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Abstract Orthogonal Variable Spreading Factor (OVSF) code assignment is a funda-
mental problem in Wideband Code-Division Multiple-Access (W-CDMA) systems,
which plays an important role in third generation mobile communications. In the
OVSF problem, codes must be assigned to incoming call requests with different data
rate requirements, in such a way that they are mutually orthogonal with respect to an
OVSF code tree. An OVSF code tree is a complete binary tree in which each node
represents a code associated with the combined bandwidths of its two children. To be
mutually orthogonal, each leaf-to-root path must contain at most one assigned code.
In this paper, we focus on the online version of the OVSF code assignment problem
and give a 10-competitive algorithm (where the cost is measured by the total number
of assignments and reassignments used). Our algorithm improves the previous O(h)-
competitive result, where h is the height of the code tree, and also another recent
constant-competitive result, where the competitive ratio is only constant under amor-
tized analysis and the constant is not determined. We also improve the lower bound
of the problem from 3/2 to 5/3.
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1 Introduction

Wireless communication based on Frequency Division Multiplexing (FDM) tech-
nology is widely used in the area of mobile computing today and the frequency or
channel assignment problem has been extensively studied for the cellular network
[1–3, 5, 9]. Wideband Code-Division Multiple-Access (W-CDMA) technology is one
of the main technologies widely-developed in recent years for the implementation
of third-generation (3G) cellular systems. We consider the well-studied problem of
Orthogonal Variable Spreading Factor (OVSF) code assignment in W-CDMA sys-
tems [6, 8, 10, 11, 13].

OVSF is an implementation of CDMA wherein, before each signal is transmitted,
the spectrum is spread according to a unique code, which is derived from an OVSF
code tree. An OVSF code tree is a complete binary tree. Users have requests for
different data rates, and the OVSF code tree accommodates these different requests
by assigning codes at different levels of the code tree, with the root being at the
highest level and representing the entire bandwidth of the wireless system. The code
at any node other than the root denotes the bandwidth half that of its parent in the
tree. For any legal assignment in the code tree, no two assigned codes lie on a single
path from the root to a leaf, i.e., any two assigned codes are mutually orthogonal.
The subset of nodes in the code tree, which forms a legal assignment, is called a code
assignment. A node x is said to be free if there are no assigned nodes in every root-to-
leaf path containing x, and thus making x an assigned node would still result in a legal
assignment. For convenience, we use the words “code” and “node” interchangeably.
Figure 1 shows a legal assignment of an OVSF code tree in which a, b, c, d , e, f and
g are assigned nodes. Note that h, i, j and k are the only free nodes in the assignment.

To illustrate the essence of the OVSF code assignment problem, consider the as-
signment in Fig. 1. Let Req(x) denote the request to which code x is assigned. Sup-
pose a level-0 code request arrives followed by a level-1 code request. If code i were
assigned to the first request, we would have to make a code reassignment before we
can assign code k to the second request (i.e., assign code h to Req(i) and thereby
freeing i). If, on the other hand, h were assigned to the first request, then we can
assign code k to the second request without any reassignment.

Since each reassignment requires processing overhead and may affect the quality
of communications, a natural idea is to design algorithms to minimize the number
of reassignments. Note that this problem will not be too difficult and can be solved

Fig. 1 Example of a legal assignment
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optimally by a greedy strategy if codes were never released (see [6]). However, when
codes can be released, the code tree can be fragmented and many reassignments might
be needed if a good assignment algorithm was not used.

In general, an algorithm for OVSF code assignment is expected to handle a se-
quence σ = (C1,C2, . . . ,Ck, . . .) of code operations over time, each operation Ck

being either to request a code at a particular level or to release an assigned code.
Note that, if the total bandwidth of free codes is less than the bandwidth required by
a code request, the new code request has to be withdrawn.

The OVSF code assignment problem is difficult, and the approach has often been
to produce heuristics [8, 10, 13], whose performance is measured by the approxima-
tion (or competitive) ratio, which compares the cost of the algorithm to the cost of
the optimal off-line scheme. Here, the cost is measured by the total number of as-
signments and reassignments made by the algorithm. The problem has been studied
extensively recently. We list below three variations of this problem; they all assume
that the code tree is of fixed height.

One-Step Off-line Code Assignment Given a code assignment A and a new level-
i code request r , find a code assignment A′, which satisfies the new request with
a minimal number of reassignments. For this variation, Minn and Siu [10] gave a
greedy algorithm, and Erlebach et al. [6] proved that this problem is NP-hard and
gave an O(h)-approximation algorithm, where h is the height of the OVSF code tree.

General Off-line Code Assignment Given a sequence σ of code operations, find
a sequence of code assignments and reassignments such that the total number of
reassignments is minimum, assuming the initial code tree is empty. This variation
was proved to be NP-hard by Tomamichel [12], who also gave an exponential-time
algorithm for this variation.

Online Code Assignment The operations C1,C2,C3, . . . in the sequence σ =
(C1,C2, . . . ,Ct , . . .) arrive through time. At any time t > 0, we only know about
the operations until t and have no information about any future operations Ct ′ with
t ′ > t . Again, the problem is to find a sequence of code assignments and reassign-
ments such that the total number of assignments and reassignments is minimum. For
this variation, Erlebach et al. [6] gave an O(h)-competitive algorithm, where h is
the height of the code tree. They also derived a lower bound of 3/2 on the competi-
tive ratio. With resource augmentation, which means the online algorithm is allowed
to use more bandwidth than the optimal scheme, a 4-competitive algorithm with a
double-sized code tree was given in [6]. Using 1/8 extra bandwidth (less resource
augmentation), Chin et al. [4] gave a 5-competitive algorithm. Recently, Forišek et
al. [7] gave an online algorithm whose competitive ratio is constant under amortized
analysis. In their paper, there is no estimate about the size of the constant and the
worst case can still be O(h).

In this paper, we focus on the online OVSF code assignment problem and aim
at improving the O(h)-competitive algorithm given in [6]. We note that the algo-
rithm forces the assigned codes in the OVSF code tree into a single fixed format,
and there are two worst-case format-respecting configurations which make the per-
formance of the algorithm poor, one which is bad (i.e. requires a reassignment at
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each level of the OVSF code tree) for a code request but good (i.e. constant reassign-
ments) for a code release and the other which is bad for a code release but good for
a code request. Interestingly, these two code configurations differ by only one code
assignment (but differ much in their structure), and so there exists a sequence of alter-
nating code requests and releases, each of which requires h code reassignments, and
hence O(h) for the competitive ratio. By introducing the idea of partially assigned
nodes, we are able to relax the format requirement and this enables us to obtain a
10-competitive algorithm, improving the previous O(h)-competitive result [6] and
the amortized O(1)-competitive result [7].

The rest of this paper is organized as follows. Sections 2 and 3 give the prelim-
inaries and the basic idea of our algorithm. Section 4 describes our 10-competitive
algorithm. Section 5 gives the correctness proof of the algorithm. A new lower bound
of the problem, improving the bound from 3/2 to 5/3, is presented in Sect. 6. We
give our conclusions in Sect. 7.

2 Preliminaries

Let T be an OVSF code tree with a legal assignment A. In our discussion, we assume
that T is ordered and nodes at a particular level are ordered from left to right. We say
that node u is dead if either it is assigned or at least one of its descendents is assigned.
We say that a level � is compact if any node at level � that is to the left of some dead
node at � is also dead. For example, in Fig. 1, nodes p and q are not dead and hence
level-0 is not compact. Nodes v, w, x, y and z are all dead and level-1 and level-2 are
compact. Note that by definition, level-3 and level-4 are also compact even though
they do not have any assigned node. We say that the assignment A is compact if all
levels of T are compact. The following lemma suggests that the assigned nodes in a
compact assignment are sorted; if we scan the OVSF code tree from left to right, the
levels of the assigned nodes are non-decreasing.

Lemma 1 Suppose that the legal assignment A is compact. Let u be an assigned
node at level i and v be an assigned node at level j where i < j . Then, the level-j
ancestor au of u must be to the left of v.

Proof Since A is legal, au cannot be v. If au is to the right of v, the dead node u

has some nodes to its left, namely the level-i descendents of v, that are not dead (see
Fig. 2). It follows that level-i, and hence A, is not compact; a contradiction. �

Intuitively, we should make the assignments compact in order to fully utilize the
bandwidth. There is a simple strategy to ensure compactness: To serve a level-� code
request r , we “append” it to the right-end of the list of dead nodes at �, or more pre-
cisely, we assign to r the node u that is immediately after the last dead node (i.e., the
rightmost dead node) at �. It is obvious that the resulting assignment is also compact.
However, it may not be legal; although u does not have any assigned descendent (be-
cause it is not dead before the update), it may have an assigned ancestor. To solve
the problem, we distinguish two kinds of levels. Consider any level �. Let u be the
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Fig. 2 Proof of Lemma 1

Fig. 3 Proof of Lemma 2

node immediately after the last dead node at � (if � does not have any dead node, let
u be the leftmost node at �).1 We say that � is rich if u is free, i.e., the node does not
have any ancestor or descendent that is assigned; otherwise, � is poor. For example,
in Fig. 3, level � is rich, and level � − 1 is poor. Note that a level may be poor even
if no nodes at � are assigned. It is easy to verify that if � is rich, then the resulting
assignment is still legal after assigning u to r . Suppose that � is poor. Then, u is not
free and it must have an ancestor v assigned to some request Req(v). After assigning
u to r , we need to reassign Req(v), i.e., freeing v followed by a code request Req(v),
to make sure the assignment is legal. Note that this may trigger other reassignments
of requests at higher levels.

The following algorithm describes how this simple approach serves a level-� re-
quest r . It makes use of two procedures AppendRich and AppendPoor, each of which
makes exactly one node assignment. Let u be the node immediately after the last
dead node at level � (if there is no dead node at �, then u is its leftmost node). Pro-
cedure AppendRich(�, r) is used when � is rich; it simply assigns u to request r .
Procedure AppendPoor(�, r) is for the case when � is poor. After assigning u to r ,
AppendPoor(�, r) frees the assigned ancestor a of u, and returns the request to which
a is assigned before it is freed. In the description of the algorithm, we add a subscript
to a request to indicate its level, e.g., the request rg is a level-g request.

1: while � is poor do
2: rg = AppendPoor(�, r); {rg is a level-g request.}
3: � = g; r = rg ;
4: end while
5: AppendRich(�, r);

1Note that we have ignored the case when all nodes at � are dead because in such case, there is no more
free bandwidth.
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Fig. 4 The lazy approach

3 Some Ideas for Improvement

Note that the simple algorithm given in Sect. 2 might make a large number of calls
to AppendPoor, and hence make a lot of (re)assignments, to serve a request. In the
section, we give the ideas on how to reduce the number of (re)assignments. Then, we
describe how to implement these ideas in Sect. 4.

The following lemma is the key for reducing the number of (re)assignments.

Lemma 2 Suppose � is poor. After executing AppendPoor(�, r), � becomes rich.

Proof As shown in Fig. 3, if the last dead node u at � is the left son of its parent p,
then � must be rich. It is because the right son v of p, which is immediately after
u, must be free; v is not dead (because u is the last dead node) and hence has no
assigned descendent, and u and v share the same set of ancestors and thus v does not
have any assigned ancestor. It follows that if � is poor, node u must be a right son.
After AppendPoor(�, r), the node after u, which is a left son, becomes the new last
dead node of �. As argued above, � is now rich. �

Note that if we call AppendPoor m times, then m levels will be changed from
poor to rich. This is good because the next time we serve any request on these rich
levels, we just need a simple assignment. The problem is that there might be no more
requests on these levels, and the effort is wasted. To solve the problem, we propose
a lazy approach. Here is the idea. Suppose that there is a level-� request r , and the
levels �, � + 1, . . . , k − 1 are all poor, and level k is rich. According to the simple
approach, we will call AppendPoor k − � times and then call AppendRich once. Our
lazy approach will not make these k − � calls for AppendPoor; instead, it jumps to
the last step, calling AppendPoor to assign the node u after the last dead node at
k − 1 to the level-� request r , followed by AppendRich for assigning a level-k node
to the request assigned to the immediate ancestor (parent) of u (so as to free u).2 (See
Fig. 4).

Later, if there is a request on some level g ∈ [�, k − 1], we will do the necessary
work that we have avoided previously in order to recover the correct free node at g

and assign it to the request. To summarize, the lazy approach also aims at maintaining

2We are generous here by assigning a level-(k − 1) node to a level-� request where k > �. If we insist that
a level-� node must be assigned to r , then we can actually assign a level-� descendent of u to r .
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compact assignments. However, there may be some nodes that are assigned to some
lower-level requests; we call these nodes partially assigned nodes. These partially
assigned nodes induce some structures called tanks of free nodes, or simply tanks,
which are intervals [�, k −1] of levels with the following properties: The levels �, �+
1, . . . , k − 2 are all poor and the assigned nodes at these levels are all fully assigned
(i.e., not partially assigned). For level k−1, its last dead node is a left son and partially
assigned to a level-� request, and the remaining assigned nodes are fully assigned.

To define tanks formally, we say that a level � is locally rich if the last dead node
at � is a left son of its parent. The following fact is easy to verify from the definition
and the proof of Lemma 2.

Fact 1 A locally rich level is a rich level. Suppose � is locally rich. Then after exe-
cuting AppendRich(�, r), � is no longer locally rich. If � is poor, then after executing
AppendPoor(�, r), � becomes locally rich.

Formally, a tank [b, t] represents the levels between b and t where all levels from
b to t − 1 are poor, level t is locally rich and the last dead node at level t (which, by
the definition of locally rich, must be a left son) is partially assigned to some request
on level b. We say that b is the bottom of the tank [b, t], and t is its top.

It is not difficult to implement the lazy approach in such a way that the number of
(re)assignments needed for serving a request can be reduced substantially. However,
to achieve a constant number of (re)assignments, we need to impose an extra struc-
tural property on tanks. Consider two tanks [bo, to] and [b1, t1]. Suppose that [bo, to]
is below [b1, t1], i.e, to < b1. We say that the two tanks are merge-able if

(i) all the levels to + 1, to + 2, . . . , b1 − 1 between [bo, to] and [b1, t1] are empty,
i.e., the levels do not have any assigned nodes, and

(ii) the last dead node at to is the leftmost level-to descendent of its level-b1 ancestor.

See Fig. 5b for an example. We find that merge-able tanks are bad for our approach.
For example, in Fig. 5a, there are three tanks that are merge-able. If the request at
node u is released, then node v is no longer dead. In order to preserve compactness,
we need to move the request at the partially assigned node w to v. Then, x is no

Fig. 5 Merge-able tanks
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longer dead, and we need to move the request at the partially assigned node y to x. In
general, if there is a large number of consecutive tanks that are merge-able, we may
need a large number of reassignments after a code release. To avoid such scenario,
our updating procedure will merge any two merge-able tanks as soon as they appear.
In other words, our algorithm keeps the following invariant:

(∗) There are no merge-able tanks in the assignment.

As can be seen in Fig. 5b, we can merge two merge-able tanks using two
(re)assignments, and the merging preserves the compactness of the assignment.

4 A Lazy Algorithm

In this section, we describe the algorithm LAZY, which implements the lazy approach
efficiently. To simplify the description, we regard a locally rich level � that does not
belong to any tank as a tank [�, �] itself. Again, in our description, we will add a
subscript to a request to indicate its level, e.g., the request rg is a level-g request. In
addition to AppendPoor and AppendRich, LAZY also makes use of the following
two procedures.

• FreeTail(�): The level � must not be empty (i.e., must contain some assigned
nodes.) The procedure frees the last assigned node u at � and returns the request to
which u is assigned.

• ReAssign(r, r ′): Here, r is a request in the assignment, and the request r ′ is not
in the assignment. Suppose that u is assigned to r . Then, the procedure frees u

from r , and then assigns u to r ′.

It is easy to see that ReAssign requires one node assignment while FreeTail
does not require any. We are now ready to describe LAZY. We first describe how it
serves a code request. Then, we explain how it releases a code. We assume that the
assignment is legal and compact before the update.

4.1 Serving a Level-� Request r�

We have three different cases to consider.

Case 1 � is poor and does not belong to any tank. If all levels above � are poor, we
report not enough bandwidth (and we will prove in Sect. 5 that this is true). Otherwise,
it can be verified that there must be levels above � that are either rich, or belong to
some tanks. Let h be the lowest level above � that either belongs to some tank, or is
rich. Note that if h does not belong to any tank, then h is rich but not locally rich
(otherwise, [h,h] itself is a tank). In such case, we simply call AppendRich(h, r�).
The case when h belongs to some tank is more complicated. In such case, h must
be the bottom of some tank [h, t]. By definition, the last assigned node at level t

is partially assigned to a level-h request rh. Roughly speaking, to serve r�, we first
recover the free node at h by re-assigning rh back to a node at level h. Then, we insert
r� to a level lower than h so that the (re)assignments can make use of the free node at
h and stop. We give below the pseudo-code.
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Fig. 6 The sequence of (re)assignments for Case 1

1: if all levels above � are poor then
2: return and report “Not enough bandwidth”;
3: end if
4: Let h be the lowest level above � that either belongs to some tank or is rich.
5: if h does not belong to any tank then
6: AppendRich(h, r�); {[�,h] becomes a tank.}
7: return;
8: end if
9: {The following code handles the case when h belongs to some tank and Fig. 6

shows graphically how the (re)assignments are done.}
10: Suppose that h belongs to the tank [h, t].
11: if h �= t then
12: rh = FreeTail(t);
13: rg = AppendPoor(h, rh);AppendRich(t, rg); {[g, t] becomes tank.}
14: end if
15: {At this point, h is not empty and is locally rich (Fact 1).}
16: Let k be the highest level below h that is not empty;
17: {If all levels below h are empty, let k = 0.}
18: If (k < �) then let k = �;
19: s = AppendPoor(k, r�); {s must be from h and [�, k] becomes tank.}
20: AppendRich(h, s);
21: {From Fact 1, h is not locally rich now and thus [h,h] is not a tank.}

To ensure Invariant (∗), we need to do some tank mergings. For the case when h

does not belong to any tank (lines 5–8), we need at most two tank-mergings, which
make at most 4 reassignments. For the case when h belongs to some tank (lines 10–
21), note that the additional tanks [�, k] and [g, t] may be created. As pointed out
in line 21, [h,h] is not a tank. Furthermore, there is no merge-able tank above [g, t]
(because (∗) ensures there is none above [h, t] before the update). Therefore, we only
need to merge tank below [�, k], which requires two extra (re)assignments. Thus, we
need at most 6 assignments in total to serve request r�. However, if we need to merge
[�, k] with a tank below, we can save the assignment used by AppendPoor(k, r�)

at line 19; r� will be reassigned during the merging. This reduces the number of
(re)assignments to 5.

Case 2 � is poor and belongs to some tank [b, t]. For this case, we insert r� to �.
The tank [b, t] may be broken into two tanks, one above, and one below �.
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Fig. 7 The sequence of (re)assignments for Case 2

1: rg = AppendPoor(�, r�); {� becomes locally rich.}
2: rb = FreeTail(t); AppendRich(t, rg); {[g, t] becomes tank.}
3: {We have served r� successfully, but there is no node assigned to rb .}
4: if b = � then
5: AppendRich(�, rb); {Now, � is not locally rich.}
6: else
7: Let k be the highest level below � that is not empty.
8: {If all levels below h are empty, let k = 0.}
9: If (k < b) then let k = b;

10: s = AppendPoor(k, rb); {s must be from � and [b, k] becomes tank.}
11: AppendRich(�, s); {Now, � is not locally rich.}
12: end if

Figure 7 shows the sequence of (re)assignments for this case. Note that the total
number of (re)assignments made is at most 4. Since � is not locally rich, [�, �] is not
a tank. As ensured by (∗), there is no merge-able tank above t or below b before the
update, and thus the newly created tanks [b, k] and [g, t] do not need any merging.

Case 3 � is rich. For this case, we do the following.
1: if � does not belong to any tank then
2: {The last dead node at � must be a right son.}
3: AppendRich(�, r�);
4: {� becomes a tank and may need some tank mergings.}
5: else
6: {Since � is rich, it is the top of some tank [b, �]. See Fig. 8.}
7: if b = � then
8: AppendRich(�, r�);
9: else

10: rb = FreeTail(�); AppendRich(�, r�); {� is still locally rich.}
11: Let k be the highest level below � that is not empty;
12: If (k < b) then let k = b;
13: s = AppendPoor(k, rb); {s must be from � and [b, k] becomes tank.}
14: AppendRich(�, s); {Now, � is not locally rich.}
15: end if
16: end if

It can be verified that after the possible merging of tanks, the total number of
(re)assignments made is at most 5.
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Fig. 8 The sequence of (re)assignments for Case 3

Fig. 9 The sequence of (re)assignments for release

4.2 Release of a Level-� Node Assigned to Request r

We first consider the case when � is not in any tank. Then, � is not locally rich;
otherwise, [�, �] itself is a tank. For the operation of releasing r , we do the follow-
ing:

1: r� = FreeTail(�); {[�, �] becomes a tank.}
2: if r �= r� then ReAssign(r, r�);

From the fact that � is not locally rich before the update, it can be verified
that the resulting assignment is still compact. Together with the two possible tank
mergings (there may be tanks above or below [�, �]), the release needs at most 5
(re)assignments.

We now consider the case when � is in some tank [b, t]. To release r , we do the
following (see Fig. 9):

1: rb = FreeTail(t);
2: if b = � then
3: if r �= rb then ReAssign(r, rb);
4: else
5: Let k be the highest level below � that is not empty;
6: If (k < b) then let k = b;
7: s = AppendPoor(k, rb); {s must be from �, and [b, k] becomes tank.}
8: if r �= s then ReAssign(r, s);
9: end if
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Note that after the execution, the assignment may not be compact; we have freed
the last assigned node at level t and did not reassign the node to any request. This
may create some holes (i.e., free nodes) between dead nodes at some levels above t .
In such case, we need to fill up the holes as follows. Let z be the lowest level above t

that is not empty, and vhole be the free node, if any, created at level z after the above
release operation (see Fig. 9). Note that by (∗), there is no merge-able tank above
[b, t]; this implies z is not in any tank, and it is not locally rich. The following two
steps will restore the compactness of the assignment:

1: rz = FreeTail(z); {z is now locally rich.}
2: Assign vhole to rz.

It is important to note that freeing the last assigned node u at level z will not create
any problem; since z is not locally rich, u must be the right son of its parent p. After
freeing u and assigning vhole to rz, p is still dead because its left son is dead. We can
argue that we use at most 5 (re)assignments as follows. Since [b, t] is a tank, there
is no tank above or below it. Therefore, if there is no hole created, 2 (re)assignments
suffice. If the hole vhole is created, we can see in Fig. 9 that three (re)assignments are
needed, and since [z, z] becomes a tank, we may need two additional reassignments
to merge it with the tank above level z.

The following theorem summarizes our discussion in this section.

Theorem 1 Let A be a compact assignment satisfying (∗). LAZY serves any code re-
quest or code release for A using at most 5 (re)assignments, and the resulting assign-
ment is still legal, compact and satisfies (∗). Furthermore, LAZY is 10-competitive.

Proof We have already verified in our description of LAZY that the algorithm uses
at most 5 (re)assignments for a code request or a code release. We can argue that
LAZY is 10-competitive as follows. Suppose that there are m1 code requests and
m2 code releases. Obviously, m2 ≤ m1. To serve these requests and releases, LAZY
makes at most 5m1 + 5m2 ≤ 10m1 (re)assignments. Note that an optimal algorithm
has to make at least m1 assignments for the m1 code requests. It follows that LAZY
is 10-competitive.

To see that the assignments maintained by LAZY are legal, note that except for the
case when we assign a request to a hole (which we have argued in Sect. 4.2 that the
resulting assignment is still compact), LAZY only uses the procedures AppendRich
and AppendPoor to assign a node to a request. It uses AppendRich for a rich level, in
which the node after the last dead node must be free. Since AppendRich assigns this
free node to the request, the updated assignment is still legal. LAZY uses AppendPoor
for a poor level, in which the node after the last dead node has one assigned ances-
tor a. Since AppendPoor would eventually release the request r at a, the assignment
is still legal after executing AppendPoor (and LAZY will keep using AppendRich
and AppendPoor to find a new node for r). Furthermore, the resulting assignment is
compact because LAZY always appends a request after the last dead node of a level,
and whenever we free a node, we will immediately assign it (or its ancestor) to some
other request. It also satisfies (∗) because we do all the necessary tank mergings after
each operation. �
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5 LAZY Fully Utilizes the Bandwidth

In this section, we prove that LAZY fully utilizes the bandwidth. More precisely,
we prove that if LAZY cannot find an assignment to satisfy all the requests, then no
assignment can satisfy these requests. Our analysis needs the following notion of leaf
capturing.

A node that is fully assigned captures all of its leaf descendents. A node that is
partially assigned to a level-� request captures its 2� leftmost leaf descendents.

For any node u, define Free(u) to be the set of leaf descendents of u that are not
captured. Intuitively, for the root γ , Free(γ ) is the remaining bandwidth not used by
the current assignment. For any set X of nodes, define Free(X) = ⋃

u∈X Free(u) and
F(X) = |Free(X)|. It is obvious that for a fixed set L of code requests, different legal
assignments for L have the same value of F({γ }). Recall that the leaves are at level 0,
and the root is at the highest level.

Lemma 3 Consider any compact assignment A. Suppose that the levels p,p +
1, . . . , q are all poor. Let w be a node at level p such that (i) w is not dead (i.e.,
w is not assigned, and none of its descendents are assigned), and (ii) its level-(q + 1)

ancestor is dead. Then F({w}) = 0.

Proof For any � ≥ p, let a� denote the level-� ancestor of w. Let z be the level such
that ap = w,ap+1, . . . , az are not dead, and az+1 is dead. Obviously z ≤ q because
we assume that aq+1 is dead. It follows that level z is poor. Let a′

z be the sibling of
az. We consider two cases.

• a′
z is to the right az: a′

z is not dead because az is not dead and A is compact.
• a′

z is to the left az: a′
z cannot be dead either. Otherwise, it is the last dead node of

level z (the following node az is not dead), and together with the fact that a′
z is the

left son of its parent, level z is locally rich; a contradiction.

Hence, both children a′
z and az of az+1 are not dead. But az+1 is dead. It follows that

az+1 is assigned, and thus F({az+1}), and hence F({w}), equals zero. �

Lemma 4 Let A be an assignment maintained by LAZY. For any level �, let D� be
the set of dead nodes at level �. Then, F(D�) < 2�.

Proof The lemma is obviously true for level 0. Suppose that it is true for all lev-
els below �, and we consider the level �. Let u1, u2, . . . , uk be the sequence of
dead nodes at � where uk is the last dead node. First, we assume that there is no
partially assigned node at �. Let ui be the last node that is not assigned. Then,
F(D�) = F({u1, u2, . . . ui}) + F({ui+1, . . . , uk}). Since ui is the last node not as-
signed, ui+1, . . . , uk are all assigned and the second term F({ui+1, . . . , uk}) is zero.
To estimate the first term, we consider the last dead node w at level �−1. Note that w

cannot be a child of any node to the right of ui because all nodes to the right of ui are
either assigned or not dead. On the other hand, it cannot be a child of u1, . . . , ui−1;
otherwise the two sons of ui are not dead because w is the last dead node at � − 1,
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and together with the fact that ui is not assigned, we conclude that ui is not dead;
a contradiction. Therefore, w must be a child of ui . If w is the right child of ui , then
F({u1, . . . , ui}) = F(D�−1); otherwise F({u1, . . . , ui}) = F(D�−1)+2�−1. Together
with the induction hypothesis that F(D�−1) < 2�−1, the lemma follows.

We now consider that case when there is a partially assigned node at �. Ac-
cording to LAZY, the last dead node uk is the only partially assigned node at �.
Suppose that it is partially assigned to a level-g request. Then, [g, �] is a tank and
the levels g,g + 1, . . . , � − 1 are all poor. Let w1,w2, . . . ,wm be the sequence of
level-g descendents of u1, u2, . . . , uk−1. Then, F(D�) = F(u1, . . . , uk−1)+F(uk) =
F(w1, . . . ,wm) + F(uk) = F(w1, . . . ,wi) + F(wi+1, . . . ,wm) + F(uk) where wi

is the last dead node at level g. By the induction hypothesis, we conclude that
F(Dg) = F({w1, . . . ,wi}) < 2g , and by the definition of captured leaves for partially
assigned node, we have F(uk) = 2� − 2g . Note that for any w ∈ {wi+1, . . . ,wm}, w

is not dead, and its level-� ancestor is dead, and by Lemma 3, F({wi+1, . . . ,wm}) =
F({wi+1}) + · · · + F({wm}) = 0. The lemma follows. �

Theorem 2 Suppose that LAZY reports “not enough bandwidth” when serving a
level-� request r . Let L be the set of requests in the current assignment. Then, there
is no assignment that can satisfy all the requests in L ∪ {r}.

Proof LAZY reports “not enough bandwidth” because level �, as well as all levels
above � are poor. Let u1, u2, . . . , ui be the sequence of dead nodes, and ui+1, . . . , um

be the remaining nodes, at �. Then there are F({u1, . . . , ui}) + F({ui+1, . . . , um})
leaves that are not captured. By Lemma 4, we conclude that F({u1, . . . , ui}) < 2�.
For F({ui+1, . . . , um}), let h be the level of the root. Since (i) levels �, �+1, . . . , h−1
are poor, (ii) the single node at level h is dead, and (iii) the nodes ui+1, . . . , um are
not dead, we can apply Lemma 3 and conclude that F({ui+1, . . . , um}) = 0. It follows
that F({u1, u2 . . . , um} < 2�. Since assigning any node to r needs to capture 2� leaves,
there is no assignment that can satisfy all requests L ∪ {r}. �

6 Lower Bound

In [6], it is shown that the competitive ratio of any online algorithm for the code as-
signment problem must be at least 1.5. The following theorem shows that this bound
can be improved to 5/3 by modifying the main idea given in [6].

Theorem 3 No deterministic algorithm can solve the online code assignment prob-
lem better than 5/3-competitive.

Proof Consider a code tree with N leaves (leaf-codes) and a sequence of level-0
code requests with each request assigned to each leaf code one by one. As soon
as both right and left subtrees of the root have at least N/4 assigned leaf codes,
the adversary will stop issuing any more level-0 code requests. Thus there will be
R ≤ 3N/4 level-0 code requests in the sequence. Then the adversary will repeatedly
release those requests in the subtree with more than N/4 assigned leaf codes until
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Fig. 10 The recursive
construction for deriving the
lower bound

both subtrees have exactly N/4 assigned leaf codes. The adversary will then make a
level-((logN) − 1) request which will cause at least N/4 code reassignments, which
end up with either the right or the left subtree with full assigned leaf codes. The
adversary will then proceed recursively with the subtree with full assigned leaf codes
by releasing its every other node. This process will be repeated log2 N − 1 times with
a total of N/2 − 1 reassignments (See Fig. 10).

On the other hand, the optimal algorithm can assign the leaf codes in such a way
that no extra reassignments will be needed. Thus the optimal algorithm will make
R + log2 N − 1 assignments, whereas the online algorithm will take a total of R +
N/4 + N/8 + · · · + 1 + log2 N − 1 = R + N/2 + log2 N − 2 (re)assignments. Since
R ≤ 3N/4, the competitive ratio

R + N/2 + log2 N − 2

R + log2 N − 1

will be no less than 5/3 (asymptotically). �

7 Conclusions

We have given in this paper the first constant competitive (worst case) algorithm for
the online OVSF code assignment problem; it uses at most 5 (re)assignments to serve
a code request or to code release. As mentioned in Sect. 1, our algorithm is based on
the observation that the fixed format enforced by the O(h)-competitive algorithm of
Erlebach et al. [6] is too stringent; it results two worst-case format-respecting config-
urations in its assignments, one is good for a code request and bad for a code release
and the other is good for a code release and bad for a code request. By introducing
the idea of partially assigned nodes, we are able to relax this format requirement such
that the assignments maintained by our algorithm has only one worst-case configu-
ration. This makes our algorithm much more competitive. However, we note that our
format still requires the assignments to satisfy some global structural properties. To
make further improvement, we believe that a promising direction is to find instead
some local structural properties of an assignment that can still guarantee full utiliza-
tion of the bandwidth. It is likely that fewer (re)assignments are needed to preserve
local properties and hence we may have a more competitive algorithm.

Acknowledgements The authors thank M.Y. Chan for her efforts in making this paper more readable,
and the reviewers for their very helpful comments.
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