Improved On-line Broadcast Scheduling with
Deadlines*

Feifeng Zheng', Stanley P. Y. Fung?, Wun-Tat Chan?, Francis Y. L. Chin?,
Chung Keung Poon?*, and Prudence W. H. Wong?®

! School of Management, Xi’an JiaoTong University, China.
zhengff@mailst.xjtu.edu.cn

2 Department of Computer Science, University of Leicester, United Kingdom.
pyfung@mcs.le.ac.uk

3 Department of Computer Science, The University of Hong Kong, Hong Kong,

China. {wtchan,chin}@cs.hku.hk
4 Department of Computer Science, City University of Hong Kong, China.
ckpoon@cs.cityu.edu.hk

® Department of Computer Science, University of Liverpool, United Kingdom.

pwong@csc.liv.ac.uk

Abstract. We study an on-line broadcast scheduling problem in which
requests have deadlines, and the objective is to maximize the weighted
throughput, i.e., the weighted total length of the satisfied requests. For
the case where all requested pages have the same length, we present
an online deterministic algorithm named BAR and prove that it is 4.56-
competitive. This improves the previous algorithm of Kim and Chwa [11]
which is shown to be 5-competitive by Chan et al. [4]. In the case that
pages may have different lengths, we prove a lower bound of 2(A/ log A)
on the competitive ratio where A is the ratio of maximum to minimum
page lengths. This improves upon the previous VA lower bound in [11,
4] and is much closer to the current upper bound of (A + 2v/A +2) in
[7]. Furthermore, for small values of A we give better lower bounds.

1 Introduction

Data broadcast scheduling is a core problem in many applications that involve
distribution of information from a server to a large group of receivers. In con-
trast to the traditional point-to-point mode of communication, broadcasting
technologies are employed so that different clients requesting the same data can
be satisfied simultaneously by only one broadcast. For example, in Hughes’ Di-
recPC system [12], clients make requests over phone lines and the server satisfies
the requests through broadcasts via a satellite. Typical information that will be
broadcasted include movies (video on-demand), stock market quotation, traffic

* The work described in this paper was fully supported by grants from the Research
Grants Council of the Hong Kong SAR, China [CityU 1198/03E, HKU 7142/03E,
HKU 5172/03E], an NSF Grant of China [No. 10371094], and a Nuffield Foundation
Grant of UK [NAL/01004/G].

and landmark information, etc. Very often, the information to be disseminated
is time critical and thus it is important to meet the deadlines of the requests.

Motivated by these applications, we study the following On-line Scheduling
of Broadcasts (Broadcasting): We are given a set of pages to be broadcasted to
clients upon request. Each request r has four attributes, namely, p(r): the re-
quested page, a(r): the arrival time, d(r): the deadline by which the requested
page has to be received in its entirety, and w(r): the weight of the request. A
request is not known until it arrives, i.e., at time a(r). When it arrives, all p(r),
d(r) and w(r) become known. When the server broadcasts a page, all requests
to the same page that have arrived will receive the content of the page simulta-
neously. Upon completion, each of these requests will be satisfied, provided that
the completion time is before its respective deadline. The server is allowed to
abort the current page it is broadcasting before its completion and start a new
one. To satisfy an aborted request, the requested page has to be broadcasted
again from the beginning. Thus it is an on-line scheduling problem with pre-
emptions and restarts. Our goal is to maximize the total weighted throughput,
i.e., the total weighted lengths of all satisfied requests.

Related Work. Most of the previous works on the problem of on-line broad-
cast scheduling concentrate on minimizing the flow time where the flow time of a
request is the time elapsed between its arrival and its completion. For example,
[10,5, 6, 8] studied the problem of minimizing the total flow time while Bartal
and Muthukrishan [2] studied the minimization of the maximum flow time. Ak-
soy and Franklin [1] presented a practical parameterized algorithm and evaluated
it with extensive experiments. While the flow time is important and related to
how the clients perceive the responsiveness of the system, the objective of maxi-
mizing the throughput is crucial for applications in which requests are associated
with deadlines. Jiang and Vaidya [9] considered the problem of maximizing the
percentage of satisfied requests assuming knowledge of the requests distribution.

Kim and Chwa [11] were the first to design algorithms with provable worst
case performance bounds for this problem. In particular, one of their results is a
5.828-competitive algorithm for our problem. Using a tighter analysis, Chan et
al [4] showed that Kim and Chwa’s algorithm actually has competitive ratio at
most 5, through a reduction to a job scheduling problem with cancellations. It
was shown [14] that we need new techniques to further improve the bound. For
the case of different page lengths, let A be the ratio between the length of the
longest and shortest page. There is a (A + 2v/A + 2)-competitive algorithm [7]
and a v/A lower bound [11, 4].

A related on-line interval scheduling problem is studied by Woeginger [13].
Translated into our terminologies, his problem is to schedule requests with tight
deadlines (i.e., the length of time interval between its arrival time and deadline
is exactly the length of the requested page) and pages have different lengths. He
proved that when the page length and the weight of requests can be arbitrarily
related, no deterministic algorithm can have constant competitive ratio. He went
on to give a 4-competitive heuristic for several special cases in which the page
length and the weight of requests satisfy certain relationship. In particular, the

heuristic works for the case of unit page length and arbitrary weights. He then
complemented his upper bound with several lower bounds, including a tight
lower bound for this special case of unit page length. In some sense, our problem
is a generalization of Woeginger’s problem allowing non-tight intervals.

Our Results. In this paper we give three different results for Broadcasting.
Our first contribution is to give an improved algorithm for the case of unit
page length. We consider the deadlines of the requests, a parameter ignored by
previous algorithms, in our scheduling decision. By considering the fact that
some of the currently-serving requests might have distant deadlines and can be
served later after the completion of new requests, we improve the competitive
ratio from 5 [4] to 4.56. In Section 3 we describe this algorithm and its analysis.

Our second contribution is to give an improved lower bound for the case of
different page lengths. We give a lower bound of 2(A/log A) on the competi-
tive ratio, an improvement over the previous 2(v/A) bound and which almost
matches the linear upper bound. This is discussed in Section 4.

All existing lower bound proofs for the case of different page lengths do not
work very well when A > 1 is small, and thus the lower bound for those cases
is still 4, that being the lower bound for the unit page length case. In Section
5 we describe our third contribution of proving better lower bounds for these
cases. The lower bound for the competitive ratio is improved to e.g., 4.245, 4.481,
4.707 and 5.873 for A = 2, 3, 4 and 10 respectively. The result is obtained by
extending the lower bound proof for the unit page length case [13] to the case
of different page lengths.

Due to space constraints, most proofs are omitted from this version. They
can be found in the full version of the paper.

2 Notations

We first state the problem formally. Assume there are n pages, Pi,..., P, in
the system. A request for some page may arrive in arbitrary time with arbitrary
deadline. If a page is fully broadcasted, then a request for that page is satisfied if
the requests arrive before the broadcast of the page, and the broadcast finishes
before the deadline of the request. A broadcast can be aborted at any time, and
can later be restarted from the beginning.

A schedule S is a sequence of broadcasts Jp, Ja, . .. where each broadcast J;
is a set of requests to the same page started being served at time s(J;). The
broadcasts are indexed such that s(J;) < s(J;) for i < i’. For convenience, we
will write J; to represent both the set of requests and the requested page. Let
1(J;) be the length of the page broadcasted by J;. If s(J;) + I(J;) > s(Jix1),
then the broadcast J; is aborted by J;11; otherwise J; is said to be completed.
The profit of a completed request is its weight times the length of the page it
requests. The profit of a broadcast J;, denoted by |.J;|, is the sum of w(r) x I(J;)
over all r in J;. We denote by |S| the total profit of completed broadcasts in
the schedule S, i.e., we only count those satisfied requests. The objective is to
maximize the total profit of satisfied requests |\S| during a time period.

Given an input I (a set of requests) and an algorithm A, we denote by S4(I)
and S*(I) the schedules produced by A and by an optimal offline algorithm on
I respectively. When A and [are understood from the context, we will simply
denote the schedules by S and S* respectively. To gauge the quality of the
schedules produced by an on-line algorithm, the competitive ratio analysis [3] is

*

often used. The competitive ratio of algorithm A is defined as r4 = sup; %

3 Unit Page Length: the BAR Algorithm

In this section, we consider the case where each page is of the same length. Thus
we assume without loss of generality that broadcasting each page requires one
unit of time. We present our BAR algorithm (for Bi-level Abortion Ratio) and
prove that it is 4.56-competitive.

At any moment, there is a (possibly empty) pool of requests that have arrived
and are waiting to be served. Requests in the pool will be discarded when their
deadlines cannot be met even if the server starts to serve them immediately.
The algorithm is triggered either when a broadcast is completed or when a new
request arrives. In the former case, the server will pick the page with the largest
total profit of requests in the pool to be broadcasted next. When a new request
arrives while the server is broadcasting a page, the server will either continue the
current broadcast J (and add the new requests to the pool), or abort J in favour
of a new broadcast R with larger total profit of requests in the pool (including
newly arrived requests and possibly part of J). The decision is made according
to the relative profits of J and R. It will also consider the previous broadcast
and the deadlines of requests currently in the system.

More precisely, let Jy be the broadcast aborted by J. If J does not abort
any broadcast, define Jy = ¢ (the empty set). Let J’ be the largest-profit set of
requests that can be satisfied in a single broadcast after completing J, assuming
no more requests arrive. Similarly R’ denotes the largest-profit set of requests
that can be satisfied in one broadcast after completing R, if we abort J and start
R now. See Figure 1. Let «, § be some constants such that 1.5 < a < 2 < g < 2.5.
The exact values will be determined later. If either one of the following conditions
is satisfied, we abort J and start R:

C1: B|J| < |R| and | Jo| < |R|, or
C2: o|J| < |R| < B|J], 8|J| +|J'| <|R|+ |R|, and B|Jo| < |J|.

Otherwise, we continue with the broadcasting of J and add the new requests
into the pool.

We give some intuitive rationale behind these conditions. In previous algo-
rithms [11, 4], the abortion is simply determined by considering whether 8|.J| <
|R|. This completely ignores the deadlines of the requests. The improvement
of BAR comes from the introduction of [C2], which gives an alternative abor-
tion condition with a lower threshold « and, as we show below, considers the
deadlines of requests.

(0]
(aborted)

Fig. 1. BAR is broadcasting J and determining whether to abort J and start R.

The first part of condition [C1] is the usual abortion condition by considering
the profit of requests. The second part of [C1] enforces some technical properties
that are required in bounding the profit of the requests, despite some abortions
being caused by condition [C2].

The second part of condition [C2] utilizes deadlines of requests. Rather than
directly comparing the deadlines of requests, we consider the total profit of
requests that can later be satisfied (before their deadlines) in deciding whether
to abort the page currently being broadcast. Suppose an abortion happens due
to condition [C2]. Then some part of R’ must come from J (which is aborted).
Otherwise, the requests in R’ come from the pool only, and since the broadcast
J' will finish earlier than R’, R’ is a possible choice of J'. Hence |R'| < |J'|
and the condition B|J| + |J/| < |R| + |R| cannot be true. So R’ N J is not
empty, and they must be requesting the same page. That means once condition
[C2] happens, there must be some requests in J that have long deadlines, long
enough to be completed after R is completed. Therefore, even though |R)| is only
a times larger than |J|, we may still satisfy enough requests to achieve a good
competitive ratio.

The third part of condition [C2] ensures there will not be two consecutive
abortions caused by [C2], so that this weaker-threshold condition will not be
used too often.

The remaining of this section is devoted to the proof of the following theorem.

Theorem 1. BAR is 4.56-competitive for Broadcasting in the unit page length
case.

3.1 Basic Subschedules

We now elicit certain useful structures in a schedule produced by BAR. A se-
quence of broadcasts (J1,...,Jx) is called a chain if J; is aborted by J;11 for
alli=1,...,k—1 and J; is preceded by either an idle interval or a completed
broadcast. A chain C = (Ji,...,Ji) in which Jy is completed is called a basic
subschedule. Thus a basic subschedule consists of a sequence of zero or more
aborted broadcasts followed by a completed broadcast; and the sequence cannot
be extended at the front. Furthermore, the broadcast before an idle interval must
be completed. Therefore, the whole schedule can be decomposed into a sequence
of basic subschedules.

Consider an arbitrary basic subschedule, B = (Jy, Ja,...,Ji) where Jj is
a completed broadcast and all the others are aborted ones. The total profit of

requests satisfied by BAR in this basic subschedule is |B| = |Ji|. To analyze
the competitive ratio, we will associate with B a carefully chosen set of requests
satisfied by the offline optimal algorithm O.

Consider a broadcast J by BAR. We can make use of condition [C1] and/or
[C2] to argue that requests started by O while BAR is broadcasting J cannot be
too large, if these requests are available in the pool maintained by BAR. Note,
however, that O can also serve requests with arbitrarily large profits that have
been satisfied by BAR before without violating [C1, C2]. Thus, we classify the
requests satisfied by O into two types according to whether the request has been
satisfied by BAR at the time O starts them. (Since O is an offline algorithm, we
assume that it will never abort a broadcast. Thus, saying that a request is started
by O is equivalent to saying that it will be satisfied by O.) More precisely, we
define J7, for i = 1,..., k, as the set of requests started by O within the interval
[s(Ji),s(Jix1)) but have not been satisfied by BAR before, where s(J;) is the
start time of J; and we take s(Jx41) = s(Ji) + 1. Also, we define B* as the set
of requests in Ji that are started by O after the basic subschedule B. We will
try to obtain an upper bound on Zle |J¥| + | B*|.

Note that if a broadcast J; is aborted by a broadcast J;11 due to condition
[C1], the ratio | J;4+1]/|Ji| is at least 3. However if the abortion is due to condition
[C2], |Jix1]/]J;] may be smaller than 3. Nevertheless, we can still bound the
profits of J;’s and J}’s by geometric series in the following lemmas. Consider a
chain C = (Jy, ..., Ji). It is said to have big endian if |J| > §|Jx—1]; and small
endian otherwise. If C' has only one broadcast, we take Ji_1 = ¢. Thus C will
be considered to have big endian.

The following two lemmas bound the profits of J; and J;.

Lemma 1. Consider a chain C = (Ji,...,Ji) with big endian. Then |J;| <
|Je|/BE for alli=1,... k.

Lemma 2. Consider a chain C = (Jy,...,J,) with big endian. Then |J}| <
|Je|/BF~=Y foralli=1,...,k. Hence Zle |J7] < ﬁﬁ—jl (1 - B—lk) | Jk|.

The following lemma bounds the profit of requests served by O in a basic
subschedule.

Lemma 3. Consider a basic subschedule B = (J1,...,J). If B has small en-
dian,

k
SO+ 151 < (84 5) Bl + L+ = 52

j=1

If B has big endian,

a
N 1|+ 1B < at 2 11 S =B

Proof. Suppose B has small endian. We observe that the chain (J1,...,JJx—1)
must have big endian by construction of BAR. (Note that k > 2 if B has small

endian since k£ = 1 implies B has big endian.) By Lemma 2, we have 25;11 |J7] <

ﬁ—_zl (1 - %) | Jg—1]. Also, we have |J;| < B?|Jx_1| for otherwise, J; would

have aborted Jj, due to condition [C1]. Thus 25:1 |J7] < ﬁﬁ—jl (1 - %) | Ji—1].
As for B*, we note that B|Jy—1| + |J},_1| < |Jx| + |J}| since Ji aborts Jx_1
by condition [C2]. Moreover, |B*| < |J;_;| because requests in B* have dead-

lines no earlier than that of J;_, and they have not been satisfied by BAR at
time s(J;,_,). Hence |B*| < |Ji| — B|Jx—1| + |J},|. Combining these two bounds,

3
we have Y2 |J7| + B < 55 (1=) kol + (il = BlJkal + 1)) =

(8+ 525) Bkl + il + 1] = i il < (B4 75) BTk |+ il +
T4l = 351l
We omit the proof for the big endian case. O

In Lemma 3, no matter B has big or small endian, we can bound |J}| from
above by the profit of the first broadcast in the basic subschedule after B. If B
is followed by an idle interval, then we can actually argue that |J;| = 0. That
is, we associate |J;| with the basic subschedule following B. By the same token,
B will also be associated with such value from the preceding basic subschedule.
In the next subsection we will see how this association is used in the analysis.

3.2 Aggregated Subschedules

Let B; = (Ji1,- ., Jik;) denote the i-th basic subschedule in a sequence of basic
subschedules. For notational convenience define J; o = ¢, and prev(B;) = J; k-1,
i.e., the second last broadcast in a basic subschedule.

Lemma 4. The last basic subschedule before an idle interval must have big en-
dian.

Based on the above lemma, we can partition the original schedule into a
number of aggregated subschedules, each of which containing zero or more basic
subschedules with small endians followed by one basic subschedule with big
endian.

Consider an arbitrary aggregated subschedule, A = (By, ..., B,,) where for
i=1,...,m, B;=(J;i1,...,Jik,) is a basic subschedule with k; broadcasts.

Obviously, the total profit of requests satisfied by BAR in A is

Al =D ik (1)
i=1

Also, since |J; g,

> alprev(B;)| fori=1,...,m — 1, we have

m—1
4] > o (Z |prev<Bz->|> - (2)
=1

Recall that B;’s have small endians for i = 1,...,m — 1. We have k; > 2 since
basic subschedules with only one broadcast must have big endians by definition.
By condition [C2], Blprev(B;)|+|J'| < |Jik;|+|R'| where |R'| < |Ji+1,1] because
R’ is a candidate set of requests to be served after J; i, is completed. Hence we
have G|prev(B;)| < |Jik; i+1,1], and together with (1),

m—1 m
Al > > Blprev(Ba)l + [Tk | = Y [Jial- (3)

i=1 i=2
On the other hand, the total profit of requests satisfied by O and associated
with aggregated subschedule A is:

A= | DT+ +Z|J;” + (B |+ + B

m—1
<Z(ﬁ+ﬂ—)ﬁ|prev(|+(a+6ﬁ)|Jmkm|

=1
B m
+ Z | ik | + Z | i1l + | g | — 71 > | ial
=1 1=2 i=1

where the inequality follows from Lemma 3. Consider (1) + (2) x (%2)—1— (3)
B 7. After some algebraic manipulations (which we omit) we have

52 1 * I
+—+ﬂ— Al 2 [A% + [Tl = [k| (4)
as long as %2 + ﬁl > ﬁ 7 +a. We can bound [J], , | from above by the profit
of the first broadcast (i.e., |J1,1]) in the next aggregated subschedule. Thus, if we
have a sequence of aggregated subschedules Ay, ..., A;, then from (4) we have

g

where J is the last broadcast in A;. Since there is no more broadcast after A;,
|J'| = 0.

If the whole aggregated subschedule consists of only one basic subschedule
with big endian, i.e., A = (By), then |A| = |J1k,| and we can verify that in-
equality (5) still holds.

2
(ﬁ— + i) (Al 4+ A > AT+ 4 147 =17)

The condition B— + B ﬁﬁ + o can be satisfied by having o + a < 82,
ie., a<4/p2 + = — . Setting a = /(% + Z — 5, the competitive ratio of BAR
is

1

| A 2 2 3 1 1
27,71|z|< 5 57 6 4 6 :§+ _1+ 52+Z

+ — =
! T -1 -1 /
21':1 |Az| ﬁ & ﬁ 52_’_%_%

This has a minimum value of approximately 4.561 attained when 3 ~ 2.015, and
o == 1.576.

4 Variable Page Length: An Improved Lower Bound

In this section we consider the case where the pages can have different lengths.
We give a lower bound on the competitive ratio of any deterministic online
algorithm for Broadcasting. Let A be the ratio between the length of the longest
and shortest page.

Theorem 2. The competitive ratio of any deterministic online algorithm for
Broadcasting cannot be smaller than 2(A/log A).

Proof. Assume that there are two pages, P and @) whose lengths are A and 1,
respectively. Given any online algorithm 4, we construct a sequence of requests
as follows. At time 0, a request for P arrives with deadline at time A, i.e., it has
a tight deadline. The weight of the request is 1. There are at most [A] requests
for @, denoted by r; for 0 <4 < [A] — 1. r; arrives consecutively, i.e., a(r;) = 1,
and they all have tight deadlines, i.e., d(r;) =i+ 1. The weight of r;, i.e., w(rl),
is A"(i +1)* where r and k are some constants which will be defined later. If A
broadcasts @) at any time ¢, no more request of r; arrives for i > .

Now we analyze the performance of A against the optimal offline algorithm
O. There are two cases. (1) If A satisfies the request for P by broadcasting P
at time 0, O will satisfy all requests r; by broadcasting @) at time ¢ for 0 < i <
[A]—1. Hence, we have |A] = A and |O] = ZM] YAT(i + 1)%. Since Y27 ¥ =
Oz /(y +1)), |Ol/|A| = (A A/ (k +1)) = O(A™F /(K +1)).

(2) If A broadcasts @ at time ¢, only r; can be satisfied. However, O can
either satisfy the request for P by broadcasting P at time 0 or satisfy all r;
by broadcasting @ at time i for 0 < i < t. We have |A| = A"(¢t + 1)* and
|O| = max{A, >i_, A7(i 4+ 1)¥}. Hence, |O|/|A| = max{A, O(A" (t+1)*1/(k+
1))}/A™(t+ 1)k = max{A"""/(t+1)*,0((t + 1)/(k+1))}. In order to minimize
the ratio, A should choose t = (A" (k + 1))1/(k+1) — 1. In that case, the ratio
is O(AN—/ B+ /(| 4 1R/ D) > (A=) (B+1) / (k4 1)),

In order to maximize the minimum ratio among the two cases, we let r =
(1 — k — k?)/(k + 2). Hence, the competitive ratio is O(A~ 1/(k+2)/(l€ + 1))
O(A-1/(k+2) /(k42)). We further let k+2 = In A where the function A1=1/(#+2) /(j4
2) achieves the maximum, i.e., A'™1/™4 /In A, Since A/™4 is the constant e,
i.e., the base of natural logarithm, we have proved that the competitive ratio is
2(A/log A). O

5 Lower Bound for Small A

The current lower bound for the broadcasting problem is 4 when A = 1 [13].
The 2(A/log A) lower bound we just proved as well as the previous v/A one [4]
gives very small lower bounds (much smaller than 4) for small values of A. In
this section we give better lower bounds for this case.

Let a be the unique positive real root of the equation

a2—4a3/2+2a+1:\/(LAJ—1)2—|—4a2+LAJ. (6)

The following table shows some values of «.

Al 2 3 4 10 |very large
alla [4.245[4.481[4.707/5.873] VA

Theorem 3. For A > 2, no deterministic algorithm for Broadcasting can be
better than a-competitive, where « is the unique positive root of (6).

The proof of this theorem uses a modified construction from the lower bound

proof in [13], by adding requests with different lengths and carefully setting the
arrival time of requests in a different way.

References

1.

2.

10.

11.

12.
13.

14.

D. Aksoy and M. Franklin. Scheduling for large scale on-demand data broadcast.
In Proc. of IEEE INFOCOM, pages 651-659, 1998.

Y. Bartal and S. Muthukrishnan. Minimizing maximum response time in schedul-
ing broadcasts. In Proc. 11th SODA, pages 558-559, 2000.

A. Borodin and R. El-yaniv. Online computation and competitive analysis. Cam-
bridge University Press, 1998.

Wun-Tat Chan, Tak-Wah Lam, Hing-Fung Ting, and Prudence W.H. Wong. New
results on on-demand broadcasting with deadline via job scheduling with cancel-
lation. In 10th COCOON, LNCS 3106, pages 210-218, 2004.

J. Edmonds and K. Pruhs. Broadcast scheduling: when fairness is fine. In Proc.
138th SODA, pages 421-430, 2002.

T. Erlebach and A. Hall. NP-hardness of broadcast scheduling and inapproxima-
bility of single-source unsplittable min-cost flow. In Proc. 13th ACM-SIAM SODA,
pages 194-202, 2002.

Stanley P. Y. Fung, Francis Y. L. Chin, and Chung Keung Poon. Laxity helps
in broadcast scheduling. In Proceedings of 9th Italian Conference on Theoretical
Computer Science, pages 251-264, 2005.

R. Gandhi, S. Khuller, Y.A. Kim, and Y.C. Wan. Algorithms for minimizing
response time in broadcast scheduling. Algorithmica, 38(4):597-608, 2004.

S. Jiang and N. Vaidya. Scheduling data broadcasts to “impatient” users. In
Proc. ACM International Workshop on Data Engineering for Wireless and Mobile
Access, pages 52-59, 1999.

B. Kalyanasundaram, K. Pruhs, and M. Velauthapillai. Scheduling broadcasts in
wireless networks. In Proc. 8th ESA, LNCS 1879, pages 290-301, 2000.

Jae-Hoon Kim and Kyung-Yong Chwa. Scheduling broadcasts with deadlines.
Theoretical Computer Science, 325(3):479-488, 2004.

DirecPC Home Page. http://www.direcpc.com/.

Gerhard J. Woeginger. On-line scheduling of jobs with fixed start and end times.
Theoretical Computer Science, 130:5-16, 1994.

Feifeng Zheng, Francis Y. L. Chin, Stanley P. Y. Fung, Chung Keung Poon, and
Yinfeng Xu. A tight lower bound for job scheduling with cancellation. Information
Processing Letters, 97(1):1-3, 2006.

