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Abstract. In the Flow Edge-Monitor Problem, we are given an undi-
rected graph G = (V,E), an integer k > 0 and some unknown circulation
ψ on G. We want to find a set of k edges in G, so that if we place k mon-
itors on those edges to measure the flow along them, the total number of
edges for which the flow can be uniquely determined is maximized. In this
paper, we first show that the Flow Edge-Monitor Problem is NP-hard,
and then we give two approximation algorithms: a 3-approximation algo-
rithm with running time O((m+ n)2) and a 2-approximation algorithm
with running time O((m+ n)3), where n = |V | and m = |E|.

1 Introduction

We study the Flow Edge-Monitor Problem (FlowMntrs, for short), where the
objective is to find k edges in an undirected graph G = (V,E) with an unknown
circulation ψ, so that if we place k flow monitors on these edges to measure
the flow along them, we will maximize the total number of edges for which
the value and direction of ψ is uniquely determined by the flow conservation
property. Intuitively, the objective is to maximize the number of bridge edges in
the subgraph induced by edges not covered by monitors. (For a more rigorous
definition of the problem, see Section 2.)

Consider, for example, the graph and the monitors shown in Figure 1. In this
example we have k = 4 monitors represented by rectangles attached to edges,
with measured flow values and directions shown inside. Thus we have ψ(2, 3) = 4,
ψ(3, 8) = 2, ψ(6, 4) = 7 and ψ(1, 2) = 1. From the flow conservation property,
we can then determine that ψ(3, 5) = 2, ψ(8, 6) = 2, ψ(7, 5) = 3 and ψ(5, 6) = 5.
Thus with 4 monitors we can determine flow values on 8 edges.

Our results. We first show that the FlowMntrs problem is NP-hard. Next,
we study polynomial-time approximation algorithms. We introduce an algo-
rithm called σ-Greedy that, in each step, places up to σ monitors in such
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Fig. 1. A graph with 4 monitors

a way that the number of edges with known flow is maximized. We then prove
that 1-Greedy is a 3-approximation algorithm and that 2-Greedy is a 2-
approximation algorithm. The running times of these two algorithms are
O((m + n)2) and O((m + n)3), respectively, where n = |V | and m = |E|. In
both cases, our analysis is tight. In fact, our approximation results are stronger,
as they apply to the weighted case, where the input graph has weights on edges,
and the objective is to maximize the total weight of the edges with known flow.

Related work. A closely related problem was studied by Gu and Jia [4] who con-
sidered a traffic flow network with directed edges. They observed that m−n+1
monitors are necessary to determine the flow on all edges of a strongly connected
graph, and that this bound can be achieved by placing flow monitors on edges
in the complement of a spanning tree. (The same bound applies to connected
undirected graphs.) Khuller et al. [5] studied an optimization problem where
pressure meters may be placed on nodes of a flow network. An edge whose both
endpoints have a pressure meter will have the flow determined using the pressure
difference, and other edges may have the flow determined via flow conservation
property. The goal is to compute the minimum number of meters needed to de-
termine the flow on every edge in the network. They showed that this problem is
NP-hard and MAX-SNP-hard, and that a local-search based algorithm achieves
2-approximation. For planar graphs, they have a polynomial-time approximation
scheme. The model in [5] differs from ours in that it assumes that the flow satis-
fies Kirchhoff’s current and voltage laws, while we only assume the current law
(that is, the flow preservation property). This distinction is reflected in different
choices of “meters”: vertex meters in [5] and edge monitors in our paper. Recall
that, as explained above, minimizing the number of edge monitors needed to
determine the flow on all edges is trivial, providing a further justification for our
choice of the objective function.

The FlowMntrs problem is also related to the classical k-cut and multi-way
cut problems [6,8,1], where the goal is to find a minimum-weight set of edges that
partitions the graph into k connected components. One can view our monitor
problem as asking to maximize the number of connected components obtained
from removing the monitor edges and the resulting bridge edges.
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2 Preliminaries

We now give formal definitions. Let G = (V,E) be an undirected graph. We as-
sume that G is simple, that is, it does not have multiple edges or loops, although
our algorithms work for multi-graphs with loops as well. Throughout the paper,
we use n = |V | to denote the number of vertices in G and m = |E| to be the
number of edges. We will typically use letters u, v, x, y, ..., possibly with indices,
to denote vertices, and a, b, e, f, ... to denote edges. If an edge e has endpoints
x, y, we write e = {x, y}.

A circulation on G is a function ψ that assigns a flow value and a direction
to any edge in E. (We use the terms “circulation” and “flow” interchangeably,
slightly abusing the terminology.) Denoting by ψ(u, v) the flow on e = {u, v}
from u to v, we require that ψ satisfies the following two conditions (i) ψ is anti-
symmetric, that is ψ(u, v) = −ψ(v, u) for each edge {u, v}, and (ii) ψ satisfies
the flow conservation property, that is

∑
{u,v}∈E ψ(u, v) = 0 for each vertex v.

A bridge in G is an edge whose removal increases the number of connected
components of G. Let Br(G) be the set of bridges in G. The flow value on any
bridge of G must be 0, so, without loss of generality, throughout the paper we
will be assuming that the input graph does not have any bridges. In other words,
each connected component of G is 2-edge-connected. (Recall that, for an integer
c ≥ 1, a graph H is called c-edge-connected, if H is connected and it remains
connected after removing any c− 1 edges from H .)

Suppose that some circulation ψ is given for all edges in some set M ⊆ E,
and not for other edges. We have the following observation:

Observation 1. For {u, v} ∈ E−M , ψ(u, v) is uniquely determined if and only
if {u, v} ∈ Br(G−M).

We can now define the gain of M to be gain(G,M) = |M ∪ Br(G −M)|, that
is, the total number of edges for which the flow can be determined if we place
monitors on the edges in M . We will refer to the edges in M as monitor edges,
while the bridge edges in Br(G−M) will be called extra edges. If G is understood
from context, we will write simply gain(M) instead of gain(G,M).

The Flow Edge-Monitor Problem (FlowMntrs) can now be defined formally
as follows: given a graph G = (V,E) and an integer k > 0, find a set M ⊆ E
with |M | ≤ k that maximizes gain(G,M).

The weighted case. We consider the extension of FlowMntrs to weighted
graphs, where each edge e has a non-negative weight w(e) assigned to it, and
the task is to maximize the weighted gain. More precisely, if M are the monitor
edges, then the formula for the (weighted) gain is gain(M) =

∑
e∈M∪B w(e), for

B = Br(G−M). We will denote this problem by WFlowMntrs.
Throughout the paper, we denote by M∗ some arbitrary, but fixed, optimal

monitor edge set. Let B∗ = Br(G−M∗) be the set of extra edges corresponding
to M∗. Then the optimal gain is gain∗(G, k) = w(M∗ ∪B∗).

We now claim that in the weighted case we can restrict our attention to
graphs whose all connected components are 3-edge-connected. More specifically,
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we show that any weighted 2-edge-connected graph G = (V,E) can be converted
in linear time into a 3-edge-connected weighted graph G′ = (V ′, E′) such that:

(i) gain∗(G, k) = gain∗(G′, k), and
(ii) If M ′ ⊆ E′ is a set of k monitor edges in G′, then in linear time one can

find a set M ⊆ E of k monitor edges in G with gain(G,M) = gain(G′,M ′).

We now show the construction of G′. A 2-cut is a pair of edges {e, e′} whose
removal disconnects G. Write e � e′ if {e, e′} is a 2-cut. It is known, and quite
easy to show, that relation “�” is an equivalence relation on E. The equivalence
classes of � are called edge groups.

Suppose that G has an edge group F with |F | = q, for q ≥ 2, and let H1, ..., Hq

be the connected components of G − F . Then F = {e1, ..., eq}, where, for each
i, ei = {ui, vi}, ui ∈ Hi and vi ∈ Hi+1 (for i = q we assume q + 1 ≡ 1). For
i = 1, ..., q − 1, contract edge ei so that vertices ui and vi become one vertex,
and then assign to edge eq = {uq, vq} weight

∑q
i=1 w(ei). We will refer to eq as

the deputy edge for F . Figure 2 illustrates the construction.
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Fig. 2. Contracting edge groups

Let G′ = (V ′, E′) be the resulting weighted graph. By the construction, G′ is
3-edge-connected. All edge groups can be computed in linear time (see, [7], for
example), so the whole transformation can be done in linear time as well.

It remains to show that G′ satisfies conditions (i) and (ii). If M is any monitor
set, and if M has two or more monitors in the same edge group, we can remove
one of these monitors without decreasing the gain ofM . Further, for any monitor
edge e of M , we can replace e by the deputy edge of the edge group containing
e, without changing the gain. This implies that, without loss of generality, we
can assume that the optimal monitor set M∗ in G consists only of deputy edges.
These edges remain in G′ and the gain of M∗ in G′ will be exactly the same as
its gain in G. This shows the “≥” inequality in (i). The “≤” inequality follows
from the fact that any monitor set in G′ consists only of deputy edges from G.
The same argument implies (ii) as well.

The kernel graph. Consider a graph G = (V,E) and a monitor edge set M ,
and let B = Br(G−M). The kernel graph associated with G and M is defined as
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a weighted graphGM = (VM , EM ), where VM is the set of connected components
of G−M −B, and EM is determined as follows: For any edge {u, v} ∈M ∪B,
where u, v ∈ V , let x and y be the connected components of G −M − B that
contain, respectively u and v. Then we add edge {x, y} to EM . The weights
are preserved, that is w({x, y}) = w({u, v}). We will say that this edge {x, y}
represents {u, v} or corresponds to {u, v}. In fact, we will often identify {u, v}
with {x, y}, treating them as the same object. Note that GM is a multigraph,
as it may have multiple edges and loops (even though G is a simple graph).

Figure 3 shows the kernel graph corresponding to the graph and the monitor
set in the example from Figure 1 (all edge weights are 1):
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3

8

Fig. 3. The kernel graph for the example in Figure 1. The loop in vertex {1, 2, 4, 7}
represents edge {2, 1}.

Note that we have |EM | ≤ k + |VM | − cc(GM ), where cc(H) denotes the
number of connected components of a graph H . This can be derived directly
from the definitions: The edges in GM that represent extra edges are the bridges
in GM and therefore they form a forest in GM . This implies that the number of
extra edges is at most |VM | − cc(GM ), and the inequality follows.

In the paper, we will use the concept of kernel graphs only with respect to
some optimal monitor set. Let M∗ be some arbitrary, but fixed, optimal monitor
edge set. To simplify notation, we will write G∗ = (V ∗, E∗) for the kernel graph
associated with M∗, that is G∗ = GM∗ , V ∗ = VM∗ and E∗ = EM∗ . In this
notation, we have gain∗(G, k) = w(E∗). In the analysis of our algorithms, we
will be comparing the weights of edges collected by the algorithm against the
edges in the kernel graph G∗.

3 Proof of NP-hardness of FlowMntrs

We show that the FlowMntrs is NP-hard (even in the unweighted case), via a
reduction from the Clique problem. We start with a simple lemma whose proof
is omitted. (In the lemma, we assume that

(
1
2

)
= 1(1− 0)/2 = 0.)

Lemma 1. Let a1, a2, . . . , as be s positive integers such that
∑s

i=1 ai = n, for a
fixed integer n. Then

∑s
i=1

(
ai

2

)
is maximized if and only if aj = n − s + 1 for

some j and ai = 1 for all i 	= j.
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Theorem 2. FlowMntrs is NP-hard.

Proof. In the Clique problem, given an undirected graph G = (V,E) and an
integer q > 0, we wish to determine if G has a clique of size at least q. Clique
is well-known to be NP-complete (see [2]). We show how to reduce Clique,
in polynomial-time, to DecFlowMntrs, the decision version of FlowMntrs,
defined as follows: Given a graph G = (V,E) and two integers, k, l > 0, is there
a set M of k edges in G for which |Br(G−M)| ≥ l?

The reduction is simple. Suppose we have an instanceG = (V,E), q of Clique.
We can assume that G is connected and q ≥ 3. Let n = |V | andm = |E|. We map
this instance into an instance G, k, l of DecFlowMntrs, where k = m− (

q
2

)− l
and l = n− q. This clearly takes polynomial time. Thus, to complete the proof,
it is sufficient to prove the following claim:
(∗) G has a clique of size q iff G has a set M of k edges for which |Br(G−M)| ≥ l.

We now prove (∗). The main idea is that, by the choice of parameters k and l,
the monitors and extra edges in the solution of the instance of DecFlowMntrs
must be exactly the edges outside the size-q clique of G.

(⇒) Suppose that G has a clique C of size q. Let G′ be the graph obtained by
contracting C into a single vertex and let T be a spanning tree of G′. We then
take M to be the set of edges of G′ outside T . Thus the edges in T will be the
bridges of G−M . Since G′ has n− q+ 1 vertices, T has l = n− q edges, and M
has m− (

q
2

)− l = k edges.
(⇐) Suppose there is a set M of k monitor edges that yields a set B of l′

extra edges, where l ≤ l′ ≤ n− 1. We show that G has a clique of size q.
Let s be the number of connected components of G−M −B, and denote by

a1, a2, ..., as the cardinalities of these components (numbers of vertices). Since
|B| = l′, we have s ≥ l′ + 1. Also,

∑s
i=1 ai = n and

∑s
i=1

(
ai

2

)
+ k + l′ ≥ m.

Therefore, using Lemma 1, and the choice of k and l, we have
(
n− l′

2

)

+ l′ ≥
(
n− s+ 1

2

)

+ l′ ≥
s∑

i=1

(
ai

2

)

+ l′ ≥ m− k =
(
n− l

2

)

+ l.

By routine calculus, the function f(x) = 1
2 (n − x)(n − x − 1) + x is decreasing

in interval [0, n − 1], and therefore the above derivation implies that l′ ≤ l, so
we can conclude that l′ = l. This, in turn, implies that all inequalities in this
derivation are in fact equalities. Since the first inequality is an equality, we have
s−1 = l′ = l = n− q. Then, since the second inequality is an equality, Lemma 1
implies that aj = q for some j and ai = 1 for all i 	= j. Finally, the last inequality
can be an equality only if all the connected components are cliques. In particular,
we obtain that the jth component is a clique of size q.

4 Algorithm σ-Greedy

Fix some integer constant σ ≥ 1. Let G = (V,E) be the input graph with weights
on edges. For simplicity, we will assume that G is connected. (A full argument
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will appear in the final version.) As explained in Section 2, we can then also
assume that G is 3-edge-connected.

Algorithm σ-Greedy that we study in this section works in k/σ� steps and
returns a set of k monitor edges. In each step, it assigns σ monitors to a set P of σ
remaining edges that maximizes the gain in this step, that is, the total weight of
the monitor edges and the resulting bridges. A more rigorous description is given
in Figure 4, which also deals with special cases when the number of monitors or
edges left is less than σ.

Algorithm σ-Greedy
G0 = (V ,E0)←G = (V ,E )
M0←∅
X0←∅
for t← 1, 2, ..., �k/σ�

if Et−1 = ∅
then return M = Mt−1 and halt

σ′← σ
if t = �k/σ�+ 1

then σ′ = k mod σ
if |Et−1| ≤ σ′

then P←Et−1

else
find P ⊆ Et−1 with |P | = σ′

that maximizes w(P ∪ Br(Gt−1 − P))
Yt←P ∪ Br(Gt−1 − P)
Xt←Xt−1 ∪Yt

Et←Et−1 − Yt

Gt← (V ,Et )
Mt←Mt−1 ∪ P

return M = M�k/σ�

Fig. 4. Pseudo-code for Algorithm σ-Greedy. Yt represents the edges collected by the
algorithm in step t, with P ⊆ Yt being the set of monitor edges and Yt − P the set of
extra edges. Mt represents all monitor edges collected up to step t and Xt represents
all edges collected up to step t.

Note that each step of the algorithm runs in time O(mσ(n+m)), by trying all
possible combinations of σ edges in the remaining graph Gt−1 to find P . Hence,
for each fixed σ, Algorithm σ-Greedy runs in polynomial time.

4.1 Analysis of 1-Greedy

For σ = 1, Algorithm 1-Greedy is: At each step, choose an edge whose removal
creates a maximum number of bridges, and place a monitor on this edge. Then
remove this edge and the resulting bridges. We show that this algorithm has
approximation ratio 3.
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Analysis. For simplicity, assume that the input graph G is connected. As ex-
plained in previous sections, we can assume that G is in fact 3-edge-connected.

Fix the value of k, and some optimal solution M∗, and let G∗ = (V ∗, E∗)
be the corresponding kernel graph. To avoid cluttered notation, we will identify
each edge in E∗ with its corresponding edge in E, thus thinking of E∗ as a subset
of E. For example, when we say that the algorithm collected some e ∈ E∗, we
mean that it collected the edge in E represented by e.

Recall that gain∗(G, k) = w(E∗), where w(E∗) is the sum of weights of the
edges in E∗. Thus we need to show that our algorithm’s gain is at least 1

3w(E∗).
Intuitively, since G is 3-edge-connected, each vertex in G∗ has degree at least

3, so |E∗| ≥ 3
2 |V ∗|. Thus k = |E∗| − |V ∗| + 1 > 1

3 |E∗|. 1-Greedy collects at
least k edges. Since 1-Greedy maximizes the gain at each step, its total gain
will be at least the total weight of the 1

3 |E∗| heaviest edges in E∗. (This does
not mean, however, that 1-Greedy will collect the 1

3 |E∗| heaviest edges.)
We now give a more rigorous argument. The proof is by amortized analysis.

We will analyze consecutive steps of the algorithm, while maintaining a dynamic
set Lt of edges. Initially, we set L0 = E∗. As the algorithm collects edges in each
step t, we will also remove edges from Lt−1, so that Lt ⊆ Lt−1 for t ≥ 1. In
addition, this set Lt will satisfy the following conditions for each step t = 1, 2, ...:

(L1.1) Lt ∩Xt = ∅; that is, all edges in Lt are available to the algorithm after
step t;

(L1.2) w(Yt) ≥ 1
3w(Lt−1 − Lt); that is, our gain at each step is at least one

third of the total weight of all the edges removed from Lt−1; and
(L1.3) |Lt−1| − |Lt| ≥ min {3, |Lt−1|}.
We claim that the conditions above imply that 1-Greedy’s approximation

ratio is 3. Since k ≥ 1
3 |E∗|, from (L1.3) and amortization, we have Lk = ∅. Then,

again by amortization, (L1.2) implies that w(Xk) ≥ 1
3w(E∗), as claimed.

It thus remains to show how to update Lt to maintain (L1.1), (L1.2) and
(L1.3). Suppose that these conditions hold up to step t − 1. Let γ = |Yt ∩
Lt−1| be the number of edges collected in step t that are in Lt−1. We first set
Lt←Lt−1− Yt. Next, if γ < 3, we further remove arbitrary 3− γ edges from Lt

(If it so happens that Lt has fewer than 3− γ edged, then we remove all edges
from Lt.) Since we have removed all Yt from Lt−1, (L1.1) is preserved. Moreover,
since we either remove at least 3 edges or Lt = ∅, (L1.3) is preserved as well.
Finally, by the algorithm and (L1.1), w(Yt) is at least as large as the weight of
each of the 3− γ additional edges removed from Lt−1, which implies (L1.2).

Summarizing the argument above, we obtain:

Theorem 3. Algorithm 1-Greedy is a polynomial-time 3-approximation algo-
rithm for the WFlowMntrs problem.

With a somewhat more careful analysis, one can show that the approximation ra-
tio of 1-Greedy is actually 3(1−1/k), which matches our lower bound example
below. Also, we remark that the proof above is perhaps unnecessarily technical,
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but we introduce it here on purpose, as a stepping stone to a much more involved
analysis of Algorithm 2-Greedy in the next section.

A tight-bound example. We now present an example showing that our anal-
ysis of 1-Greedy is tight. Graph G consists of one connected component with
2k − 2 vertices, in which each vertex has degree 3 and each edge has weight
1, and the other connected component that has only two vertices connected by
k + 2 edges each of weight 1 + ε. Fig. 5 shows the construction for k = 5.

1+

1+

1+

1+

1+

1+

1+

1

1
1 1

1

1

11
1

1 1 1

Fig. 5. Lower bound example for 1-Greedy, with k = 5

1-Greedy will be collecting edges from the 2-vertex component on the left,
ending up with k edges and total gain (1 + ε)k. The optimum solution is to put
k monitors in the cubic component on the right, thus gaining all 3k − 3 edges
from this component. For ε→ 0, the approximation ratio tends to 3(1− 1/k).

4.2 Analysis of 2-Greedy

Let G = (V,E) be the input graph with weight on edges. As in the previous sec-
tion we will assume thatG is 3-edge-connected. For σ = 2, Algorithm 2-Greedy,
at each step, collects two edges whose total weight combined with the weight of
all resulting bridges, is maximized among all possible choices of two edges. Ties
are broken arbitrarily. We place monitors on these two edges, and then remove
them from G, as well as the resulting bridges. The exceptional situations, when
k is odd, or we run out of edges, etc., are handled as in Figure 4.

Analysis. We can assume that the algorithm never runs out of edges (that is,
Et−1 	= ∅ for each step t), for otherwise it computes the optimum solution. For
simplicity, we will assume that k is even. If k is odd, the proof below can be
shown to work by taking into account the gain of the algorithm in the last step
when it has only one monitor. We also fix some optimal solution M∗, and let
G∗ = (V ∗, E∗) be the corresponding kernel graph. Recall that gain∗(G, k) =
w(E∗); thus we need to show that our algorithm’s gain is at least 1

2w(E∗).
Before we delve into formal proof, we give a high level description of our

approach. We start with a set L which contains two copies of every edge in
E∗, so that w(L) = 2w(E∗) = 2gain∗(G, k). It thus suffices to show that the
algorithm’s gain in k/2 steps is at least w(L)/4. In the analysis of one step we
remove some copies of edges from L, while guaranteeing that their total weight
is at most 4 times 2-Greedy’s gain in this step. Then we show that after k/2
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steps L becomes empty. Hence the algorithm must have collected a set of edges
with total weight at least w(L)/4, as needed. Below we give the complete proof.

As in the previous section, the proof is by amortized analysis. If e = {x, y} is
an edge, then by ex and ey we will denote two copies of e, and we will call them
arcs. We also say that arcs ex and ey are associated with e. One can think of these
arcs as directed edges, with ex = (x, y) directed from x to y, and ey directed in
the opposite direction. Each arc ex has weight w(ex) = w(e). In our analysis,
we maintain a dynamic set Lt of arcs, for each step t, that will satisfy invariants
similar to those in the previous section. Initially, L0 contains two copies of each
edge, that is L0 = {ex, ey : e = {x, y} ∈ E∗}. Note that |L0| = 2|E∗| and w(L0) =
2w(E∗). As we analyze each step t of the algorithm, we will be removing some
arcs from Lt−1, so that we will have Lt ⊆ Lt−1 for each t = 1, 2, ..., k/2. Lt will
not contain any arcs associated with edges already collected by the algorithm in
the first t steps. For an edge in E∗, Lt may contain both its associated arcs, one
of the two arcs, or neither of them.

Let x be a vertex of degree-3 in G∗ and e, f and g be the three edges incident
to x. We will say that x is a tripod at step t if none of edges e, f , g have been
collected by 2-Greedy when step t−1 completes. Arcs ex, fx, gx are then called
tripod arcs or arcs of x. We say that x is a bipod at step t if exactly one of these
edges has been collected by 2-Greedy. (Note that the case when exactly two of
these edges was collected is not possible since any two collected by the algorithm
implies the algorithm also gets the third one.) If, say, g is the one edge collected
by 2-Greedy, then ex and fx are called bipod arcs or arcs of x.

Let x be a tripod at step t. If A ⊆ L0 is a set of arcs, we say that x is in A
if its three arcs ex, fx, gx are in A. Similarly, if x is a bipod at time t, we say
that x is in A if both its arcs ex, fx are in A. Let ξ(A) be the total number of
tripods and bipods in A. It will be convenient to have some name for arcs in A
that are neither tripod arcs nor bipod arcs. We refer to such arcs as loose arcs
in A. Note that for an edge e = {x, y}, arc ex ∈ A could be a loose arc while the
opposite arc ey is a tripod arc or a bipod arc.

1

2

4

5

6

3

7

a
b

c
d

e

f

i
j

h
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q

Fig. 6. Example of a graph G∗

Consider, for example, the graph G∗ in Figure 6, where all weights are 1.
For this graph, we would have L0 =

{
a2, a4, b2, b3, c3, c6, . . . , p1, p2, q1, q4

}
. The

tripods of L0 are vertices 1, 3, 5 and 6, so ξ(L0) = 4. By definition of bipod,
the initial set L0 does not contain any bipods. All arcs in L0 that do not belong
to a tripod are loose arcs, for example q4, a4, j7, etc. If the algorithm picks
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edges b, d in step 1, c will become a bridge, so the gain is 3. In the analysis, all
arcs associated with these edges will be removed from L0. Assuming that in the
analysis we will not remove any arcs associated with edges f , e and i, L1 will
contain two bipods, 5 and 6.

In our analysis, we will assume for now that |L0|− ξ(L0) is even; later we will
explain how to modify the proof to cover the case when this quantity is odd.
As mentioned earlier, the overall idea of the proof is to construct a decremental
sequence L0 ⊇ L1 ⊇ L2 ⊇ ... that satisfies appropriate conditions, from which we
can derive a bound on the gain of 2-Greedy. In fact, we will actually construct
the sets Δt ⊆ Lt−1 of arcs to be removed at each step, so that Lt = Lt−1 −Δt.
We claim that for any given step t, 1 ≤ t ≤ k/2. there exists a set of arcs
Δt ⊆ Lt−1 that satisfies the following conditions:

(D2.1) If ex ∈ Lt−1 and e ∈ Yt then ex ∈ Δt.
(D2.2.) w(Yt) ≥ 1

4w(Δt).
(D2.3) Either (a) |Δt|−ξ(Δt) ≥ 8 and |Δt|−ξ(Δt) is even, or (b) |Δt|−ξ(Δt) <

8 and Δt ∪Δt+1 = Lt−1 (in other words, we will remove all arcs in this and
next step).

(D2.4) For any bipod x in Lt−1, if one arc of x is in Δt, then both of them are
in Δt. For any tripod x in Lt−1, if two of the arcs of x are in Δt, then all
three arcs are in Δt.

Recall that Yt is the set of edges collected by the algorithm at step t, including
the two monitor edges and the resulting bridges. Condition (D2.1) ensures that
Lt contains only arcs whose associated edges are available to the algorithm right
after step t. Condition (D2.2) states that 2-Greedy’s gain in this step is at
least 1

4 th of the total weight of arcs removed from Lt−1. Condition (D2.3) says
that we remove a sufficient number of arcs from Lt−1 at step t, guaranteeing
that we will empty Lt at or before step k/2. The parity condition in (D2.3) and
condition (D2.4) are of more technical nature, and their significance will become
apparent in the construction of Δt below.

Before explaining how to construct such a set Δt, we first show that the
existence of Δt implies the 2-approximation of 2-Greedy. As explained earlier,
we define Lt = Lt−1 − Δt, for any t = 1, 2, .... Denoting by ηd the number of
vertices in G∗ of degree d, we have

|L0| − ξ(L0) =
∑

d≥3 dηd − η3 = 2η3 +
∑

d≥4 dηd ≤ 2
∑

d≥3(d− 2)ηd

= 4 · (1
2

∑
d≥3 dηd −

∑
d≥3 ηd) = 4(|E∗| − |V ∗|) ≤ 4k − 4. (1)

From invariant (D2.3), by amortization over all steps, we have |Lk/2|−ξ(Lk/2) ≤
max {0 , |L0| − ξ(L0)− 4k} ≤ 0. On the other hand, for all t, whenever Lt 	= ∅,
we have |Lt| > ξ(Lt). We thus conclude that Lk/2 = ∅. This, together with
condition (D2.2) and amortization, implies that w(Xk/2) ≥ 1

4w(L0) = 1
2w(E∗) =

1
2gain∗(G, k). Here Xt =

⋃t
j=1 Yt, t = 1, 2, . . . , k/2 is the set of edges collected

by the algorithm up to and include step t. Thus 2-Greedy approximates the
optimum solution within a factor of 2.
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To complete the analysis, it remains to show how to construct a set Δt that
satisfies conditions (D2.1) to (D2.4). Suppose we have already constructed sets
Δs, for s = 1, 2, ..., t− 1. Given the definition of L0, the assumption that |L0| −
ξ(L0) is even, as well as conditions (D2.1), (D2.3) together imply that Lt−1

satisfies the following three conditions:

(L2.1) If ex ∈ Lt−1 then e /∈ Xt−1.
(L2.2) |Lt−1| − ξ(Lt−1) is even.

We start with a high level idea. We first include in Δt all arcs in Lt−1 as-
sociated with edges in Yt, the set of edges collected at step t. This will satisfy
condition (D2.1). Note that removing additional arcs from the dynamic set L
will not violate (D2.1). The total weight of these arcs will be at most 2w(Yt),
since every edge is associated with at most two arcs and every arc removed is
associated with some edge in Yt. Thus, at least so far, condition (D2.2) holds
as well. To satisfy condition (D2.3), we may need to include more arcs to Δt.
This requires that we keep a delicate balance between the number of additional
arcs to be included and their total weight: If we include too many arcs, we may
violate (D2.2) because the total weight of arcs in Δt is too large. On the other
hand, if we include too few arcs, we may not be able to satisfy (D2.3) which
requires |Δt| − ξ(Δt) to be at least 8.

Thus we will have Δt = Δ′
t ∪Δ′′

t , where Δ′
t and Δ′′

t are the arcs from Lt−1

removed in Stage 1 and Stage 2, respectively. We now describe these two stages.
Stage 1: removing affected arcs. We set Δ′

t to be the set of all arcs ex ∈ Lt−1

such that e ∈ Yt. These arcs can be grouped into the following four categories:

Case (I): Loose arcs. Any loose arc ex ∈ Lt−1 associated with e ∈ Yt, contributes
1 to |Δ′

t| − ξ(Δ′
t).

Case (II): Triples of tripod arcs. Suppose that x is a tripod in Lt−1 and ex, fx,
gx are its arcs. If e, f, g ∈ Yt, then the arcs of x will contribute 2 to |Δ′

t|− ξ(Δ′
t).

Case (III): Single tripod arcs. Suppose that x is a tripod in Lt−1 and ex, fx, gx

be its arcs. If e ∈ Yt but f, g /∈ Yt, then ex contributes 1 to |Δ′
t| − ξ(Δ′

t).
Case (IV): Pairs of bipod arcs. Suppose that x is a bipod in Lt−1 and ex, fx are
its arcs. If e, f ∈ Yt, then the two bipod arcs of x will together contribute 1 to
|Δ′

t| − ξ(Δ′
t).

Note that the above four cases exhaust all possibilities. Clearly (D2.1) holds.
(D2.2) is true because each edge in Yt is associated with at most two arcs. (D2.4)
follows from the algorithm since, if it collects one edge of a bipod, then it also
collects the other; if it collects two of three edges of a tripod, then the third one
is collected as well. So only (D2.3) needs further attention. In Stage 2 we shall
include additional arcs in Δt to satisfy (D2.3).
Stage 2: removing additional arcs. Now we choose a set Δ′′

t ⊆ Lt−1 − Δ′
t of

additional arcs that will be removed from Lt−1. Let L′ = Lt−1 −Δ′
t, and define

δ′ = (|Lt−1| − ξ(Lt−1)) − (|L′| − ξ(L′)) = |Δ′
t| − ξ(Δ′

t). We have two cases,
depending on the value of δ′.
Case 1: δ′ is even. If δ′ ≥ 8, then we are done. Now consider subcases δ′ = 2, 4, 6.
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Case 1.1: δ′ = 2. In this sub-case,Δ′
t may contain either one tripod, two indepen-

dent bipods, or one bipod and one arc that are independent, or two independent
arcs. Here tripods and bipods are with respect to Lt−1, arc may be a tripod
arc or a loose arc, and independent simply means they do not contain two arcs
associated with the same edge. In every case we have w(Δ′

t) ≤ w(Yt) due to the
algorithm. Now we need to bring down |L| − ξ(L) further by 6. Recall L is the
dynamic set of arcs that we are maintaining in the analysis of the algorithm. It
is easy to see that every tripod in L′ = Lt−1−Δ′

t has weight at most w(Yt) and
each counts 2 toward |L|−ξ(L). So if there are enough tripods in L′, then we may
include 3 tripods in Δ′′

t and we are done. If we run out of tripods, then we may
use bipods and loose arcs. Any two independent loose arcs or bipods have total
weight no more than w(Yt) and bring down |L|−ξ(L) by 2. One potential issue is
that a bipod(call it new bipod) might result from removing a tripod arc in con-
structing Δ′

t in Stage 1. Since δ′ = 2, this new bipod together with the tripod arc
will have total weight no more than w(Yt) and bring down |L|− ξ(L) by 2, while
the other arc or bipod in Δ′

t together with the other arc or bipod(could be a new
bipod too) chosen in stage 2 so far will have weight no more than w(Yt)(Either
they both belong to the same tripod in Lt−1 or they are they are independent,
as all arcs or bipods in stage 1 are independent of bipods or arcs in stage 2) and
also bring down |L| − ξ(L) by 2. Overall we are removing arcs with total weight
at most 2w(Yt) and bring down |L|−ξ(L) by 4, and this is the same as if the new
bipod were a bipod in Lt−1. We may further look for two tripods or two pairs
of independent bipods(cannot be new bipods) or loose arcs until we have Δ′′

t

such that δ′′ = |Δ′′
t | − ξ(Δ′′

t ) = 6 and w(Δ′′
t ) ≤ 3w(Yt). If the above completes

successfully, then we have w(Δt) = w(Δ′
t) + w(Δ′′

t ) ≤ w(Yt) + 3w(Yt) = 4w(Yt)
and δ = δ′ + δ′′ = 8 as desired.

It is also possible that we do not have a pair of independent bipods or loose
arcs while δ′′ is still less than 6. And this happens after we removed arcs in Δ′

t

and Δ′′
t from the dynamic set L. We first note that this can happen only when

|L| − ξ(L) ≤ 3. The reason is that, as long as |L| − ξ(L) ≥ 4, and L contains
no tripods, we know the count of bipods and the count of loose arcs combined
must be at least 4. But a bipod can depend on at most two bipods or loose arcs,
hence it must be independent of one of the three bipods or loose arcs. So to be
in this situation we have |L|−ξ(L) ≤ 3 and L has no tripods. The set L contains
either 3 interlocked bipods forming a 3-cycle, or two dependent bipods or loose
arcs. And it is not hard to see that w(L) ≤ 3w(Yt). If we have one more step to
go, then in the next step t+ 1 the algorithm gets a gain of at least the weight of
one bipod or loose arc that is in L, and we shall have w(Yt+1) ≥ w(L)/4 since
there are at most 3 bipods or loose arcs, and the set L becomes empty after
those dependent bipods and arcs are removed. Otherwise we are in the last step,
step k/2. Recall inequality (1) is actually |L0| − ξ(L0) ≤ 4(k − 1). Given that
we have kept |L| − ξ(L) down by at least 8 in all previous steps except the last
step, we must have |Lk/2−1| − ξ(Lk/2−1) ≤ 4. It follows that after stage 1 of
step k/2, we shall have |L| − ξ(L) no more than 2. In this case we can simply
include all the dependent bipods or loose arcs in Δ′′

t . Their total weight is no
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more than 3w(Yt) and we have emptied the set L, while maintained (D2.2) since
w(Δk/2) = w(Δ′

k/2) + w(Δ′′
k/2) ≤ w(Yt) + 3w(Yt) ≤ 4w(Yt) as desired.

Case 1.2: δ′ = 4 and w(Δ′
t) ≤ 2w(Yt). If we can find 2 tripods in L′ = Lt−1−Δ′

t,
then we are done since each tripod contributes 2 to δ′′ and its weight is no more
than w(Yt). Otherwise we may use bipods and loose arcs. Because all bipods
and arcs in L′ = Lt−1−Δ′

t are independent of bipods or arcs in Δ′
t, we can pair

up bipods or arcs in Δ′
t and bipods or arcs in L′. Each pair is either from the

same tripod in Lt−1 or the two in that pair are independent with no new bipods,
hence each pair contributes 2 to δ′′ and its weight is no more than w(Yt). So we
are able to construct Δ′′

t such that w(Δ′
t) + w(Δ′′

t ) ≤ 4w(Yt) and δ′ + δ′′ = 8.
Additional pairs of indepdent bipods or loose arcs may be needed to construct
Δ′′

t just described. In case we do not have independent pairs, we argue as in
δ′ = 2 subcase that we are able to empty the set L in the next step.
δ′ = 6 and we have w(Δ′

t) ≤ 2w(Yt). We simply include one tripod, or two
bipods or loose arcs in Δ′′

t . The total weight is no more than 2w(Yt), and we have
δ′′ = 2. Overall we have w(Δt) = w(Δ′

t) + w(Δ′′
t ) ≤ 2w(Yt) + 2w(Yt) = 4w(Yt)

and δ = δ′ + δ′′ = 6 + 2 = 8 as desired. If we are not able to find any tripods,
bipods and loose arcs, then effectively we have already emptied the dynamic set
L while maintained (D2.2), that is, total weight of arcs removed from the set L
at each step is no more than 4 times the gain of the algorithm at that step.

The analysis of the case when δ′ is odd, as well as other the remaining cases,
will appear in the full paper. Summarizing, we obtain our main result.

Theorem 4. Algorithm 2-Greedy is a polynomial-time 2-approximation algo-
rithm for the Weighted Flow Edge-Monitor Problem.

A tight-bound example. The example is essentially the same as the one for
1-Greedy (see Figure 5), except that the edges in the 2-vertex component on
the left side have now weights 1.5 + ε. 2-Greedy will collect edges from this
2-vertex component, so its total gain will be (1.5 + ε)k, while the optimum gain
is 3k − 3. For ε→ 0 and k →∞, the ratio tends to 2.

5 Final Comments

The most intriguing open question is what is the approximation ratio of σ-
Greedy in the limit for σ →∞. We can show that this limit is not lower than
1.5, and we conjecture that 1.5 is indeed the correct answer.

A natural question to ask is whether our results can be extended to directed
graphs. It is not difficult to show that this is indeed true; both the NP-hardness
proof and 2-approximation can be adapted to that case.

Another direction to pursue would be to study the extension of our problem
to arbitrary linear systems of equations. Here we can put k “monitors” on k
variables of the system to measure their values. The objective is to maximize
the number of variables whose values can be uniquely deduced.
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