 1−∏
all BSik

(1−∑
bij ∈BSjk

Pij ) is the probability
that the transcription factor has bound to at least one binding site in the sequence.

We then formulate an equation by setting this expected binding energy equal to the given binding energy
of that sequence; that is, Etotal(si , M

′) = ei . With t input sequences, we have a system of t equations. We
use QR decomposition to solve this system of equations to obtain all 4l entries of the new energy matrix
M ′ that minimizes the predication error.

Technically, we convert each character in bij for any j in BSik to a four-dimensional vector by using
(1,0,0,0), (0,1,0,0), (0,0,1,0), and (0,0,0,1) to represent A, C, G, and T, respectively. The resultant 4l-
dimensional vector vij is used to represent the binding site bij of length l. For example, we convert ATC
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to a 12-dimensional vector (1,0,0,0,0,0,0,1,0,1,0,0). Then, the equation for sequence si can be represented
as follows:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Bi∑
j=1

⎡
⎢⎢⎢⎢⎢⎢⎣

Pij

1 −
∏

all BSik

⎛
⎝1 −

∑
bim∈BSik

Pim

⎞
⎠

× vij

⎤
⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

× V (M ′)T = ei .

where Pij is the probability that the transcription factor is bound to bij with respect to M (see Sec-
tion 2.2) and V (M ′) = (M ′(1, 1), M ′(2, 1), M ′(3, 1), M ′(4, 1), M ′(1, 2), . . . , M ′(4, l)) represents the
vector formed by concatenating the column entries of M ′.

4.2. Finding candidate matrices

When the algorithm based on the energy model is applied to find the motif, not all the initial matrices
can converge to the correct matrix M∗. The success of the algorithm depends very much on the set of
candidate matrices chosen as “seed.” For example, if we use a random string Q of length l to construct
a 4 × l matrix M as the seed where M(Q[i], i) = −1 for 1 ≤ i ≤ l and 0 for all other entries, it can be
confirmed from experiments that the success rate is very low at about 0.3%. In the following, we show a
better method of finding the seeds.

4.2.1. Improved method for finding a seed. Our approach to find a seed matrix is to select the most
likely length-l string Q among the 4l possible strings by voting. Each σ of length l appearing in the input
sequences will give a score to every string Q with a similar pattern (that is, the Hamming distance between
σ and Q is within a given threshold). The set of strings receiving the highest scores will be chosen for
converting to seed matrices. However, the votes should carry different weights depending on the binding
energy ei of the sequence from where σ is derived. In our experiment, we have defined the score function
as follows:

Score(si, σ, Q) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−ei/

l/2∏
k=1

P0(Q[k]) if ∃ a substring σ in si s.t. H(σ, Q) ≤ �l/8�

0 otherwise

where H(σ, Q) defines the Hamming distance between σ and Q and P0(c) the occurrence probability of
c in the input sequences where c is A, C, G, or T. The score of a length-l string Q is

∑
i

∑
σ

Score(si, σ, Q).

In general, it is very time consuming to find the highest scoring Q among the 4l (= 234 if l = 17) possible
strings. In order to reduce the number of tests, we need to reduce the length of the “seed.” One way to do
this is the following. Given a string Q of length l, we project the l/2 characters at the odd positions of
Q to form a representative string of length l/2. For example, when l = 8, we will use ACAC to represent
ATCGATCG. We modify the scoring function such that H(σ, Q) is the Hamming distance between the
representative string of σ and Q, and we calculate the product of P0(Q[k]) for odd number k only. Instead
of finding the scores of all the 4l possible strings of length l, we find the scores for the 4l/2 representative
strings of length l/2 and use those representative strings with high scores to predict the candidate matrices.
Similarly, we can get another set of candidate matrices if we project the even positions of a string to form
the representative string. In practice, we can still find the seed even if we perform the above projection.
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Table 2. Results on Simulated Dataa

EBMF AlignACE MEME

E(LE , B) Find? Rank Find? Rank Find? Rank

B = 7 149475 Yes 1 No — No —
B = 8 0.000439 Yes 1 No — Yes 1
B = 9 7.70349 × 10−7 Yes 1 Yes 1 Yes 1

aWe generated 200 length-700 sequences. Then we planted B length-17 binding sites with expected likelihood
−10 in these sequences. EBMF, AlignACE, and MEME were used to discover the motif.

5. EXPERIMENTAL RESULTS

We have implemented EBMF in C++ and tested it on both real data and simulated data. We compared
EBMF with the common motif-finding programs AlignACE and MEME. The results showed that EBMF
is effective and compares favorably with these programs.

5.1. Simulated data

Let m be the total number of sequences, n be the length of each sequence, t be the number of sequences
with binding sites, and B∗ be the number of binding sites in the t sequences. We generated the simulated
data as follows. A 4× l energy matrix E∗ was generated randomly, and a corresponding probability matrix
M∗ was constructed such that for each column j in M∗, the probability of the occurrence of a nucleotide c

was directly proportional to e−E∗(c,j). Then we generated m sequences of length n where each nucleotide
occurred with equal probability and planted B∗ binding sites (generated according to the probability matrix)
in these t sequences at random positions. Finally, we used the energy matrix E∗ to calculate the energy
level ei = Etotal(si , E

∗) of each sequence si . As have many other researchers in motif finding (Buhler
and Tompa, 2002; Segal et al., 2002), we have used a relatively large n when generating input sequences.
Because with real biological data we usually do not know the accurate positions of the binding regions,
the cost for getting accurate results is high and error may occur in the experiments.

Tables 2 and 3 show the results of AlignACE, MEME, and EBMF on the simulated data. We arranged
the m sequences according to their energy level ei in increasing order. The t sequences with planted binding
sites should have the lowest energy level. We used the m sequences and the corresponding energy levels
ei as input for EBMF. For AlignACE and MEME, we used the k (k = t, t + 1, . . . , m) sequences with
the lowest energy level as input. There are situations in which EBMF finds the motif while AlignACE
and MEME fail to do so for all k in the range [t, m]. This is because when the number of binding sites
in the sequences is small, there exist many matrices whose log likelihoods are no smaller than that of
matrix M∗. In fact, there is an infinite number of such matrices. When these matrices in turn represent
many different strings, AlignACE and MEME will fail. The EBMF algorithm can help in these situations
by using weak-signal sequences to eliminate the number of matrices and, more importantly, the number
of different strings they represent, to the extent that the motif can be found.

Table 3. Results on Simulated Dataa

EBMF AlignACE MEME

E(LE , B) Find? Rank Find? Rank Find? Rank

B = 6 619609 Yes 1 No — No —
B = 7 0.000439 Yes 1 No — Yes 1
B = 8 7.70353 × 10−7 Yes 1 Yes 1 No —

aWe generated 200 length-700 sequences. Then we planted B length-17 binding sites with expected likelihood
−8.8 in these sequences. EBMF, AlignACE, and MEME were used to discover the motif.
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Table 4. Results of the Algorithms on Gal4a

EBMF AlignACE MEME

Find? Rank Find? Rank Find? Rank

Using the top 100 sequences in the original data Yes 2 Yes 1 Yes 1
Using the top 100 sequences except sequences 2, 3, 4, and 6 Yes 1 No — No —
Using the top 100 sequences except sequences 1 to 6 Yes 10 No — No —
Using the top 100 sequences except sequences 1 to 8 Yes 5 No — No —

aWe set the numbers of input sequences to be different values for AlignACE and MEME. We say AlignACE and MEME can find
the motif if they can find the CGGN11CCG pattern in at least one setting.

5.2. Real data

Using Gal4 as an example, we know from Section 2 that once we remove several sequences containing
multiple binding sites, both MEME and AlignACE cannot find the motif pattern CGGN11CCG (Bram and
Kornberg, 1984; Bram et al., 1986; Magdolen et al., 1990). In this section, we test whether our algorithm
can discover the correct pattern in a similar situation.

From the mircoarray experiment (data from Ren et al. [1993]), we obtained 6,000 intergenic regions (the
length of the sequences is in the range [100, 1000]), each with a color ratio. After sorting the sequences
according to their color intensities in decreasing order, we removed sequences 2, 3, 4, and 6, which
contain multiple binding sites with strong signal, from the dataset. We tried to find the motif using this
weak dataset.

For AlignACE and MEME, no matter how we set the threshold for selecting the top strong-signal
sequences, the motif cannot be found. However, since the EBMF algorithm takes advantage of weak-
signal sequences, we can find the CGGN11CCG pattern using the top 100 sequences (Table 4).

6. CONCLUSION

In this paper, we have characterized datasets for which existing motif-finding algorithms, which are based
on the strong-signal model, succeed to find the motif in terms of the minimum number of binding sites the
dataset must have (instead of the minimum number of sequences with binding sites). This characterization
provides a better description of the dataset for which we can expect success.

Commonly used motif-finding programs, such as AlignACE and MEME, are based on a strong-signal
model, where the patterns of weak-signal sequences are ignored. Clearly, weak-signal sequences, such as
sequences without binding sites, also contain information about motifs in the negative sense, although
possibly less information than from strong-signal sequences. For datasets which do not have the minimum
number of binding sites, we have proposed a new EMBF algorithm for finding motifs, which makes use
the information of weak-signal sequences in order to outperform AlignACE and MEME. However, our
EBMF algorithm in its present state has two shortcomings which require attention and will be addressed
in our future papers.

1. Comparatively, our EBMF algorithm is rather slow and takes a much longer time to identify the motif
than other motif-finding algorithms. We believe, however, that time improvement can be realized through
a more efficient way of finding “seed” matrices (Section 4.2.1).

2. For most datasets, exact information about each sequence’s binding energy is not available. It is then
desirable to devise another approach to address datasets with only two groups of sequences—those with
and those without binding sites (Chin and Leung, 2005a).

APPENDIX

In this section, we prove by induction that the probability that the Hamming distance between a randomly
chosen string Q and a string b generated according to some background probabilities P0 is smaller than
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or equal to d can be represented by

d∑
i=0

(
l

i

) (
3

4

)i (
1

4

)l−i

where l is the length of Q and b.
Denote H(x, y) as the Hamming distance between two strings x and y of the same length.
Given a length-l random string Q with equal occurrence probabilities for A, C, G, T, and a length-l ran-

dom substring b generated according to the background probabilities P0 = {P0(A), P0(C), P0(G), P0(T )},
let S(l) be the proposition that for any d, 0 ≤ d ≤ l, the probability that H(Q, b) = b is

(
l

d

) (
3

4

)d (
1

4

)l−d

.

When l = 1

Case I: d = 0

P(H(Q, b) = 0) = P(Q = “A” ∧ b = “A”)

+ P(Q = “C” ∧ b = “C”)

+ P(Q = “G” ∧ b = “G”)

+ P(Q = “T” ∧ b = “T”)

= 1

4
· P0(A) + 1

4
· P0(C) + 1

4
· P0(G) + 1

4
· P0(T )

= 1

4
(P0(A) + P0(C) + P0(G) + P0(T ))

= 1

4

=
(

1

0

) (
3

4

)0 (
1

4

)1−0

Case II: d = 1

P(H(Q, b) = 1) = P(Q = “A” ∧ b = “A”

+ P(Q = “C” ∧ b = “C”)

+ P(Q = “G” ∧ b = “G”)

+ P(Q = “T” ∧ b = “T”)

= 3

4
· P0(A) + 3

4
· P0(C) + 3

4
· P0(G) + 3

4
· P0(T )

= 3

4
(P0(A) + P0(C) + P0(G) + P0(T ))

= 3

4

=
(

1

1

) (
3

4

)1 (
1

4

)1−1

S(1) is true

Assume S(k) is true, consider S(k + 1)
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Case I: 1 ≤ d ≤ k

P (H(Q, b) = d) = P(H(Q[1 . . . k], b[1 . . . k]) = d)P (H(Q[k + 1], b[k + 1]) = 0)

+ P(H(Q[1 . . . k], b[1 . . . k]) = d − 1)P (H(Q[k + 1], b[k + 1]) = 1)

=
(

k

d

) (
3

4

)d (
1

4

)k−d

·
(

1

0

) (
3

4

)0 (
1

4

)1

+
(

k

d − 1

) (
3

4

)d−1 (
1

4

)k−(d−1)

·
(

1

1

) (
3

4

)1 (
1

4

)0

=
((

k

d

)
+

(
k

d − 1

)) (
3

4

)d (
1

4

)(k+1)−d

=
(

k + 1

d

) (
3

4

)d (
1

4

)(k+1)−d

Case II: d = 0

P(H(Q, b) = d)

= P(H(Q[1 . . . k], b[1 . . . k]) = 0)P (H(Q[k + 1], b[k + 1]) = 0)

=
(

k

0

) (
3

4

)0 (
1

4

)k

·
(

1

0

) (
3

4

)0 (
1

4

)1

=
(

1

4

)k+1

=
(

k + 1

0

) (
3

4

)0 (
1

4

)k+1

Case III: d = k + 1

P(H(Q, b) = d) = P(H(Q[1 . . . k], b[1 . . . k]) = k)P (H(Q[k + 1], b[k + 1]) = 1)

=
(

k

k

) (
3

4

)k (
1

4

)0

·
(

1

1

) (
3

4

)1 (
1

4

)0

=
(

3

4

)k+1

=
(

k + 1

k + 1

) (
3

4

)k+1 (
1

4

)0

Therefore S(k + 1) is true.

By induction, S(l) is true for all positive integer l > 0.

Since the probability that H(Q, b) = d is

(
l

d

) (
3

4

)d (
1

4

)l−d

the probability that the H(Q, b) ≤ d is

d∑
i=0

(
l

i

) (
3

4

)i (
1

4

)l−i

.
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