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ABSTRACT 
Since the read lengths of high throughput sequencing (HTS) 
technologies are short, de novo assembly which plays significant 
roles in many applications remains a great challenge. Most of the 
state-of-the-art approaches base on de Bruijn graph strategy and 
overlap-layout strategy. However, these approaches which depend 
on k-mers or read overlaps do not fully utilize information of 
single-end and paired-end reads when resolving branches, e.g. the 
number and positions of reads supporting each possible extension 
are not taken into account when resolving branches. 

We present PERGA (Paired-End Reads Guided Assembler), a 
novel sequence-reads-guided de novo assembly approach, which 
adopts greedy-like prediction strategy for assembling reads to 
contigs and scaffolds. Instead of using single-end reads to 
construct contig, PERGA uses paired-end reads and different read 
overlap size thresholds ranging from Omax to Omin to resolve the 
gaps and branches. Moreover, by constructing a decision model 
using machine learning approach based on branch features, 
PERGA can determine the correct extension in 99.7% of cases. 
When the correct extension cannot be determined, PERGA will 
try to extend the contigs by all feasible extensions and determine 
the correct extension by using look ahead technology. 

We evaluated PERGA on both simulated Illumina data sets and 
real data sets, and it constructed longer and more correct contigs 
and scaffolds than other state-of-the-art assemblers IDBA-UD, 
Velvet, ABySS, SGA and CABOG. 
Availability: https://github.com/hitbio/PERGA 

Categories and Subject Descriptors 
J.3 [Computer Applications]: Life and Medical Sciences – 
Biology and genetics.  

General Terms 
Algorithms 

Keywords 
Genome assembly, Greedy-like prediction, Variable overlap sizes, 
Look ahead technology 

1. INTRODUCTION 
The high throughput sequencing (HTS) technologies have 
emerged for several years [1, 2] and are widely used in many 
biomedical applications, such as large scale DNA sequencing [3], 
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re-sequencing [4] and SNP discovery [5, 6], etc. However, since 
the length of reads generated by HTS technologies (typically 50 - 
150 base pairs [7-9]) are much shorter than those of the traditional 
Sanger sequencing (typically about 800 base pairs [10]), and the 
per-base sequencing error is high [11], the short read assembly is 
still a great challenge for genome sequencing. 

There are two major approaches for assembly: the overlap-layout 
strategy and the de Bruijn graph strategy. The overlap-layout-
based approaches first compute the overlaps among reads, and 
then assemble according to the read overlaps. There are also two 
subcategories for the overlap-layout approaches: the greedy 
extension strategy and the overlap graph strategy. 

The first several de novo assemblers for the HTS data, such as 
SSAKE [12], VCAKE [13], SHARCGS [14], adopt a greedy 
extension strategy in which reads are stored in a prefix/suffix tree 
to record overlaps, and assembly is performed based on base-by-
base 3’ extension according to the simple greedy heuristics of 
selecting the base with maximum overlap or using the most 
commonly represented base. Thus, these assembly heuristics 
usually have to compromise between contiguity and accuracy. If 
there are more than one feasible extensions due to sequencing 
errors or similar regions in the genome, the extension will stop 
(see Figure 1). In fact, many of these situations should consider 
the extensions and the ambiguity can be resolved later to generate 
longer contigs, e.g. erroneous extensions due to sequencing error 
at the end of a read usually cannot be extended in later steps (dead 
ends [15]) and multiple extensions due to sequencing error in the 
middle a read should be extended to the same nucleotide in later 
steps (bubbles [15]). Moreover, the assembly algorithms store the 
correct and erroneous reads and their reverse complements 
inefficiently, so their memory consumptions are usually very 
large, which limits their application for large amount of HTS 
datasets. 

 
Figure 1. Greedy extension stops caused by feasible extensions 
that differ not much. 

Overlap graph based approaches for short reads, such as Edena 
[15] and CABOG [16], construct an overlap graph in which a 
vertex represents a unique read and an edge connects vertices u 
and v if and only if u and v overlap each other sufficiently, and 
assembly is performed by simplifying the graph based on 
topologies, such as transitive edges, dead ends and bubbles. Each 
simple contiguous sequence in the simplified graph represents a 
contig. These approaches are not suitable for HTS data because 
they require enormous computations to detect overlaps among a 
great amount of reads. Recently, new methods based on read 
overlaps using Burrows-Wheeler Transform [17], such as SGA 
[18] and fermi [5], could assemble large amount of HTS data. 
However, they require much more computations to construct a 
FM-index [19]. 

The de Bruijn graph strategy, which was first introduced in 
EULER [20], is particularly suitable for short reads of HTS 
technologies. This approach breaks up each read into a collection 
of overlapping k-substrings, called k-mers, to construct a de 
Bruijn graph. In the graph, a vertex represents a unique k-mer and 

an edge connects vertices u and v if and only if u and v 
overlapped by k–1 nucleotides and appear consecutively in a read, 
and assembly is performed by removing dead ends and merging 
bubbles to simplify the graph in which a simple path represents a 
contig. As the k-mers have fixed length and erroneous k-mers can 
be detected from their low sampling rates, the de Bruijn graph 
consumes much less memories than the overlap graph. Some 
assemblers, such as Velvet [21], EULER-SR [22], ALLPATHS 
[23], ABySS [24], IDBA [25], IDBA-UD [26],  SOAPdenovo 
[27], adopt this strategy, and achieve good performances. 
However, most of them only use a fixed k-mer size except IDBA 
and IDBA-UD. Since small k values will lead to better 
connectivity with much more branches due to repeat segments 
larger than k, whereas large k will result in worse connectivity 
with more gaps due to missing k-mers [26]. Most of these 
assemblers just pick an intermediate k to compromise these two 
problems. IDBA [25] and IDBA-UD [26] give better results by 
iterating the k-mer sizes from kmin to kmax by using small k to 
resolve gaps and large k to resolve branches (Figure 2). 

All the above assemblers have not fully utilized the information 
of single-end and paired-end reads when resolving branches. 
Assemblers based on overlap-layout strategy usually stop when 
there are more than one choices for extension without considering 
the number of reads supporting each extension. Assemblers based 
on de Bruijn graph strategy resolve branches by the topology of 
de Bruijn graph. Similarly, the number and positions of reads 
supporting each outgoing edge are not taken into consideration 
when resolving branches. In fact, the number and positions of 
reads should be used in resolving branches. Given a branch with 
two possible extensions (or outgoing edges), even though reads 
are not sampled from the genome uniformly (usually not much 
different), if there are much more reads supporting one extension 
than the other, assembler should extend the contig to the one with 
more supporting reads and treat the other as incorrect. Even when 
the numbers of reads supporting both extensions are the same, if 
the set of reads supporting one extension have much longer region 
aligned to a contig than the set of reads supporting another 
extension, assembler should extend the contig to the former 
extension because short overlapped reads may due to sequencing 
errors or short repeats. 

 
Figure 2. Small k will lead to better connectivity and much 
more branches, large k can resolve many repeats smaller than 
k while causing much more gaps. (a) Larger k can resolve 
repeats smaller than k. (b) Small k will lead to better 
connectivity. 

In order to utilize the information in reads for assembling, we 
introduce PERGA (Paired-End Reads Guided Assembler), a novel 
de novo sequence reads assembler which adopts greedy-like 
prediction strategy for assembling reads to form contigs and 
scaffolds. Instead of using single-end reads to construct contigs, 
PERGA uses paired-end reads and different read overlap size 
thresholds ranging from Omax to Omin to resolve the gaps and 



branches. In PERGA, contigs are extended based on base-by-base 
extension. Paired-end reads are aligned to contigs for determining 
possible extensions. When there are not many paired-end reads in 
some genome regions, single-end reads with variable overlap 
sizes from larger threshold Omax to smaller threshold Omin are 
applied to handle branches and gaps. Large overlap size O ≥ Omax 
is used in priority to extend contigs to resolve branches; and if 
there are missing overlaps for larger O, then a degressive smaller 
O will be used to obtain better connectivity to resolve gaps until 
the read overlap are found before O = Omin. Moreover, even when 
there are multiple possible extensions, PERGA will determine 
which extension is more likely based on several features, e.g. the 
number of reads supporting each extensions, coverage ratio (ratio 
of the average number of reads near the branch to the average 
number of reads in the contig), and the gap span (the distance of 
the aligned positions of the reads considered in the current 
extensions and the reads considered in previous extensions but not 
in the current extension). By constructing decision models using 
machine learning approach based on these features, PERGA can 
determine the correct extension in 99.7% of cases. Note that 
PERGA will also determine the case and stop extending the 
contig when both extensions are likely to be correct. 

As there are still some mis-predictions (about 0.1~0.3%), PERGA 
handles them by look ahead technology (Figure 3). When there 
are multiple possible extensions, PERGA extends the contigs by 
all feasible nucleotides and determine if these extensions are due 
to sequencing errors or repeats. If the multiple extensions are due 
to sequencing errors, PERGA will merge the extensions together 
to form a single contig, otherwise, it will retract and stop 
extending the contigs at the branch. PERGA is very effective and 
can greatly improve the contig sizes (e.g., N50 size can be 
improved from 107 kbp to 130 kbp). 

 
Figure 3. The extension situation and the stop situation by 
look ahead technology. (a) The extension case that only one 
base mismatch and there is one single path to be extended. (b) 
The stop case that there are two distinct paths 
TTCTTCGAGTAAGCG… and GAAGAAACAATCTGG…, 
and the consensus sequence derived from the paths is not 
highly agreed at each position, thus the extension should be 
stopped to avoid mis-assemblies. 

According to our experiments, PERGA gives better performances 
than other assemblers with longer and more accurate contigs 
(scaffolds) using less running time with moderate memory 
because of its greedy-like prediction models, the look ahead 
technology and the variable overlap sizes approach for contig 
extensions. 

2. METHODOLOGY 
Figure 4 shows the overview of the proposed approach of PERGA, 
which consists of two phases: assembly of reads, and assembly of 
contigs (i.e., scaffolding). In phase (a), a k-mer hash table, which 
is used to represent read overlaps by the consecutive k-mers, is 
constructed from the set of input reads R, and then PERGA uses 
paired-ends and variable read overlap sizes thresholds from Omax 
to Omin to extend contigs. A greedy-like prediction strategy in 
which a k-mer is chosen as a start of contig extension is 
performed iteratively in the 3’ direction one base at a time until 
there are either no overlapping reads or a repeat is found, then the 
contig will be extended on the 5’ end in the same way. For each 
base extension, PERGA prefers the reads having more overlaps 
with contigs and uses the reads having the most represented base 
for extension. When extending a base, PERGA firstly uses paired-
end reads to navigate contig extension with the highest priority, as 
it can resolve the branches caused by repeats smaller than the 
insert size with much more confidence than those using single-
end reads. However, as there may be genome regions with low 
sequencing depth and insufficient paired-end reads, PERGA uses 
single-end reads to extend contigs in such regions by applying the 
variable overlap size thresholds ranging from larger Omax to 
smaller Omin to resolve repeats of sizes smaller than Omax and to 
resolve gaps due to the missing large overlaps. 

When extending contigs, there are branches which have more than 
one feasible extension with various read occurrences, which are 
mainly due to repeats in genome or sequencing errors in reads. 
Instead of stopping the extension, PERGA records the branch 
information to generate hyperplanes for the paired-ends and 
single-ends respectively by Support Vector Machine method. 
Finally, these two SVM models are used to determine when to 
extend or stop for branches while assembling, and in most cases, 
branches can be correctly resolved. 

However, there are also a few exceptions when using the SVM 
models to decide the navigation: there are a few branches that are 
incorrectly stopped or incorrectly extended. These situations can 
be resolved by looking ahead to find the feasible paths and 
PERGA can resolve the incorrect stops and incorrect extensions, 
and make the contig much longer with fewer mis-assemblies. 

PERGA handles erroneous bases in reads using topological 
structures while extending the contig, which is similar to the 
removals of dead ends and bubbles for de Bruijn graph based 
approaches. During extension, errors at ends of reads will lead to 
dead ends, and the other errors in the inner part of reads will 
cause bubbles, PERGA deals with dead ends with lengths smaller 
than read length and tolerates bubbles with sizes no more than 
Omin. In PERGA, the dead ends containing erroneous k-mers will 
be excluded from assembly by other correct reads during 
extension; and the bubbles in reads are deemed as valid 
substitution. 

In phase 2, paired-end reads are aligned onto contigs and used to 
order and orient contigs to form scaffolds (i.e. ordered sets of 



contigs with gaps in between). Then, the overlap sizes and the gap 
sizes for the linked neighboring contigs are computed, and the 
overlapped neighboring contigs are merged to form longer 
contiguous sequences, and the gapped neighboring contigs are 
processed using a local assembly approach to close their intra-
scaffold gaps to generate longer contiguous sequences. Unlike 
SOAPdenovo [27] which trims k bases to exclude erroneous bases 
at contig ends when scaffolding, PERGA corrects such erroneous 
bases by pair-wise alignment of the overlapped ends of the 
neighboring contigs. Finally, the scaffold sequences are generated 
to form the resultant assembly according to the overlaps and the 
gap sizes of the contigs in scaffolds. 

2.1 Assembly of reads to contigs 
The first phase of PERGA is to assemble reads into contigs using 
a greedy-like prediction method based on paired-end reads 
information (if possible) and then single-end reads. The algorithm 
starts with a k-mer at the end of an unused read and treats it as 
contig. PERGA iteratively aligns paired-end reads to contigs and 
tries to extend it at both ends. In order to determine the possible 
extension, either A, C, G or T, a SVM model is used to determine 
whether PERGA should extend the contig using the nucleotide 
with maximum supports from aligned paired-end reads (instead of 
extending the contig only when all aligned reads support the same 
extension as other greedy algorithms) based on the properties of 

aligned reads. Besides, even when the SVM model cannot 
determine whether extending the contig or not, PERGA will try to 
extend the contigs with all possible nucleotides and determine 
which nucleotide should be used to extend the contig by the later 
steps (look ahead technology). After extension, errors in aligned 
reads can be identified and be corrected for later extension. 
Details of the assembling step are described as follows. 

2.1.1 Constructing k-mer hash table 
PERGA applies a k-mer based, cost effective approach to perform 
read alignments. Overlaps of two reads can be represented by 
their consecutive common k-mers, for example, two reads overlap 
with w nucleotides should share w – k + 1 consecutive k-mers. 
Thus, PERGA uses a hash table to store occurrences of k-mers in 
reads. We refer occurrence of a k-mer as the positions on reads it 
appears. Note that a k-mer may occur in multiple reads and a k-
mer and its reverse complement are stored at the same entry. 

2.1.2 Aligning reads to contig 
Paired-end reads information is used to extend a contig before 
single-end reads information because it can resolve longer repeats, 
i.e. up to the insert size of paired-end reads. PERGA 
automatically infers the mean insert size as well as the standard 
deviation of the paired-end reads that have been assembled onto 
contigs. Reads with similarity >90% are aligned onto contigs. 
Only those two ends which are aligned in correct directions, i.e. 
pointed to each other on different strands, are used to infer the 
mean insert size and the standard deviation. 

As shown in Figure 5, PERGA aligns paired-end read onto a 
single contig. Reads with one end totally aligned to the contigs 
and the other end partially aligned to the contig are used to 
determine the extension of contig. 

When starts the extension of a contig, the k-mer at end of a read is 
selected as the start contig, reads sharing the same k-mer can be 
effectively aligned to the contig end by using k-mer hash table, 
and the contig is extended iteratively using SVM model to 
eliminate sequencing errors and avoid the impacts of short repeats 
by applying the variable overlap size approach based on single 
reads. When the contig is long enough to use the paired-end reads, 
the extension will be applied using the paired-end reads in highest 
priority to avoid repeats shorter than the insert size. As single 
reads are not suitable for resolving repeats, so that the look ahead 
technology is just used when paired-end reads are possible. 
Moreover, when the start k-mer contains sequencing errors, it 
typically has low frequency in k-mer hash table, and such k-mers 
are excluded from the start construction of a contig. 

When PERGA cannot determine the extension from the aligned 
paired-end reads, single-end reads information, including paired-
end read with one end aligned to the end of a contig and the other 
end unaligned or unsequenced, is used to determine the extension 
of contig (Figure 6). 

Since the alignment of single-end reads are less confident than the 
paired-end reads especially when the length of aligned region O is 
short, single-end read information is used carefully from reads 
with large O to reads with small O. PERGA determines the 
possible extension using reads with O larger than a larger 
threshold Omax then to smaller threshold Omin iteratively. Thus, if 
PERGA can determine the extension using reads with large O 
confidently, it will not consider those reads with small O. In 
Figure 7, the contig is extended by reads 1 and 2 (O ≥ 6) and 

 

Figure 4. Workflow of PERGA. There are two phases for 
PERGA: assembly of reads and assembly of contigs. (a) In 
phase 1, k-mer hash table is constructed using paired-end 
reads for k = Omin, then contigs are extended iteratively one 
base at a time (left feedback loop) at 3’ end by using paired-
end reads in high priority, and variable overlap size 
thresholds ranging from Omax to Omin (right feedback loop) if 
there are no paired-ends.  (b) In phase 2, paired-end reads are 
used to order and orient contigs, fill intra-scaffold gaps to 
generate larger scaffolds. 



resolves the repeat AAT in reads 5 and 6 from other genome 
regions, and if there are no reads having O ≥ 6, then smaller O ≥ 5 
will be applied again in the same way. Moreover, the read overlap 
approach can resolve repeats in the reads without overlaps among 
each other, e.g., GCA from reads 1, 2, 5 and 6. 

2.1.3 SVM navigation models 
When extending contigs, there may be more than one feasible 
extensions with various supporting reads that are mainly due to 
repeats or sequencing errors, i.e. there is a branch. When 
determining correct extension at branch, PERGA records the 
branch information as features (maxOcc, secOcc, covRatio, 
gapLen), where maxOcc is the number of reads supporting the 
majority nucleotide, secOcc is the number of reads supporting the 
second majority nucleotide, covRatio is the ratio of the average 
number of aligned reads (per nucleotide) at the extended ends 
(within two read lengths) to the average number of aligned reads 
for the contig, gapLen is the maximal base span of start aligned 
positions of two reads on contig. The idea is that for a branch, if 
its maxOcc and secOcc differ a lot (e.g., secOcc/maxOcc < 0.7), 
the feasible extension corresponding to the maxOcc is usually a 

correct extension; otherwise, the extension corresponding to 
maxOcc might be incorrect and should be stopped for further 
checking. A branch with low gapLen suggested that the number 
reads aligned to the end of contig is high and the maxOcc should 
be a correct extension. A branch with covRatio larger than one 
suggests that there is a repeat nearby and PERGA should extend 
more carefully. 

For training the SVM prediction models, we recorded the 
branches of the four features while assembling, and treated each 
branch as a point in a four-dimensional space in which these 
points can be used to draw a hyperplane by machine learning 
approach to separate the branches that should be continued or 
stopped. By comparing them to the reference while assembling, 
these branches can be classified into four categories: correct 
extension, wrong extension, correct stop, wrong stop. We labeled 
each branch as CONTINUE if the branch is a correct extension or 
a wrong stop that should be continued; otherwise it is a STOP 
branch that should be stopped. 

Based on training dataset on branches, PERGA can determine the 
cases when we should extend a contig using the nucleotide with 
maximum support or not. A Support Vector Machine method 
using polynomial kernel function K(x, y) = <x, y> × (1+<x, y>)2, 
where x, y are vectors containing branch information, <x, y> is the 
dot product of x, y being constructed based on the four features 
and is used to determine if a contig should be extended. Note that 
PERGA will first determine the correct extension using features 
calculated based on aligned paired-end reads. If PERGA fails to 
decide whether to extend the contig, it will recalculate the 
features using aligned single-end reads from O ≥ Omax to Omin and 
will determine when to extend the contig. 

2.1.4 Look ahead technology 
Since SVM is not perfect, there are a few exceptions when using 
the SVM models to decide whether to extend a contig or not. For 
these exceptional cases, PERGA looks ahead to find all feasible 
extensions. Starting from the branches, PERGA finds the feasible 
extensions and continues extending the contig. PERGA will 
search 30 nucleotides for all these possible extensions from 
branches, and then compare the sequences of different extensions. 
Based on the assumption that if the multiple extensions are due to 
repeat, it will be hard to get a highly agreed consensus sequence 
than the case that the multiple extensions are due to sequencing 
errors, PERGA calculates the ratio of support for the majority 
nucleotide at each position and assumes the majority nucleotide as 
incorrect if its ratio is less than 0.9. If there are more than 3 
incorrect nucleotides, the extension will be stopped, otherwise, 
the extension will be continued using the majority nucleotide. 

2.1.5 Handling erroneous bases 
Erroneous bases in reads for HTS data can make the assembly 
problem much more complex and error-prone, and cannot be 
easily solved by paired-end reads and variable overlap size 
approach. To resolve ambiguities arising due to sequencing errors, 
PERGA applies a method similar to the approach based on 
topological structures [15, 21, 24]. Errors at the ends of reads 
usually lead to short dead ends which are likely to be terminated 
prematurely, and errors in the inner part of reads will cause small 
bubbles in which the two paths have similar bases with the same 
starting and ending reads. Note that such dead ends and bubbles 
are checked in reads rather than in contigs, and PERGA checks 
such errors rather than corrects them, as it only needs to 

 

Figure 5. Extension using paired-end reads. Contig is 
extended at the 3’ end according to the reads in Pool 1 and 
whose mates in Pool 2. There are two candidate bases ‘C’ and 
‘T’, and ‘C’ is well supported by the mates in the two pools, 
whereas ‘T’ has no paired-end reads support, thus ‘C’ will be 
chosen to append onto the contig. 

 

Figure 6. Using single-end reads for extension. When 
assembling the grey color region which cannot be assembled 
by paired-end reads and the reads in Pool 1 have no mates in 
Pool 2, the reads in Pool 1 are used as single-end reads to 
extend the contig. 

 

Figure 7. Example of the variable overlap size approach in 
contig extension. Suppose k = Omin = 3, Omax = 6. There are 6 
assembling reads being taking part in assembly, reads 1-4 are 
the reads that can be assembled onto the contig, while reads 5-
6 are the reads that should be assembled onto other regions. 
The contig is extended using O ≥ 6 by reads 1-2, and if there 
are no reads having O ≥ 6, then smaller O ≥ 5 will be used in 
the same way until the contig can be extended successful. AAT 
is a repeat that can be resolved by O ≥ 4 and GCA is another 
repeat that has been resolved by reads as such reads do not 
overlap each other. 



determine whether the reads can be assembled onto contigs. It 
checks the similarity between a read and the contig according to 
topological structures, and if similarity is high, say ≥ 90%, then 
the read is assembled onto contigs regardless the errors; otherwise, 
the read will be not assembled onto contigs, instead, it might 
assembles into other genome regions with higher similarity. 

 
Figure 8. Scheme for removing erroneous bases. Erroneous 
bases in reads will cause dead ends and bubbles that can be 
implicitly resolved as these errors can be masked by these 
correct reads. Reads with low similarities probably can be 
assembled onto other contigs with higher similarity. 

As the extension is carried out based on greedy approach, the 
dead ends and bubbles in reads are removed implicitly (Figure 8). 
There are many overlapping reads when assembling a contig 
region, thus consensus bases of contigs are derived from the 
corrected reads, and erroneous bases are masked by these correct 
reads to avoid adverse effects to contigs. 

2.2 Assembly of contigs 
PERGA assembles generated contigs into larger scaffolds using 
paired-end information. In this procedure, reads are aligned onto 
contig ends to order and orient contigs to generate scaffolds. After 
constructing scaffolds, PERGA merges the overlapped 
neighboring contigs, fills intra-scaffold gaps, and generates 
consensus sequences to give final assembly (Figure 4b). Detailed 
scaffolding method is described in the following subsections. 

2.2.1 Reads alignment 
If one end of a paired-end read uniquely aligned to one contig and 
the other end uniquely aligned to another contig, these two 
contigs should appear adjacently in the genome. Note that reads 
aligned to multiple contigs should not be considered. As reads 
with both ends aligned to the same contigs does not provide extra 
information for constructing scaffold, PERGA aligns reads to the 
end of contig, called linking regions, within default 1Kbp only. 

2.2.2 Linking contigs to scaffolds 
Since reads may be sampled from positive strand or negative 
strand and whether a contig sequence represents the positive 
strand or negative strand is unknown, there are four valid 
placements {P1, P2, P3, P4} for two adjacent contigs (A, B) as 
shown in Figure 9. The relative positions and directions of the 
contigs can be determined from the aligned paired-end reads. 
However, because of sequencing errors and misalignment, the 
relative direction and position of two contigs can be different 
using different paired-end reads. In order to determine the correct 
relative direction and position of contigs, a scaffold graph G = (V, 
E) is constructed over the set of linking regions V to capture all 
placements of adjacent contigs by the set of edges E. In the graph, 
placement weight is defined as the number of paired-end reads 
support each placement of two linking regions vi and vj in distinct 
contigs, and each edge eij = (vi, vj) is associated with a quaternion 
(N1, N2, N3, N4), where Ni is the weight for placement Pi. Only 

uniquely aligned reads are used to construct graph to prevent 
introducing errors by repeats. 

Contigs are linked based on a greedy approach. A contig longer 
than the linking region size is randomly selected as the initial 
scaffold to be extended. The extension is performed iteratively by 
including the neighboring contigs to the right, and once a contig is 
included in a scaffold, its orientation is assigned according to the 
placement. Extension is performed iteratively and is terminated 
on the following conditions: no neighboring contigs, or multiple 
candidates undifferentiated which one is correct. When the 
extension is terminated from the 3’ end, the 5’ end will be 
extended in a similar fashion (Figure 10). After contigs are linked, 
their orders and orientations in scaffolds will be determined. 

2.2.3 Overlap between contigs 
To generate final scaffolds, it is necessary to compute the distance 
between each two adjacent contigs in scaffolds, which may be 
overlapped or have gaps in between. For overlapped contigs, the 
overlapped region will be detected and the two contigs should be 
merged into a single contig. For contigs with gaps in between, the 
gap size will be computed based on the paired-end reads that link 
the two contigs. 

PERGA first estimates the gap size between adjacent contigs in 
scaffolds. Given a paired-end read with two ends a and b aligned 
to different contigs A, B, the gap size g can be estimated 
by 1 2g m l l= − − , where m is the mean insert size, l1 is the distance 
from 5’ end of read a to the gap margin of contig A, l2 is the 
distance from 5’ end of read b to gap margin of contig B. In 
practice, there can be multiple read pairs falling into two adjacent 
contigs, thus the final gap size d(A, B) can be inferred by 

 

Figure 9. Four placements for two adjacent contigs. 
Placements depicted at bottom correspond to the ones in top 
table. Adjacent contigs (bold arrows) are placed based on 
their aligned read pairs. Grey arrows indicate reverse 
complements of contigs. Contig orientation (‘+’/‘-’) in top 
table is the contig orientation in scaffolds. 

 

Figure 10. Scheme for contigs linking. The first link round 
(right) extends contigs by paired-end reads  from the starting 
contig A to the right until no extension are possible, then the 
second link round (left) is carried out from A to the left in the 
same way. Scaffold is a linear structure of a set of linked 
contigs (bottom) that have been ordered and oriented. 
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where n is number of read pairs between A and B. 

PERGA further checks the inferred gap size. If the inferred gap 
size is a large positive number, there is probably a gap between 
contigs with the estimated gap size; and if the gap size is a large 
negative number, there is probably an overlap. If the gap size is 
not significant, further check is needed by comparing the prefix 
and suffix of the two contigs. 

When the gap size is a large negative number or insignificant, the 
two contigs may overlap with certain proportion. Because of 
sequencing error and mistakes in assembling, the overlapping 
sequence may not be exactly the same. PERGA performs the pair-
wise sequence alignment to capture the overlaps. If an overlap is 
larger than 3 and is agreed with the estimated gap size, this pair of 
contigs will be recorded as overlapping contigs and merged into a 
single contig; otherwise, there will be a gap between them. 

2.2.4 Gap filling 
After estimating gap size between adjacent contigs, it is necessary 
to fill the gap regions for better continuity by local assembly 
using paired-end reads with one end aligned onto contigs and the 
other end aligned in gap regions. Most of the sequences in the gap 
regions are repetitive sequences, thus gap filling can be used to 
resolve such repeats. As the sequences adjacent to gap regions 
have been recognized, repetitive sequences in gap regions can be 
easily reconstructed by local assembly which is based on the 
algorithm of assembly of reads for PERGA using paired-ends.  

Consensus sequences are generated from contigs in scaffolds 
considering their overlaps and gaps. If adjacent contigs are 
overlapped, then they will be merged; and if contigs are gapped, 
the gap region between these contigs will be filled with 
ambiguous bases (‘N’). 

3. RESULTS 
3.1 Datasets 
We evaluated the performance of PERGA on both simulated 
E.coli datasets and the real dataset (details are shown in Table 1). 
The simulated Illumina paired-ends datasets were generated using 
GemSIM [28] with various coverages 50x, 60x, 100x (can be 
downloaded from https://github.com/hitbio/PERGA), and the real 
Illumina paired-end reads data were downloaded from 
http://bix.ucsd.edu/projects/singlecell/nbt_data.html, with 
standard genomic DNA prepared from culture, with coverage 
around 600x. We evaluated the performance of PERGA on 
resolving branches using SVM prediction model and look ahead 
technology. We also compared the performance of PERGA in 
assembling with other leading state-of-the-art assemblers, 
including IDBA-UD [26] (v1.0.9), ABySS [24] (v1.3.2), Velvet 
[21] (v1.2.01), and also including overlap-based assemblers SGA 
[18] (v0.9.20) and CABOG [16] (v7.0). 

To evaluate the performances of each assembler, we used the 
number of correctly assembled contigs, length of N50, length of 
the longest contig to evaluate their length metrics, and we used 
BLASTN [29] to align the contigs and scaffolds to reference to 
evaluate their accuracy by using reference covered ratio, number 
and lengths of mis-assemblies. If a contig (or scaffold) entirely 
matches with the reference with similarity <95%, it is considered 
as a mis-assembled contigs. As Velvet does not produce contigs 

for paired-ends data, we split the scaffolds at the positions of 
poly-N to get the contigs for comparison. Note that repeats from 
different genomic regions will be collapsed into a single copy 
which can be aligned to more than one location or in disjoint 
locations when using BLAST, and we also deem that all those 
genomic locations are covered by these repeats. 

The experiments for the simulated reads data were carried out on 
a 64-bit Linux machine with an Intel(R) Core-2 CPU 2.53-GHz 
supplied with 3 GB memory except the experiments for CABOG. 
The experiments for CABOG and the real reads data were carried 
out on an Intel(R) Xeon(R) Core-8 CPU 2.00-GHz server 
supplied with 24 GB memory. 

Table 1. Datasets of E.coli for assemblies 

Datasets D1 D2 D3 D4 
Data type simulated simulated simulated real 
Read length  100 bp 100 bp 100 bp 100 bp 
# Reads (million) 2× 1.16 2× 1.4 2× 2.3 2× 14.2 
Cov. depth 50× 60× 100× 600× 
Insert size (bp) 370 ± 56 370 ± 58 370 ± 59 215 ± 11 

 
3.2 Greedy-like prediction model 
The performance of our greedy-like SVM prediction model was 
assessed by counting the numbers of correctly and incorrectly 
predicted extensions and stops for all branches during the 
assembling step. The statistical results on all datasets are shown in 
Table 2. By constructing the decision models using machine 
learning approach, PERGA can determine the correct extension in 
99.7% of cases for the simulated raw reads data D1~D3. And 
PERGA also determines the stop cases that both extensions are 
likely to be correct. PERGA can produce only a few incorrect 
extensions and incorrect stops (less than 0.1%). 

Table 2. Statistical results for greedy-like prediction model 
Datasets Corr. exts. Incorr. exts. Corr. stops Incorr. stops 
D1 70299 (99.70%) 60 (0.09%) 123 (0.17%) 26 (0.04%) 
D2 84829 (99.74%) 46 (0.05%) 148 (0.18%) 25 (0.03%) 
D3 136309 (99.82%) 48 (0.04%) 169 (0.12%) 27 (0.02%) 

 
3.3 Look ahead technology 
Although the performance of SVM prediction model is good, 
PERGA still has some incorrect extensions and stops. These 
incorrect predictions can be resolved by the look ahead 
technology. Table 3 shows the number of correct and incorrect 
navigations for branches when applying this technology to 
generate contigs based on the datasets D1~D3. Most of the 
branches can be correctly resolved in very high probability 
(>99.77%) with very low error rate (<0.23%), which is the 
primary reason that PERGA can generate long and accurate 
contigs. According to Table 2 and Table 3, about only 10% of the 
branches (D1~D3) are adjusted by this technology. As look ahead 
technology is very effective, the mis-prediction branches can be 
easily handled by this technology. 

Table 3. Statistical results for look ahead technology 

Datasets Correct navi. Incorrect navi. Total 
D1 6039 (99.82%) 11 (0.18%) 6050 
D2 7074 (99.77%) 16 (0.23%) 7090 
D3 8408 (99.77%) 19 (0.23%) 8427 

http://bix.ucsd.edu/projects/singlecell/nbt_data.html�
http://bix.ucsd.edu/projects/singlecell/nbt_data.html�


3.4 Simulated data results 
Table 4 shows the performances of PERGA as well as other 
assemblers on the 50x simulated paired-end reads data D1. 
PERGA generated the longest contigs in N50 measures, highest 
reference coverage and the most accurate result with no mis-
assemblies. PERGA and Velvet were the fastest assemblers 
among four assemblers with moderate memory usage and were 
about 3 times faster than IDBA-UD and ABySS, since SGA uses 

the FM-index to compute the read overlap, and CABOG 
computes the read overlaps between each other, thus they cost 
more time while assembling (43 minutes and 77 minutes). 
PERGA generated the largest N50 (132 kbp and 176 kbp). This is 
because that PERGA handles branches for extension much more 
carefully, it utilizes a greedy-like prediction SVM models which 
contains much branch information to give much better extensions, 
and PERGA distinguishes sequencing errors and repeats for 
branches using the look ahead technology to decide the correct 

Table 4. Assemblies for E.coli simulated short reads data (D1, 50×) 

 
k/Overlap Contigs  Scaffolds 

Time 

(min) 

Mem. 

(GB) #contigs 
N50 

(Kbp) 
Max. 

(Kbp) 
Cov. 
(%) 

Misass. 
(#/sumLen) 

 
#scaffolds 

N50 
(Kbp) 

Max. 
(Kbp) 

Cov. 
(%) 

Misass. 
(#/sumLen) 

PERGA O≥25 97 132.7 327.0 100.0 0 / 0  82 176.0 327.0 100.0 0 / 0 3 1.0 
IDBA-UD k=20-100 153 112.6 327.1 99.98 2 / 559  119 148.5 327.1 99.98 1 / 321 11 0.6 
ABySS k=45 110 119.2 270.3 99.90 0 / 0  103 119.2 270.3 99.42 1 / 3617 9 1.0 
Velvet k=45 177 108.1 326.9 99.76 7 / 6658  153 148.3 326.9 99.89 1 / 1596 3 0.9 
SGA O≥31 3143 22.6 138.3 99.06 1 / 105  2778 88.4 269.7 99.06 2 / 4225 43 0.6 
CABOG default 134 83.1 201.6 99.03 1 / 2638  98 88.5 204.0 99.03 1 / 2638 77 2.6 

 
Table 5. Assemblies for E.coli simulated short reads data (D2, 60×) 

 
k/Overlap Contigs  Scaffolds 

Time 

(min) 

Mem. 

(GB) #contigs 
N50 

(Kbp) 
Max. 

(Kbp) 
Cov. 
(%) 

Misass. 
(#/sumLen) 

 
#scaffolds 

N50 
(Kbp) 

Max. 
(Kbp) 

Cov. 
(%) 

Misass. 
(#/sumLen) 

PERGA O≥25 96 133.3 327.8 100.0 0 / 0  84 174.1 327.8 100.0 0 / 0 3 1.1 
IDBA-UD k=20-100 153 124.6 327.1 99.99 0 / 0  120 173.9 327.1 99.97 0 / 0 13 0.6 
ABySS k=45 104 119.2 328.1 99.92 0 / 0  93 135.0 328.1 99.56 1 / 25k 10 1.1 
Velvet k=45 176 125.2 326.8 99.79 6 / 4451  155 148.5 326.8 99.87 0 / 0 5 1.0 
SGA O≥31 3564 21.6 138.2 98.89 1 / 105  3163 87.3 270.0 98.91 2 / 597 50 0.6 
CABOG default 155 68.4 180.3 98.72 0 / 0  112 77.1 180.3 98.64 1 / 4996 98 2.6 

 
Table 6. Assemblies for E.coli simulated short reads data (D3, 100×) 

 
k/Overlap Contigs  Scaffolds 

Time 

(min) 

Mem. 

(GB) #contigs 
N50 

(Kbp) 
Max. 

(Kbp) 
Cov. 
(%) 

Misass. 
(#/sumLen) 

 
#scaffolds 

N50 
(Kbp) 

Max. 
(Kbp) 

Cov. 
(%) 

Misass. 
(#/sumLen) 

PERGA O≥25 111 125.1 327.2 100.0 0 / 0  89 149.7 327.2 100.0 0 / 0 5 1.4 
IDBA-UD k=20-100 153 124.6 327.1 99.99 0 / 0  113 148.6 327.1 99.96 2 / 1723 21 0.7 
ABySS k=45 106 126.2 328.1 99.90 1 / 524  95 135.0 328.1 90.89 4 / 206k 16 1.7 
Velvet k=45 178 117.5 327.0 99.75 9 / 7347  159 148.5 327.0 100.0 0 / 0 7 1.4 
SGA O≥31 4387 18.2 121.0 98.73 3 / 376  3657 95.0 269.7 98.81 8 / 9151 103 0.6 
CABOG default 196 37.3 180.3 93.63 1 / 61k  135 56.7 189.0 93.56 1 / 65k 209 2.6 

 
Table 7. Assemblies for E. coli real short reads data (D4, 600×) 

 
k/Overlap Contigs  Scaffolds 

Time 

(min) 

Mem. 

(GB) #contigs 
N50 

(Kbp) 
Max. 

(Kbp) 
Cov. 
(%) 

Misass. 
(#/sumLen) 

 
#scaffolds 

N50 
(Kbp) 

Max. 
(Kbp) 

Cov. 
(%) 

Misass. 
(#/sumLen) 

PERGA O≥25 114 133.4 266.0 100.0 2 / 383  98 154.6 284.7 100.0 2 / 383 20 4.9 
IDBA-UD k=20-100 144 106.8 236.6 99.93 1 / 2105  107 148.5 284.4 99.98 0 / 0 31 2.0 
ABySS k=45 156 96.0 210.8 93.61 4 / 293k  141 113.4 236.4 91.45 5 / 372k 64 0.3 
Velvet k=45 215 82.8 177.8 95.25 11 / 212k  182 95.5 209.4 86.21 5 / 633k 33 5.1 
SGA O≥31 5497 16.2 73.1 98.69 42 / 4962  5299 17.2 73.1 99.11 44 / 5943 357 5.9 

  



extensions. Thus, PERGA can provide fewer but longer contigs 
than the others without producing erroneous contigs. 
When the number of reads in the dataset increases, the running 
times of all the other assemblers increase (Table 5 for data D2). 
However, the running time of PERGA does not increase 
significantly and is still the fastest assembler. The contigs and 
scaffolds produced by PERGA have the largest N50 and coverage 
with no mis-assemblies. Because of the increase in sequencing 
depth, IDBA-UD and Velvet performed better than on D2 with 
contig N50 increased from 112.6kbp and 108.1 kbp to 124.6kbp 
and 125.2 kbp respectively with less assembly errors. PERGA and 
IDBA-UD had the largest scaffold sizes (174.1 kbp and 173.9 kbp 
respectively), while the results of others assemblers were much 
shorter (only around 140kbp). Compared with other assemblers, 
SGA and CABOG produced shorter contigs and scaffolds with 
longer running time. The coverages of all assemblers on D1 and 
D2 are much the same and they do not differ much between 
contigs construction and scaffolds production. 
For the simulated 100x data set D3, since the sequencing depth is 
high, all assemblers generated similar numbers of contigs with 
similar coverages in both contigs and scaffolds except ABySS 
which dropped from 99.90% to 90.89% because of the mis-
assembled 4 scaffolds (206kbp). CABOG generated 1 mis-
assembled contig (61kbp) and 1 mis-assembled scaffold (65kbp), 
thus its genome coverage dropped to 93.5%. From the 
experiments on D1~D3, it can be observed that CABOG may be 
not suitable for high coverage data since its contigs (scaffolds) 
sizes decreased with the increasing coverage depth, and it can also 
seen that the overlap-based assemblers (SGA and CABOG) is not 
suitable for high coverage data. PERGA also was the fastest 
assembler and produced the most accurate results while others all 
produced several mis-assembled contigs (scaffolds). In all 
experiments on simulated data, PERGA did not produce any mis-
assembled contigs and scaffolds while the other assemblers mis-
assembled some reads in some datasets. 

3.5 Real data result 
We further used the downloaded E.coli dataset D4 with coverage 
~600x to highlight the performance of PERGA on high coverage 
data, and compared its performances with other assemblers. 
CABOG could not be run on D4 may be due to the high coverage 
depth, thus it was excluded from the comparison. Before 
assembling, paired-end reads data were corrected using Quake 
[30], and the results are shown in Table 7. 

The overall performance of all other assemblers dropped while 
the performance of PERGA still had similar performance in 
simulated data. It may suggest that the SVM model used by 
PERGA can capture the properties in real datasets. PERGA was 
the fastest assembler and generated the longest contigs (scaffolds) 
(133.4kbp and 154.6kbp) with the highest coverage (100%), while 
others assemblers had much lower N50 except scaffolds of IDBA-
UD (148.5kbp). Since PERGA generated very long and accurate 
contigs, the scaffolds produced by PERGA had the largest N50 
and highest coverage even though it did not connect many contigs 
in scaffolding. 

After scaffolding, ABySS and Velvet produced longer scaffolds 
with lower coverage, while PERGA and IDBA-UD did not have 
coverage difference between contigs and scaffolds as they 
produced accurate assemblies. ABySS and Velvet both 
had >200kbp mis-assembled contigs and >300kbp mis-assembled 

scaffolds, thus their contig coverage dropped dramatically from 
96% to 86%, and SGA generated accurate contigs and scaffolds, 
however, their N50 sizes are very small (16.2 kbp and 17.2 kbp), 
and it used more time than others. This shows that ABySS, Velvet 
and SGA might not be suitable for high coverage sequencing data. 
They can have good performance on low coverage data but might 
not be good on high coverage data. 

4. CONCLUSIONS 
In this article, we present PERGA, a novel de novo sequence 
reads assembler, which can generate large and accurate 
assemblies using the greedy-like prediction strategy to handle 
branches and errors to give much better extensions. By using look 
ahead technology to distinguish sequencing errors and repeats 
more accurately, PERGA makes use of read overlaps represented 
in the form of overlapping k-mers to deal with short repeats. 
Moreover, instead of using single-end reads to construct contigs, 
PERGA uses paired-end reads in the first step and gives different 
priority to different read overlap size thresholds ranging from 
Omax to Omin to resolve the gap and branch problem. Experiments 
showed that PERGA could generate very long and accurate 
contigs and scaffolds with fewer mis-assembly errors both for 
simulated reads data and real data sets for both low and high 
coverage datasets than the existing methods. 
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