
PERGA: A Paired-End Read Guided De Novo Assembler
for Extending Contigs Using SVM Approach

Xiao Zhu†

School of Computer Science and
Technology

Harbin Institute of Technology
Harbin 150001, China
zhuxiao.hit@gmail.com

Siu Ming Yiu

Department of Computer Science
University of Hong Kong

Pokfulam Road, Hong Kong
smyiu@cs.hku.hk

Yadong Wang*
School of Computer Science and

Technology
Harbin Institute of Technology

Harbin 150001, China
ydwang@hit.edu.cn

Henry C.M. Leung†
Department of Computer Science

University of Hong Kong
Pokfulam Road, Hong Kong

cmleung2@cs.hku.hk

Guangri Quan
National Pilot School of Software

Harbin Institute of Technology
WeiHai 264209, China

grquan@hit.edu.cn

Francis Y.L. Chin
Department of Computer Science

University of Hong Kong
Pokfulam Road, Hong Kong

chin@cs.hku.hk

Bo Liu
School of Computer Science and

Technology
Harbin Institute of Technology

Harbin 150001, China
bo.liu@hit.edu.cn

ABSTRACT
Since the read lengths of high throughput sequencing (HTS)
technologies are short, de novo assembly which plays significant
roles in many applications remains a great challenge. Most of the
state-of-the-art approaches base on de Bruijn graph strategy and
overlap-layout strategy. However, these approaches which depend
on k-mers or read overlaps do not fully utilize information of
single-end and paired-end reads when resolving branches, e.g. the
number and positions of reads supporting each possible extension
are not taken into account when resolving branches.

We present PERGA (Paired-End Reads Guided Assembler), a
novel sequence-reads-guided de novo assembly approach, which
adopts greedy-like prediction strategy for assembling reads to
contigs and scaffolds. Instead of using single-end reads to
construct contig, PERGA uses paired-end reads and different read
overlap size thresholds ranging from Omax to Omin to resolve the
gaps and branches. Moreover, by constructing a decision model
using machine learning approach based on branch features,
PERGA can determine the correct extension in 99.7% of cases.
When the correct extension cannot be determined, PERGA will
try to extend the contigs by all feasible extensions and determine
the correct extension by using look ahead technology.

We evaluated PERGA on both simulated Illumina data sets and
real data sets, and it constructed longer and more correct contigs
and scaffolds than other state-of-the-art assemblers IDBA-UD,
Velvet, ABySS, SGA and CABOG.
Availability: https://github.com/hitbio/PERGA

Categories and Subject Descriptors
J.3 [Computer Applications]: Life and Medical Sciences –
Biology and genetics.

General Terms
Algorithms

Keywords
Genome assembly, Greedy-like prediction, Variable overlap sizes,
Look ahead technology

1. INTRODUCTION
The high throughput sequencing (HTS) technologies have
emerged for several years [1, 2] and are widely used in many
biomedical applications, such as large scale DNA sequencing [3],

* To whom correspondence should be addressed:
Yadong Wang, Professor, School of Computer Science and
Technology, Harbin Institute of Technology, 92 West Dazhi
Street, Nan Gang District, Harbin 150001, China. Email:
ydwang@hit.edu.cn
† Contributed equally

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
BCB ’13, September 22 - 25, 2013, Washington, DC, USA
Copyright 2013 ACM 978-1-4503-2434-2/13/09 …$15.00.

re-sequencing [4] and SNP discovery [5, 6], etc. However, since
the length of reads generated by HTS technologies (typically 50 -
150 base pairs [7-9]) are much shorter than those of the traditional
Sanger sequencing (typically about 800 base pairs [10]), and the
per-base sequencing error is high [11], the short read assembly is
still a great challenge for genome sequencing.

There are two major approaches for assembly: the overlap-layout
strategy and the de Bruijn graph strategy. The overlap-layout-
based approaches first compute the overlaps among reads, and
then assemble according to the read overlaps. There are also two
subcategories for the overlap-layout approaches: the greedy
extension strategy and the overlap graph strategy.

The first several de novo assemblers for the HTS data, such as
SSAKE [12], VCAKE [13], SHARCGS [14], adopt a greedy
extension strategy in which reads are stored in a prefix/suffix tree
to record overlaps, and assembly is performed based on base-by-
base 3’ extension according to the simple greedy heuristics of
selecting the base with maximum overlap or using the most
commonly represented base. Thus, these assembly heuristics
usually have to compromise between contiguity and accuracy. If
there are more than one feasible extensions due to sequencing
errors or similar regions in the genome, the extension will stop
(see Figure 1). In fact, many of these situations should consider
the extensions and the ambiguity can be resolved later to generate
longer contigs, e.g. erroneous extensions due to sequencing error
at the end of a read usually cannot be extended in later steps (dead
ends [15]) and multiple extensions due to sequencing error in the
middle a read should be extended to the same nucleotide in later
steps (bubbles [15]). Moreover, the assembly algorithms store the
correct and erroneous reads and their reverse complements
inefficiently, so their memory consumptions are usually very
large, which limits their application for large amount of HTS
datasets.

Figure 1. Greedy extension stops caused by feasible extensions
that differ not much.

Overlap graph based approaches for short reads, such as Edena
[15] and CABOG [16], construct an overlap graph in which a
vertex represents a unique read and an edge connects vertices u
and v if and only if u and v overlap each other sufficiently, and
assembly is performed by simplifying the graph based on
topologies, such as transitive edges, dead ends and bubbles. Each
simple contiguous sequence in the simplified graph represents a
contig. These approaches are not suitable for HTS data because
they require enormous computations to detect overlaps among a
great amount of reads. Recently, new methods based on read
overlaps using Burrows-Wheeler Transform [17], such as SGA
[18] and fermi [5], could assemble large amount of HTS data.
However, they require much more computations to construct a
FM-index [19].

The de Bruijn graph strategy, which was first introduced in
EULER [20], is particularly suitable for short reads of HTS
technologies. This approach breaks up each read into a collection
of overlapping k-substrings, called k-mers, to construct a de
Bruijn graph. In the graph, a vertex represents a unique k-mer and

an edge connects vertices u and v if and only if u and v
overlapped by k–1 nucleotides and appear consecutively in a read,
and assembly is performed by removing dead ends and merging
bubbles to simplify the graph in which a simple path represents a
contig. As the k-mers have fixed length and erroneous k-mers can
be detected from their low sampling rates, the de Bruijn graph
consumes much less memories than the overlap graph. Some
assemblers, such as Velvet [21], EULER-SR [22], ALLPATHS
[23], ABySS [24], IDBA [25], IDBA-UD [26], SOAPdenovo
[27], adopt this strategy, and achieve good performances.
However, most of them only use a fixed k-mer size except IDBA
and IDBA-UD. Since small k values will lead to better
connectivity with much more branches due to repeat segments
larger than k, whereas large k will result in worse connectivity
with more gaps due to missing k-mers [26]. Most of these
assemblers just pick an intermediate k to compromise these two
problems. IDBA [25] and IDBA-UD [26] give better results by
iterating the k-mer sizes from kmin to kmax by using small k to
resolve gaps and large k to resolve branches (Figure 2).

All the above assemblers have not fully utilized the information
of single-end and paired-end reads when resolving branches.
Assemblers based on overlap-layout strategy usually stop when
there are more than one choices for extension without considering
the number of reads supporting each extension. Assemblers based
on de Bruijn graph strategy resolve branches by the topology of
de Bruijn graph. Similarly, the number and positions of reads
supporting each outgoing edge are not taken into consideration
when resolving branches. In fact, the number and positions of
reads should be used in resolving branches. Given a branch with
two possible extensions (or outgoing edges), even though reads
are not sampled from the genome uniformly (usually not much
different), if there are much more reads supporting one extension
than the other, assembler should extend the contig to the one with
more supporting reads and treat the other as incorrect. Even when
the numbers of reads supporting both extensions are the same, if
the set of reads supporting one extension have much longer region
aligned to a contig than the set of reads supporting another
extension, assembler should extend the contig to the former
extension because short overlapped reads may due to sequencing
errors or short repeats.

Figure 2. Small k will lead to better connectivity and much
more branches, large k can resolve many repeats smaller than
k while causing much more gaps. (a) Larger k can resolve
repeats smaller than k. (b) Small k will lead to better
connectivity.

In order to utilize the information in reads for assembling, we
introduce PERGA (Paired-End Reads Guided Assembler), a novel
de novo sequence reads assembler which adopts greedy-like
prediction strategy for assembling reads to form contigs and
scaffolds. Instead of using single-end reads to construct contigs,
PERGA uses paired-end reads and different read overlap size
thresholds ranging from Omax to Omin to resolve the gaps and

branches. In PERGA, contigs are extended based on base-by-base
extension. Paired-end reads are aligned to contigs for determining
possible extensions. When there are not many paired-end reads in
some genome regions, single-end reads with variable overlap
sizes from larger threshold Omax to smaller threshold Omin are
applied to handle branches and gaps. Large overlap size O ≥ Omax
is used in priority to extend contigs to resolve branches; and if
there are missing overlaps for larger O, then a degressive smaller
O will be used to obtain better connectivity to resolve gaps until
the read overlap are found before O = Omin. Moreover, even when
there are multiple possible extensions, PERGA will determine
which extension is more likely based on several features, e.g. the
number of reads supporting each extensions, coverage ratio (ratio
of the average number of reads near the branch to the average
number of reads in the contig), and the gap span (the distance of
the aligned positions of the reads considered in the current
extensions and the reads considered in previous extensions but not
in the current extension). By constructing decision models using
machine learning approach based on these features, PERGA can
determine the correct extension in 99.7% of cases. Note that
PERGA will also determine the case and stop extending the
contig when both extensions are likely to be correct.

As there are still some mis-predictions (about 0.1~0.3%), PERGA
handles them by look ahead technology (Figure 3). When there
are multiple possible extensions, PERGA extends the contigs by
all feasible nucleotides and determine if these extensions are due
to sequencing errors or repeats. If the multiple extensions are due
to sequencing errors, PERGA will merge the extensions together
to form a single contig, otherwise, it will retract and stop
extending the contigs at the branch. PERGA is very effective and
can greatly improve the contig sizes (e.g., N50 size can be
improved from 107 kbp to 130 kbp).

Figure 3. The extension situation and the stop situation by
look ahead technology. (a) The extension case that only one
base mismatch and there is one single path to be extended. (b)
The stop case that there are two distinct paths
TTCTTCGAGTAAGCG… and GAAGAAACAATCTGG…,
and the consensus sequence derived from the paths is not
highly agreed at each position, thus the extension should be
stopped to avoid mis-assemblies.

According to our experiments, PERGA gives better performances
than other assemblers with longer and more accurate contigs
(scaffolds) using less running time with moderate memory
because of its greedy-like prediction models, the look ahead
technology and the variable overlap sizes approach for contig
extensions.

2. METHODOLOGY
Figure 4 shows the overview of the proposed approach of PERGA,
which consists of two phases: assembly of reads, and assembly of
contigs (i.e., scaffolding). In phase (a), a k-mer hash table, which
is used to represent read overlaps by the consecutive k-mers, is
constructed from the set of input reads R, and then PERGA uses
paired-ends and variable read overlap sizes thresholds from Omax
to Omin to extend contigs. A greedy-like prediction strategy in
which a k-mer is chosen as a start of contig extension is
performed iteratively in the 3’ direction one base at a time until
there are either no overlapping reads or a repeat is found, then the
contig will be extended on the 5’ end in the same way. For each
base extension, PERGA prefers the reads having more overlaps
with contigs and uses the reads having the most represented base
for extension. When extending a base, PERGA firstly uses paired-
end reads to navigate contig extension with the highest priority, as
it can resolve the branches caused by repeats smaller than the
insert size with much more confidence than those using single-
end reads. However, as there may be genome regions with low
sequencing depth and insufficient paired-end reads, PERGA uses
single-end reads to extend contigs in such regions by applying the
variable overlap size thresholds ranging from larger Omax to
smaller Omin to resolve repeats of sizes smaller than Omax and to
resolve gaps due to the missing large overlaps.

When extending contigs, there are branches which have more than
one feasible extension with various read occurrences, which are
mainly due to repeats in genome or sequencing errors in reads.
Instead of stopping the extension, PERGA records the branch
information to generate hyperplanes for the paired-ends and
single-ends respectively by Support Vector Machine method.
Finally, these two SVM models are used to determine when to
extend or stop for branches while assembling, and in most cases,
branches can be correctly resolved.

However, there are also a few exceptions when using the SVM
models to decide the navigation: there are a few branches that are
incorrectly stopped or incorrectly extended. These situations can
be resolved by looking ahead to find the feasible paths and
PERGA can resolve the incorrect stops and incorrect extensions,
and make the contig much longer with fewer mis-assemblies.

PERGA handles erroneous bases in reads using topological
structures while extending the contig, which is similar to the
removals of dead ends and bubbles for de Bruijn graph based
approaches. During extension, errors at ends of reads will lead to
dead ends, and the other errors in the inner part of reads will
cause bubbles, PERGA deals with dead ends with lengths smaller
than read length and tolerates bubbles with sizes no more than
Omin. In PERGA, the dead ends containing erroneous k-mers will
be excluded from assembly by other correct reads during
extension; and the bubbles in reads are deemed as valid
substitution.

In phase 2, paired-end reads are aligned onto contigs and used to
order and orient contigs to form scaffolds (i.e. ordered sets of

contigs with gaps in between). Then, the overlap sizes and the gap
sizes for the linked neighboring contigs are computed, and the
overlapped neighboring contigs are merged to form longer
contiguous sequences, and the gapped neighboring contigs are
processed using a local assembly approach to close their intra-
scaffold gaps to generate longer contiguous sequences. Unlike
SOAPdenovo [27] which trims k bases to exclude erroneous bases
at contig ends when scaffolding, PERGA corrects such erroneous
bases by pair-wise alignment of the overlapped ends of the
neighboring contigs. Finally, the scaffold sequences are generated
to form the resultant assembly according to the overlaps and the
gap sizes of the contigs in scaffolds.

2.1 Assembly of reads to contigs
The first phase of PERGA is to assemble reads into contigs using
a greedy-like prediction method based on paired-end reads
information (if possible) and then single-end reads. The algorithm
starts with a k-mer at the end of an unused read and treats it as
contig. PERGA iteratively aligns paired-end reads to contigs and
tries to extend it at both ends. In order to determine the possible
extension, either A, C, G or T, a SVM model is used to determine
whether PERGA should extend the contig using the nucleotide
with maximum supports from aligned paired-end reads (instead of
extending the contig only when all aligned reads support the same
extension as other greedy algorithms) based on the properties of

aligned reads. Besides, even when the SVM model cannot
determine whether extending the contig or not, PERGA will try to
extend the contigs with all possible nucleotides and determine
which nucleotide should be used to extend the contig by the later
steps (look ahead technology). After extension, errors in aligned
reads can be identified and be corrected for later extension.
Details of the assembling step are described as follows.

2.1.1 Constructing k-mer hash table
PERGA applies a k-mer based, cost effective approach to perform
read alignments. Overlaps of two reads can be represented by
their consecutive common k-mers, for example, two reads overlap
with w nucleotides should share w – k + 1 consecutive k-mers.
Thus, PERGA uses a hash table to store occurrences of k-mers in
reads. We refer occurrence of a k-mer as the positions on reads it
appears. Note that a k-mer may occur in multiple reads and a k-
mer and its reverse complement are stored at the same entry.

2.1.2 Aligning reads to contig
Paired-end reads information is used to extend a contig before
single-end reads information because it can resolve longer repeats,
i.e. up to the insert size of paired-end reads. PERGA
automatically infers the mean insert size as well as the standard
deviation of the paired-end reads that have been assembled onto
contigs. Reads with similarity >90% are aligned onto contigs.
Only those two ends which are aligned in correct directions, i.e.
pointed to each other on different strands, are used to infer the
mean insert size and the standard deviation.

As shown in Figure 5, PERGA aligns paired-end read onto a
single contig. Reads with one end totally aligned to the contigs
and the other end partially aligned to the contig are used to
determine the extension of contig.

When starts the extension of a contig, the k-mer at end of a read is
selected as the start contig, reads sharing the same k-mer can be
effectively aligned to the contig end by using k-mer hash table,
and the contig is extended iteratively using SVM model to
eliminate sequencing errors and avoid the impacts of short repeats
by applying the variable overlap size approach based on single
reads. When the contig is long enough to use the paired-end reads,
the extension will be applied using the paired-end reads in highest
priority to avoid repeats shorter than the insert size. As single
reads are not suitable for resolving repeats, so that the look ahead
technology is just used when paired-end reads are possible.
Moreover, when the start k-mer contains sequencing errors, it
typically has low frequency in k-mer hash table, and such k-mers
are excluded from the start construction of a contig.

When PERGA cannot determine the extension from the aligned
paired-end reads, single-end reads information, including paired-
end read with one end aligned to the end of a contig and the other
end unaligned or unsequenced, is used to determine the extension
of contig (Figure 6).

Since the alignment of single-end reads are less confident than the
paired-end reads especially when the length of aligned region O is
short, single-end read information is used carefully from reads
with large O to reads with small O. PERGA determines the
possible extension using reads with O larger than a larger
threshold Omax then to smaller threshold Omin iteratively. Thus, if
PERGA can determine the extension using reads with large O
confidently, it will not consider those reads with small O. In
Figure 7, the contig is extended by reads 1 and 2 (O ≥ 6) and

Figure 4. Workflow of PERGA. There are two phases for
PERGA: assembly of reads and assembly of contigs. (a) In
phase 1, k-mer hash table is constructed using paired-end
reads for k = Omin, then contigs are extended iteratively one
base at a time (left feedback loop) at 3’ end by using paired-
end reads in high priority, and variable overlap size
thresholds ranging from Omax to Omin (right feedback loop) if
there are no paired-ends. (b) In phase 2, paired-end reads are
used to order and orient contigs, fill intra-scaffold gaps to
generate larger scaffolds.

resolves the repeat AAT in reads 5 and 6 from other genome
regions, and if there are no reads having O ≥ 6, then smaller O ≥ 5
will be applied again in the same way. Moreover, the read overlap
approach can resolve repeats in the reads without overlaps among
each other, e.g., GCA from reads 1, 2, 5 and 6.

2.1.3 SVM navigation models
When extending contigs, there may be more than one feasible
extensions with various supporting reads that are mainly due to
repeats or sequencing errors, i.e. there is a branch. When
determining correct extension at branch, PERGA records the
branch information as features (maxOcc, secOcc, covRatio,
gapLen), where maxOcc is the number of reads supporting the
majority nucleotide, secOcc is the number of reads supporting the
second majority nucleotide, covRatio is the ratio of the average
number of aligned reads (per nucleotide) at the extended ends
(within two read lengths) to the average number of aligned reads
for the contig, gapLen is the maximal base span of start aligned
positions of two reads on contig. The idea is that for a branch, if
its maxOcc and secOcc differ a lot (e.g., secOcc/maxOcc < 0.7),
the feasible extension corresponding to the maxOcc is usually a

correct extension; otherwise, the extension corresponding to
maxOcc might be incorrect and should be stopped for further
checking. A branch with low gapLen suggested that the number
reads aligned to the end of contig is high and the maxOcc should
be a correct extension. A branch with covRatio larger than one
suggests that there is a repeat nearby and PERGA should extend
more carefully.

For training the SVM prediction models, we recorded the
branches of the four features while assembling, and treated each
branch as a point in a four-dimensional space in which these
points can be used to draw a hyperplane by machine learning
approach to separate the branches that should be continued or
stopped. By comparing them to the reference while assembling,
these branches can be classified into four categories: correct
extension, wrong extension, correct stop, wrong stop. We labeled
each branch as CONTINUE if the branch is a correct extension or
a wrong stop that should be continued; otherwise it is a STOP
branch that should be stopped.

Based on training dataset on branches, PERGA can determine the
cases when we should extend a contig using the nucleotide with
maximum support or not. A Support Vector Machine method
using polynomial kernel function K(x, y) = <x, y> × (1+<x, y>)2,
where x, y are vectors containing branch information, <x, y> is the
dot product of x, y being constructed based on the four features
and is used to determine if a contig should be extended. Note that
PERGA will first determine the correct extension using features
calculated based on aligned paired-end reads. If PERGA fails to
decide whether to extend the contig, it will recalculate the
features using aligned single-end reads from O ≥ Omax to Omin and
will determine when to extend the contig.

2.1.4 Look ahead technology
Since SVM is not perfect, there are a few exceptions when using
the SVM models to decide whether to extend a contig or not. For
these exceptional cases, PERGA looks ahead to find all feasible
extensions. Starting from the branches, PERGA finds the feasible
extensions and continues extending the contig. PERGA will
search 30 nucleotides for all these possible extensions from
branches, and then compare the sequences of different extensions.
Based on the assumption that if the multiple extensions are due to
repeat, it will be hard to get a highly agreed consensus sequence
than the case that the multiple extensions are due to sequencing
errors, PERGA calculates the ratio of support for the majority
nucleotide at each position and assumes the majority nucleotide as
incorrect if its ratio is less than 0.9. If there are more than 3
incorrect nucleotides, the extension will be stopped, otherwise,
the extension will be continued using the majority nucleotide.

2.1.5 Handling erroneous bases
Erroneous bases in reads for HTS data can make the assembly
problem much more complex and error-prone, and cannot be
easily solved by paired-end reads and variable overlap size
approach. To resolve ambiguities arising due to sequencing errors,
PERGA applies a method similar to the approach based on
topological structures [15, 21, 24]. Errors at the ends of reads
usually lead to short dead ends which are likely to be terminated
prematurely, and errors in the inner part of reads will cause small
bubbles in which the two paths have similar bases with the same
starting and ending reads. Note that such dead ends and bubbles
are checked in reads rather than in contigs, and PERGA checks
such errors rather than corrects them, as it only needs to

Figure 5. Extension using paired-end reads. Contig is
extended at the 3’ end according to the reads in Pool 1 and
whose mates in Pool 2. There are two candidate bases ‘C’ and
‘T’, and ‘C’ is well supported by the mates in the two pools,
whereas ‘T’ has no paired-end reads support, thus ‘C’ will be
chosen to append onto the contig.

Figure 6. Using single-end reads for extension. When
assembling the grey color region which cannot be assembled
by paired-end reads and the reads in Pool 1 have no mates in
Pool 2, the reads in Pool 1 are used as single-end reads to
extend the contig.

Figure 7. Example of the variable overlap size approach in
contig extension. Suppose k = Omin = 3, Omax = 6. There are 6
assembling reads being taking part in assembly, reads 1-4 are
the reads that can be assembled onto the contig, while reads 5-
6 are the reads that should be assembled onto other regions.
The contig is extended using O ≥ 6 by reads 1-2, and if there
are no reads having O ≥ 6, then smaller O ≥ 5 will be used in
the same way until the contig can be extended successful. AAT
is a repeat that can be resolved by O ≥ 4 and GCA is another
repeat that has been resolved by reads as such reads do not
overlap each other.

determine whether the reads can be assembled onto contigs. It
checks the similarity between a read and the contig according to
topological structures, and if similarity is high, say ≥ 90%, then
the read is assembled onto contigs regardless the errors; otherwise,
the read will be not assembled onto contigs, instead, it might
assembles into other genome regions with higher similarity.

Figure 8. Scheme for removing erroneous bases. Erroneous
bases in reads will cause dead ends and bubbles that can be
implicitly resolved as these errors can be masked by these
correct reads. Reads with low similarities probably can be
assembled onto other contigs with higher similarity.

As the extension is carried out based on greedy approach, the
dead ends and bubbles in reads are removed implicitly (Figure 8).
There are many overlapping reads when assembling a contig
region, thus consensus bases of contigs are derived from the
corrected reads, and erroneous bases are masked by these correct
reads to avoid adverse effects to contigs.

2.2 Assembly of contigs
PERGA assembles generated contigs into larger scaffolds using
paired-end information. In this procedure, reads are aligned onto
contig ends to order and orient contigs to generate scaffolds. After
constructing scaffolds, PERGA merges the overlapped
neighboring contigs, fills intra-scaffold gaps, and generates
consensus sequences to give final assembly (Figure 4b). Detailed
scaffolding method is described in the following subsections.

2.2.1 Reads alignment
If one end of a paired-end read uniquely aligned to one contig and
the other end uniquely aligned to another contig, these two
contigs should appear adjacently in the genome. Note that reads
aligned to multiple contigs should not be considered. As reads
with both ends aligned to the same contigs does not provide extra
information for constructing scaffold, PERGA aligns reads to the
end of contig, called linking regions, within default 1Kbp only.

2.2.2 Linking contigs to scaffolds
Since reads may be sampled from positive strand or negative
strand and whether a contig sequence represents the positive
strand or negative strand is unknown, there are four valid
placements {P1, P2, P3, P4} for two adjacent contigs (A, B) as
shown in Figure 9. The relative positions and directions of the
contigs can be determined from the aligned paired-end reads.
However, because of sequencing errors and misalignment, the
relative direction and position of two contigs can be different
using different paired-end reads. In order to determine the correct
relative direction and position of contigs, a scaffold graph G = (V,
E) is constructed over the set of linking regions V to capture all
placements of adjacent contigs by the set of edges E. In the graph,
placement weight is defined as the number of paired-end reads
support each placement of two linking regions vi and vj in distinct
contigs, and each edge eij = (vi, vj) is associated with a quaternion
(N1, N2, N3, N4), where Ni is the weight for placement Pi. Only

uniquely aligned reads are used to construct graph to prevent
introducing errors by repeats.

Contigs are linked based on a greedy approach. A contig longer
than the linking region size is randomly selected as the initial
scaffold to be extended. The extension is performed iteratively by
including the neighboring contigs to the right, and once a contig is
included in a scaffold, its orientation is assigned according to the
placement. Extension is performed iteratively and is terminated
on the following conditions: no neighboring contigs, or multiple
candidates undifferentiated which one is correct. When the
extension is terminated from the 3’ end, the 5’ end will be
extended in a similar fashion (Figure 10). After contigs are linked,
their orders and orientations in scaffolds will be determined.

2.2.3 Overlap between contigs
To generate final scaffolds, it is necessary to compute the distance
between each two adjacent contigs in scaffolds, which may be
overlapped or have gaps in between. For overlapped contigs, the
overlapped region will be detected and the two contigs should be
merged into a single contig. For contigs with gaps in between, the
gap size will be computed based on the paired-end reads that link
the two contigs.

PERGA first estimates the gap size between adjacent contigs in
scaffolds. Given a paired-end read with two ends a and b aligned
to different contigs A, B, the gap size g can be estimated
by 1 2g m l l= − − , where m is the mean insert size, l1 is the distance
from 5’ end of read a to the gap margin of contig A, l2 is the
distance from 5’ end of read b to gap margin of contig B. In
practice, there can be multiple read pairs falling into two adjacent
contigs, thus the final gap size d(A, B) can be inferred by

Figure 9. Four placements for two adjacent contigs.
Placements depicted at bottom correspond to the ones in top
table. Adjacent contigs (bold arrows) are placed based on
their aligned read pairs. Grey arrows indicate reverse
complements of contigs. Contig orientation (‘+’/‘-’) in top
table is the contig orientation in scaffolds.

Figure 10. Scheme for contigs linking. The first link round
(right) extends contigs by paired-end reads from the starting
contig A to the right until no extension are possible, then the
second link round (left) is carried out from A to the left in the
same way. Scaffold is a linear structure of a set of linked
contigs (bottom) that have been ordered and oriented.

1

1(,)
n

i
i

d A B g
n =

= ∑

where n is number of read pairs between A and B.

PERGA further checks the inferred gap size. If the inferred gap
size is a large positive number, there is probably a gap between
contigs with the estimated gap size; and if the gap size is a large
negative number, there is probably an overlap. If the gap size is
not significant, further check is needed by comparing the prefix
and suffix of the two contigs.

When the gap size is a large negative number or insignificant, the
two contigs may overlap with certain proportion. Because of
sequencing error and mistakes in assembling, the overlapping
sequence may not be exactly the same. PERGA performs the pair-
wise sequence alignment to capture the overlaps. If an overlap is
larger than 3 and is agreed with the estimated gap size, this pair of
contigs will be recorded as overlapping contigs and merged into a
single contig; otherwise, there will be a gap between them.

2.2.4 Gap filling
After estimating gap size between adjacent contigs, it is necessary
to fill the gap regions for better continuity by local assembly
using paired-end reads with one end aligned onto contigs and the
other end aligned in gap regions. Most of the sequences in the gap
regions are repetitive sequences, thus gap filling can be used to
resolve such repeats. As the sequences adjacent to gap regions
have been recognized, repetitive sequences in gap regions can be
easily reconstructed by local assembly which is based on the
algorithm of assembly of reads for PERGA using paired-ends.

Consensus sequences are generated from contigs in scaffolds
considering their overlaps and gaps. If adjacent contigs are
overlapped, then they will be merged; and if contigs are gapped,
the gap region between these contigs will be filled with
ambiguous bases (‘N’).

3. RESULTS
3.1 Datasets
We evaluated the performance of PERGA on both simulated
E.coli datasets and the real dataset (details are shown in Table 1).
The simulated Illumina paired-ends datasets were generated using
GemSIM [28] with various coverages 50x, 60x, 100x (can be
downloaded from https://github.com/hitbio/PERGA), and the real
Illumina paired-end reads data were downloaded from
http://bix.ucsd.edu/projects/singlecell/nbt_data.html, with
standard genomic DNA prepared from culture, with coverage
around 600x. We evaluated the performance of PERGA on
resolving branches using SVM prediction model and look ahead
technology. We also compared the performance of PERGA in
assembling with other leading state-of-the-art assemblers,
including IDBA-UD [26] (v1.0.9), ABySS [24] (v1.3.2), Velvet
[21] (v1.2.01), and also including overlap-based assemblers SGA
[18] (v0.9.20) and CABOG [16] (v7.0).

To evaluate the performances of each assembler, we used the
number of correctly assembled contigs, length of N50, length of
the longest contig to evaluate their length metrics, and we used
BLASTN [29] to align the contigs and scaffolds to reference to
evaluate their accuracy by using reference covered ratio, number
and lengths of mis-assemblies. If a contig (or scaffold) entirely
matches with the reference with similarity <95%, it is considered
as a mis-assembled contigs. As Velvet does not produce contigs

for paired-ends data, we split the scaffolds at the positions of
poly-N to get the contigs for comparison. Note that repeats from
different genomic regions will be collapsed into a single copy
which can be aligned to more than one location or in disjoint
locations when using BLAST, and we also deem that all those
genomic locations are covered by these repeats.

The experiments for the simulated reads data were carried out on
a 64-bit Linux machine with an Intel(R) Core-2 CPU 2.53-GHz
supplied with 3 GB memory except the experiments for CABOG.
The experiments for CABOG and the real reads data were carried
out on an Intel(R) Xeon(R) Core-8 CPU 2.00-GHz server
supplied with 24 GB memory.

Table 1. Datasets of E.coli for assemblies

Datasets D1 D2 D3 D4
Data type simulated simulated simulated real
Read length 100 bp 100 bp 100 bp 100 bp
Reads (million) 2× 1.16 2× 1.4 2× 2.3 2× 14.2
Cov. depth 50× 60× 100× 600×
Insert size (bp) 370 ± 56 370 ± 58 370 ± 59 215 ± 11

3.2 Greedy-like prediction model
The performance of our greedy-like SVM prediction model was
assessed by counting the numbers of correctly and incorrectly
predicted extensions and stops for all branches during the
assembling step. The statistical results on all datasets are shown in
Table 2. By constructing the decision models using machine
learning approach, PERGA can determine the correct extension in
99.7% of cases for the simulated raw reads data D1~D3. And
PERGA also determines the stop cases that both extensions are
likely to be correct. PERGA can produce only a few incorrect
extensions and incorrect stops (less than 0.1%).

Table 2. Statistical results for greedy-like prediction model
Datasets Corr. exts. Incorr. exts. Corr. stops Incorr. stops
D1 70299 (99.70%) 60 (0.09%) 123 (0.17%) 26 (0.04%)
D2 84829 (99.74%) 46 (0.05%) 148 (0.18%) 25 (0.03%)
D3 136309 (99.82%) 48 (0.04%) 169 (0.12%) 27 (0.02%)

3.3 Look ahead technology
Although the performance of SVM prediction model is good,
PERGA still has some incorrect extensions and stops. These
incorrect predictions can be resolved by the look ahead
technology. Table 3 shows the number of correct and incorrect
navigations for branches when applying this technology to
generate contigs based on the datasets D1~D3. Most of the
branches can be correctly resolved in very high probability
(>99.77%) with very low error rate (<0.23%), which is the
primary reason that PERGA can generate long and accurate
contigs. According to Table 2 and Table 3, about only 10% of the
branches (D1~D3) are adjusted by this technology. As look ahead
technology is very effective, the mis-prediction branches can be
easily handled by this technology.

Table 3. Statistical results for look ahead technology

Datasets Correct navi. Incorrect navi. Total
D1 6039 (99.82%) 11 (0.18%) 6050
D2 7074 (99.77%) 16 (0.23%) 7090
D3 8408 (99.77%) 19 (0.23%) 8427

http://bix.ucsd.edu/projects/singlecell/nbt_data.html�
http://bix.ucsd.edu/projects/singlecell/nbt_data.html�

3.4 Simulated data results
Table 4 shows the performances of PERGA as well as other
assemblers on the 50x simulated paired-end reads data D1.
PERGA generated the longest contigs in N50 measures, highest
reference coverage and the most accurate result with no mis-
assemblies. PERGA and Velvet were the fastest assemblers
among four assemblers with moderate memory usage and were
about 3 times faster than IDBA-UD and ABySS, since SGA uses

the FM-index to compute the read overlap, and CABOG
computes the read overlaps between each other, thus they cost
more time while assembling (43 minutes and 77 minutes).
PERGA generated the largest N50 (132 kbp and 176 kbp). This is
because that PERGA handles branches for extension much more
carefully, it utilizes a greedy-like prediction SVM models which
contains much branch information to give much better extensions,
and PERGA distinguishes sequencing errors and repeats for
branches using the look ahead technology to decide the correct

Table 4. Assemblies for E.coli simulated short reads data (D1, 50×)

k/Overlap Contigs Scaffolds

Time

(min)

Mem.

(GB) #contigs
N50

(Kbp)
Max.

(Kbp)
Cov.
(%)

Misass.
(#/sumLen)

#scaffolds

N50
(Kbp)

Max.
(Kbp)

Cov.
(%)

Misass.
(#/sumLen)

PERGA O≥25 97 132.7 327.0 100.0 0 / 0 82 176.0 327.0 100.0 0 / 0 3 1.0
IDBA-UD k=20-100 153 112.6 327.1 99.98 2 / 559 119 148.5 327.1 99.98 1 / 321 11 0.6
ABySS k=45 110 119.2 270.3 99.90 0 / 0 103 119.2 270.3 99.42 1 / 3617 9 1.0
Velvet k=45 177 108.1 326.9 99.76 7 / 6658 153 148.3 326.9 99.89 1 / 1596 3 0.9
SGA O≥31 3143 22.6 138.3 99.06 1 / 105 2778 88.4 269.7 99.06 2 / 4225 43 0.6
CABOG default 134 83.1 201.6 99.03 1 / 2638 98 88.5 204.0 99.03 1 / 2638 77 2.6

Table 5. Assemblies for E.coli simulated short reads data (D2, 60×)

k/Overlap Contigs Scaffolds

Time

(min)

Mem.

(GB) #contigs
N50

(Kbp)
Max.

(Kbp)
Cov.
(%)

Misass.
(#/sumLen)

#scaffolds

N50
(Kbp)

Max.
(Kbp)

Cov.
(%)

Misass.
(#/sumLen)

PERGA O≥25 96 133.3 327.8 100.0 0 / 0 84 174.1 327.8 100.0 0 / 0 3 1.1
IDBA-UD k=20-100 153 124.6 327.1 99.99 0 / 0 120 173.9 327.1 99.97 0 / 0 13 0.6
ABySS k=45 104 119.2 328.1 99.92 0 / 0 93 135.0 328.1 99.56 1 / 25k 10 1.1
Velvet k=45 176 125.2 326.8 99.79 6 / 4451 155 148.5 326.8 99.87 0 / 0 5 1.0
SGA O≥31 3564 21.6 138.2 98.89 1 / 105 3163 87.3 270.0 98.91 2 / 597 50 0.6
CABOG default 155 68.4 180.3 98.72 0 / 0 112 77.1 180.3 98.64 1 / 4996 98 2.6

Table 6. Assemblies for E.coli simulated short reads data (D3, 100×)

k/Overlap Contigs Scaffolds

Time

(min)

Mem.

(GB) #contigs
N50

(Kbp)
Max.

(Kbp)
Cov.
(%)

Misass.
(#/sumLen)

#scaffolds

N50
(Kbp)

Max.
(Kbp)

Cov.
(%)

Misass.
(#/sumLen)

PERGA O≥25 111 125.1 327.2 100.0 0 / 0 89 149.7 327.2 100.0 0 / 0 5 1.4
IDBA-UD k=20-100 153 124.6 327.1 99.99 0 / 0 113 148.6 327.1 99.96 2 / 1723 21 0.7
ABySS k=45 106 126.2 328.1 99.90 1 / 524 95 135.0 328.1 90.89 4 / 206k 16 1.7
Velvet k=45 178 117.5 327.0 99.75 9 / 7347 159 148.5 327.0 100.0 0 / 0 7 1.4
SGA O≥31 4387 18.2 121.0 98.73 3 / 376 3657 95.0 269.7 98.81 8 / 9151 103 0.6
CABOG default 196 37.3 180.3 93.63 1 / 61k 135 56.7 189.0 93.56 1 / 65k 209 2.6

Table 7. Assemblies for E. coli real short reads data (D4, 600×)

k/Overlap Contigs Scaffolds

Time

(min)

Mem.

(GB) #contigs
N50

(Kbp)
Max.

(Kbp)
Cov.
(%)

Misass.
(#/sumLen)

#scaffolds

N50
(Kbp)

Max.
(Kbp)

Cov.
(%)

Misass.
(#/sumLen)

PERGA O≥25 114 133.4 266.0 100.0 2 / 383 98 154.6 284.7 100.0 2 / 383 20 4.9
IDBA-UD k=20-100 144 106.8 236.6 99.93 1 / 2105 107 148.5 284.4 99.98 0 / 0 31 2.0
ABySS k=45 156 96.0 210.8 93.61 4 / 293k 141 113.4 236.4 91.45 5 / 372k 64 0.3
Velvet k=45 215 82.8 177.8 95.25 11 / 212k 182 95.5 209.4 86.21 5 / 633k 33 5.1
SGA O≥31 5497 16.2 73.1 98.69 42 / 4962 5299 17.2 73.1 99.11 44 / 5943 357 5.9

extensions. Thus, PERGA can provide fewer but longer contigs
than the others without producing erroneous contigs.
When the number of reads in the dataset increases, the running
times of all the other assemblers increase (Table 5 for data D2).
However, the running time of PERGA does not increase
significantly and is still the fastest assembler. The contigs and
scaffolds produced by PERGA have the largest N50 and coverage
with no mis-assemblies. Because of the increase in sequencing
depth, IDBA-UD and Velvet performed better than on D2 with
contig N50 increased from 112.6kbp and 108.1 kbp to 124.6kbp
and 125.2 kbp respectively with less assembly errors. PERGA and
IDBA-UD had the largest scaffold sizes (174.1 kbp and 173.9 kbp
respectively), while the results of others assemblers were much
shorter (only around 140kbp). Compared with other assemblers,
SGA and CABOG produced shorter contigs and scaffolds with
longer running time. The coverages of all assemblers on D1 and
D2 are much the same and they do not differ much between
contigs construction and scaffolds production.
For the simulated 100x data set D3, since the sequencing depth is
high, all assemblers generated similar numbers of contigs with
similar coverages in both contigs and scaffolds except ABySS
which dropped from 99.90% to 90.89% because of the mis-
assembled 4 scaffolds (206kbp). CABOG generated 1 mis-
assembled contig (61kbp) and 1 mis-assembled scaffold (65kbp),
thus its genome coverage dropped to 93.5%. From the
experiments on D1~D3, it can be observed that CABOG may be
not suitable for high coverage data since its contigs (scaffolds)
sizes decreased with the increasing coverage depth, and it can also
seen that the overlap-based assemblers (SGA and CABOG) is not
suitable for high coverage data. PERGA also was the fastest
assembler and produced the most accurate results while others all
produced several mis-assembled contigs (scaffolds). In all
experiments on simulated data, PERGA did not produce any mis-
assembled contigs and scaffolds while the other assemblers mis-
assembled some reads in some datasets.

3.5 Real data result
We further used the downloaded E.coli dataset D4 with coverage
~600x to highlight the performance of PERGA on high coverage
data, and compared its performances with other assemblers.
CABOG could not be run on D4 may be due to the high coverage
depth, thus it was excluded from the comparison. Before
assembling, paired-end reads data were corrected using Quake
[30], and the results are shown in Table 7.

The overall performance of all other assemblers dropped while
the performance of PERGA still had similar performance in
simulated data. It may suggest that the SVM model used by
PERGA can capture the properties in real datasets. PERGA was
the fastest assembler and generated the longest contigs (scaffolds)
(133.4kbp and 154.6kbp) with the highest coverage (100%), while
others assemblers had much lower N50 except scaffolds of IDBA-
UD (148.5kbp). Since PERGA generated very long and accurate
contigs, the scaffolds produced by PERGA had the largest N50
and highest coverage even though it did not connect many contigs
in scaffolding.

After scaffolding, ABySS and Velvet produced longer scaffolds
with lower coverage, while PERGA and IDBA-UD did not have
coverage difference between contigs and scaffolds as they
produced accurate assemblies. ABySS and Velvet both
had >200kbp mis-assembled contigs and >300kbp mis-assembled

scaffolds, thus their contig coverage dropped dramatically from
96% to 86%, and SGA generated accurate contigs and scaffolds,
however, their N50 sizes are very small (16.2 kbp and 17.2 kbp),
and it used more time than others. This shows that ABySS, Velvet
and SGA might not be suitable for high coverage sequencing data.
They can have good performance on low coverage data but might
not be good on high coverage data.

4. CONCLUSIONS
In this article, we present PERGA, a novel de novo sequence
reads assembler, which can generate large and accurate
assemblies using the greedy-like prediction strategy to handle
branches and errors to give much better extensions. By using look
ahead technology to distinguish sequencing errors and repeats
more accurately, PERGA makes use of read overlaps represented
in the form of overlapping k-mers to deal with short repeats.
Moreover, instead of using single-end reads to construct contigs,
PERGA uses paired-end reads in the first step and gives different
priority to different read overlap size thresholds ranging from
Omax to Omin to resolve the gap and branch problem. Experiments
showed that PERGA could generate very long and accurate
contigs and scaffolds with fewer mis-assembly errors both for
simulated reads data and real data sets for both low and high
coverage datasets than the existing methods.

5. ACKNOWLEDGMENTS
This work was supported in part by National Nature Science
Foundation of China (grant 61173085) and HKGRF (HKU
7111/12E).

6. REFERENCES
[1] Shendure, J., et al., Accurate multiplex polony sequencing of

an evolved bacterial genome. Science, 2005. 309(5741): p.
1728-1732.

[2] Margulies, M., et al., Genome sequencing in microfabricated
high-density picolitre reactors. Nature, 2005. 437(7057): p.
376-80.

[3] Li, R.Q., et al., The sequence and de novo assembly of the
giant panda genome. Nature, 2010. 463(7279): p. 311-317.

[4] Bentley, D.R., et al., Accurate whole human genome
sequencing using reversible terminator chemistry. Nature,
2008. 456(7218): p. 53-59.

[5] Li, H., Exploring single-sample SNP and INDEL calling with
whole-genome de novo assembly. Bioinformatics, 2012.
28(14): p. 1838-44.

[6] Blanca, J.M., et al., ngs_backbone: a pipeline for read
cleaning, mapping and SNP calling using Next Generation
Sequence. BMC Genomics, 2011. 12.

[7] Schatz, M.C., A.L. Delcher, and S.L. Salzberg, Assembly of
large genomes using second-generation sequencing. Genome
Res., 2010. 20(9): p. 1165-1173.

[8] Surget-Groba, Y. and J.I. Montoya-Burgos, Optimization of
de novo transcriptome assembly from next-generation
sequencing data. Genome Res., 2010. 20(10): p. 1432-1440.

[9] Treangen, T.J. and S.L. Salzberg, Repetitive DNA and next-
generation sequencing: computational challenges and
solutions. Nat Rev Genet, 2012. 13(1): p. 36-46.

[10] Flicek, P. and E. Birney, Sense from sequence reads:
methods for alignment and assembly. Nature Meth., 2009.
6(11 Suppl): p. S6-S12.

[11] Shendure, J. and H. Ji, Next-generation DNA sequencing.
Nature Biotech., 2008. 26(10): p. 1135-45.

[12] Warren, R.L., et al., Assembling millions of short DNA
sequences using SSAKE. Bioinformatics, 2007. 23(4): p.
500-1.

[13] Jeck, W.R., et al., Extending assembly of short DNA
sequences to handle error. Bioinformatics, 2007. 23(21): p.
2942-4.

[14] Dohm, J.C., et al., SHARCGS, a fast and highly accurate
short-read assembly algorithm for de novo genomic
sequencing. Genome Res., 2007. 17(11): p. 1697-706.

[15] Hernandez, D., et al., De novo bacterial genome sequencing:
millions of very short reads assembled on a desktop
computer. Genome Res., 2008. 18(5): p. 802-9.

[16] Miller, J.R., et al., Aggressive assembly of pyrosequencing
reads with mates. Bioinformatics, 2008. 24(24): p. 2818-
2824.

[17] Burrows, M. and D.J. Wheeler, A block-sorting lossless data
compression algorithm. Technical Report, 1994. 124: p. Palo
Alto, CA, Digital Equipment Corporation.

[18] Simpson, J.T. and R. Durbin, Efficient de novo assembly of
large genomes using compressed data structures. Genome
Res., 2012. 22(3): p. 549-556.

[19] Ferragina, P. and G. Manzini. Opportunistic Data Structures
with Applications. in Proceedings of the 41st Symposium on
Foundations of Computer Science (FOCS 2000). 2000.

[20] Pevzner, P.A., H. Tang, and M.S. Waterman, An Eulerian
path approach to DNA fragment assembly. Proc. Natl. Acad.
Sci., 2001. 98(17): p. 9748-53.

[21] Zerbino, D.R. and E. Birney, Velvet: algorithms for de novo
short read assembly using de Bruijn graphs. Genome Res.,
2008. 18(5): p. 821-9.

[22] Chaisson, M.J. and P.A. Pevzner, Short read fragment
assembly of bacterial genomes. Genome Res., 2008. 18(2): p.
324-330.

[23] Butler, J., et al., ALLPATHS: de novo assembly of whole-
genome shotgun microreads. Genome Res., 2008. 18(5): p.
810-20.

[24] Simpson, J.T., et al., ABySS: A parallel assembler for short
read sequence data. Genome Res., 2009. 19(6): p. 1117-
1123.

[25] Peng, Y., et al., IDBA - A Practical Iterative de Bruijn
Graph De Novo Assembler. Research in Computational
Molecular Biology, Proceedings, 2010. 6044: p. 426-440.

[26] Peng, Y., et al., IDBA-UD: a de novo assembler for single-
cell and metagenomic sequencing data with highly uneven
depth. Bioinformatics, 2012. 28(11): p. 1420-8.

[27] Li, R., et al., De novo assembly of human genomes with
massively parallel short read sequencing. Genome Res.,
2009. 20(2): p. 265-272.

[28] McElroy, K.E., F. Luciani, and T. Thomas, GemSIM:
general, error-model based simulator of next-generation
sequencing data. BMC Genomics, 2012. 13: p. 74.

[29] Altschul, S.F., et al., Basic local alignment search tool. J.
Mol. Biol., 1990. 215(3): p. 403-10.

[30] Kelley, D.R., M.C. Schatz, and S.L. Salzberg, Quake:
quality-aware detection and correction of sequencing errors.
Genome Biol., 2010. 11(11): p. -.

	1. INTRODUCTION
	2. METHODOLOGY
	2.1 Assembly of reads to contigs
	2.1.1 Constructing k-mer hash table
	2.1.2 Aligning reads to contig
	2.1.3 SVM navigation models
	2.1.4 Look ahead technology
	2.1.5 Handling erroneous bases

	2.2 Assembly of contigs
	2.2.1 Reads alignment
	2.2.2 Linking contigs to scaffolds
	2.2.3 Overlap between contigs
	2.2.4 Gap filling

	3. RESULTS
	3.1 Datasets
	3.2 Greedy-like prediction model
	3.3 Look ahead technology
	3.4 Simulated data results
	3.5 Real data result

	4. CONCLUSIONS
	5. ACKNOWLEDGMENTS
	6. REFERENCES

