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ABSTRACT

Motivation: Finding common patterns, motifs, from a set of promoter

regions of coregulated genes is an important problem in molecular

biology. Most existing motif-finding algorithms consider a set of

sequences bound by the transcription factor as the only input.

However, we can get better results by considering sequences that

are not bound by the transcription factor as an additional input.

Results:First, insteadofusing thesimplehyper-geometricanalysis,we

propose tocalculate the likelihoodbasedonamorepreciseprobabilistic

analysis which considers motif length, sequence length and number of

binding sites as input parameters for testing whether motif is found.

Second, we adopt an heuristic algorithm bases on our analysis to

find motifs. For the simulated and real datasets, our algorithm ALSE

compares favorably against common motif-finding programs such as

SeedSearch and MEME in all cases and performs very well, especially

when each input sequence contains more than one binding site.

Availability: ALSE is available for download at the homepage

http://alse.cs.hku.hk

Contact: cmleung2@cs.hku.hk

1 INTRODUCTION

Gene expression is the process whereby a gene, coding region in

the genome, is decoded to produce protein. This process has two

main steps, transcription and translation. During the transcription

process, one or more molecules called transcription factors will bind

to several special regions, called binding sites, in the promoter

regions of the genes. Then the gene will be decoded to form a

chain called mRNA. During the translation process, the mRNA

will be decoded to produce the correlated protein.

Understanding the regulatory mechanisms that control gene

expression is an important problem in molecular biology. A sub-

problem is to locate the set of binding sites in the promoter regions

of the genes. Although a transcription factor can bind to several-

binding sites, these binding sites should have similar pattern and

length. The motif-finding problem is to find the binding sites and the

common patterns, motifs, of these sites from a set of sequences

suspected to be bound by some transcription factors (strong-signal

sequences).

Different models have been developed to solve this problem.

Bulher and Tompa (2002), Chin and Leung (2006, 2005a, b),

Leung and Chin (2005a), Li et al. (2002) and Pevzner and Sze

(2000) use a string to represent a motif. They assume each strong-

signal sequence contains at least one substring that is similar to the

motif in terms of Hamming distance or number of substitutions.

Bailey and Elkan (1994, 1995), Leung and Chin (2005b), Eskin

(2004), Hughes et al. (2000), Lawrence et al. (1993) and Liu et al.
(1995) assume the strong-signal sequences are constructed accord-

ing to a background occurrence probability of the nucleotides in

non-binding regions with implanted substrings generated according

to a probability matrix that represents the motif. All these models

have a common weakness that only strong-signal sequences are

used as input. As these models cannot confirm whether those

discovered patterns also occur in other sequences which are not

supposed to contain any binding sites, these models fail to find the

correct motifs.

Helden et al. (1998), Jensen and Knudsen (2000), Sinha (2002)

and Leung and Chin (2005c) treat those sequences that are ‘not’

bound by the transcription factor (weak-signal sequences) as addi-

tional input. Since the weak-signal sequences are not bound by the

transcription factor, they should not contain many patterns similar to

those binding sites. Motifs are those patterns that occur frequently in

strong-signal sequences but rarely in weak-signal sequences. These

algorithms discover motif candidates from the strong-signal seq-

uences and perform a post-process to filter out those candidates exist

frequently in the weak-signal sequences. Barash et al. (2001) and
Segal et al. (2002) discovered the motifs directly from the strong-

signal and weak-signal sequences. Barash et al. (2001), based on

hyper-geometric analysis on two sets of input sequences, derive the

probability that the set with strong-signal sequences has proportion-

ally more sequences with binding sites than the other set with weak-

signal sequences. This probability is used as the ‘testing function’

whether the discovered motif is correct. When this probability is

small, it is plausible that this difference in the numbers of sequences

with binding sites in these two sets is not an artifact and hidden

motif can be found. Segal et al. (2002) use a Bayesian network to

model the relationship among the DNA sequences (including both

strong-signal and weak-signal sequences), transcription factors and

gene expression levels, and to find a motif which can best-fit the

experimental results. However, both Barash et al. (2001) and Segal

et al. (2002) assume each sequence has at most one binding site.

Without considering the fact that a motif can occur in a sequence

more than once, it may fail to find the hidden motif even when the

number of binding sites is sufficiently large but the number of

strong-signal sequences containing the motif is small. Note that

even if each sequence contains at most one binding site, the testing

function based on hyper-geometric analysis has made some assump-

tions that may affect the accuracy of the algorithm, e.g. the length of

the motif, the length of the sequences and the number of binding

sites are not considered in their testing function.

In this article, we assume that a motif is represented by a proba-

bility matrix and each sequence can have more than one binding�To whom correspondence should be addressed.
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site. Given a predicted motif matrix, we calculate the likelihood

of this matrix being the hidden motif. If this likelihood is large, the

predicted motif should be biologically significant with respect to the

input sequences. Since our new testing function is more precise and

can handle sequences with more than one binding site, our algorithm

ALSE (stands for ALl SEquences) based on the new model and

testing function outperforms the popular algorithm MEME (Bailey

and Elkan, 1994) which uses only strong-signal sequences as input

when a set of weak-signal sequences is available. It also works

better than SeedSearch (Barash et al., 2001) in finding motif in

sequences especially those with multiple binding sites.

This article is organized as follows. We describe the shortcom-

ings of the hyper-geometric analysis in Section 2. In Section 3, we

explain our model and how to estimate the likelihood of a matrix

being the hidden motif. An algorithm ALSE to find the motif is

introduced in Section 4. Experimental results of the algorithm on

real data and simulated data are described in Section 5, followed by

a discussion in Section 6.

2 HYPER-GEOMETRIC MODEL AND ITS
SHORT-COMING

2.1 Hyper-geometric model

In Barash et al. (2001), a 4 · w probability matrix M is used to

represent a motif of length w, where M(c, k) represents the occur-

rence probability of nucleotide c in the k-th position of a binding

site. The log likelihood of a length-w string s generated from a

probability matrix M is

scoreðs‚MÞ ¼ log
Yw
i¼1

Mðs½i�‚ iÞ ð1Þ

where s[i] is the i-th nucleotide of sequence s. A sequence is

predicted as containing binding site of motif matrix M if it has a

substring s with score(s, M) larger than some threshold a.

Barash et al. (2001) use the hyper-geometric analysis to deter-

mine whether a matrix M is likely to be the hidden matrix with the

assumption that each sequence contains at most one binding site.

With a given matrix M and threshold a, assume that there exist t
sequences with binding sites in set T and f sequences with binding

sites in set F. They then consider the scenario of setting a threshold

for a random matrix such that there are in total t + f sequences with
binding sites in j T j + jF j random sequences altogether. Under this

scenario, they further calculate the probability that t or more

sequences with binding sites are in set T.

p-value ¼
Xtþf

i¼t

�
T
i

��
F

tþ f � i

�
�
T þ F
tþ f

� ð2Þ

If this probability (p-value) is small, matrix M is likely to be the

hidden matrix for the sets of sequences, T and F. Thus, they want to
find a matrix M and a threshold a to minimize the p-value.

2.2 Shortcomings of hyper-geometric model

Although this is a simple and reasonable way to test whether a

hidden matrix is found, this approach has three shortcomings,

whereas the first is about multiple binding sites while the other

two are about the appropriateness of hyper-geometric analysis

even when each sequence contains at most one binding site.

First, the hyper-geometric analysis [Equation (2)] might not be

easily extensible to deal with sequences with multiple binding

sites. One might intuitively model the probability of multiple bind-

ing sites in a sequence by the probability of placing t + f balls
(representing the total number of binding sites in the sequences)

in j T j + jF j urns with the assumption that each urn might take

more than one ball. However, this model has over-simplified the

situation by assuming that the probability of placing a ball into an

urn is always the same, no matter whether the urn is empty or not.

In the actual situation, the probability of a sequence taking up one

more binding site is different when the sequence has different num-

bers of binding sites. This probability should be related to the length

of the motif and the length of the sequences. Since the length of the

motif and the length of the sequences are not considered in the

hyper-geometric analysis, it is unlikely that it can be extended to

deal with sequences with multiple binding sites easily.

Second, two matrices with the same p-value does not mean that

these two motifs have the same probability to be the hidden motif.

For example, assume T and F each containing 15 sequences, the

probabilities (p-values) for the outcomes (t, f) ¼ (5, 5) and (t, f) ¼
(10,10) are the same according to the hyper-geometric analysis.

However, the probabilities that there exists a threshold for a random

matrix such that there are 10 or 20 sequences with binding sites are

different. In fact, the probability of having 10 sequences with bind-

ing sites is smaller than that for 20 sequences. Thus the probability

for the outcome (t, f) ¼ (5, 5) should be smaller and the correspon-

ding matrix M found is more likely to be the hidden matrix.

Third, the hyper-geometric approach [Equation (2)] only consi-

ders the probability (p-value) that there are t or more sequences

with binding sites in set T and the total number of sequences with

binding sites is ‘exactly’ t + f. However other cases when the total

number of sequences with binding sites is not t + f are not consi-

dered. Equation (2) is only valid if we can always find the threshold

such that there are exactly t + f sequences with binding sites with

respect to a random matrix. Since it is not always possible to find

such a threshold, the probabilities of such cases, when the total

number of sequences with binding sites is not t + f, have not

been considered in the analysis.

In order to overcome these shortcomings, we introduce a new

testing function which is the likelihood of the matrix M being

the hidden motif. Instead of finding the matrix with the smallest

p-value, we find the matrix with the largest likelihood.

3 SYSTEM AND METHODS

3.1 Calculating likelihood

In this section, we will describe how to calculate the (relative) likelihood

L(M jT^F) of a matrix M being the hidden matrix. Similar to Bailey and

Elkan (1994, 1995), Barash et al. (2001), Eskin (2004), Hughes et al. (2000),

Leung and Chin (2005b), Lawrence et al. (1993) and Liu et al. (1995), we use

a 4 · w probability matrix to represent the motif. Given a threshold a, a

length-l substring s in the input sequences T and F is predicted as a binding

site ofM if score(s,M) � a. We assume both the strong-signal sequences T

and weak-signal sequences F are generated independently according to some

background probability B ¼ {pA, pC, pG, pT}, pA + pC + pG + pT ¼ 1. Let a*

be the hidden threshold, we assume there is atleast one substring s in T with

score(s, M*) ¼ a*. Since sequences in T should contain relatively more

binding sites of the hidden matrix M* than sequences in F, we assume

H.C.M.Leung and F.Y.L.Chin
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dt > 0 substrings with score(s, M*)�a* are planted in random positions

without overlapping in the sequences in T and df > 0 substrings with score(s,

M*) � a* are removed from the sequences in F.

Given t* ¼ the number of binding sites ofM* in T with respect to a*, this

means that there were xt ¼ t* � dt binding sites of M* in T before the dt
binding sites were planted. Given t binding sites in T, we approximate,

through the conditional probability P(T j M ^ a) that the set of sequences

T are generated by the hidden matrix M with the hidden threshold a, the

number of planted binding sites in T, as follows:

PðT jM ^ aÞ / Pðt� ¼ t jM� ¼ M ^ a� ¼ aÞ

¼
Xt

d0¼1

Pðt� ¼ t ^ dt ¼ d0 jM� ¼ M ^ a� ¼ aÞ

¼
Xt

d0¼1

Pðxt ¼ t � d0 ^ dt ¼ d0 jM� ¼ M ^ a� ¼ aÞ

¼
Xt

d0¼1

ðPðxt ¼ t � d0 j dt ¼ d0 ^M� ¼ M ^ a� ¼ aÞ

Pðdt ¼ d0 jM� ¼ M ^ a� ¼ aÞÞ

Assuming P(dt ¼ d0 jM* ¼ M ^ a* ¼ a) ¼ P(dt ¼ d0) is uniformly

distributed, we have

PðT jM ^ aÞ /
Xt�1

d0¼0

Pðxt ¼ d
0 jM� ¼ M ^ a� ¼ aÞ: ð3Þ

Similarity, let f � be the number of binding sites of M� in F with respect

to a�, i.e. there were xf¼ f � + df binding sites ofM
� in F before removing the

df > 0 binding sites, we have

PðF jM ^ aÞ /
Xm jF j

d
00¼fþ1

Pðxf ¼ d
00 jM� ¼ M ^ a� ¼ aÞ‚ ð4Þ

where m ¼ bn/wc is the maximum number of non-overlapping binding sites

in a length-n sequence.

Assuming that the probability that a threshold a being picked as the

hidden threshold is independent of the hidden matrix M and is uniformly

distributed, we can calculate the (relative) likelihood of a matrixM being the

hidden motif as follows.

LðM j T ^ FÞ ¼ Pðt� ¼ t ^ f � ¼ f jM� ¼ MÞ
/

X
a

Pðt� ¼ t ^ f � ¼ f jM� ¼ M ^ a� ¼ aÞ ·

Pða� ¼ a jM� ¼ MÞ
/

X
a

X
0�d

0 �t�1‚

fþ1�d
00 �m jF j

ðPðxt ¼ d
0 jM� ¼ M ^ a� ¼ aÞ ·

Pðxf ¼ d
00 jM� ¼ M ^ a� ¼ aÞ:

ð5Þ

Therefore, the likelihood of a matrix being the hidden matrix increases

with the number of binding sites in T and decreases with the number of

binding sites in F. We will describe how to calculate P(xt¼ t�d0 jM*¼M ^
a* ¼ a) and P(xf ¼ f + d00 jM* ¼ M ^ a* ¼ a) in the following section.

3.2 Probability of having xt binding sites

Although there are infinite number of thresholds, since there are only 4w

length-w strings, there are at most 4w possible thresholds a* that satisfy the

requirement that there is at least one substring in T with score(s,M*) ¼ a*.

We sort the 4w threshold values in decreasing order and denote au as the u-th
threshold. For a length-w string s generated randomly with equal occurrence

probability of each nucleotide, the probability that score(s, M) � au is

pu ¼ u/4w.

Given a random length-n sequence s, we calculate the probability

Pb(u, v, {ki}) that there are exactly b non-overlapping length-w binding

sites at s[ki � w + 1 � � � ki], i ¼ 1, � � � , b (ki is the ending position of

the i-th binding site in s) with respect to matrix M and any threshold a,

au � a � av where v � u.
Consider a length-w string s, it is a binding site for any threshold a

in [au, av] if score(s, Mr) � av and it is not a binding site if score(s,

Mr) < au. Assume the probabilities of the score of each substring at different

positions in s are all independent and the probability of a substring is not a

binding site is 1 � pu. Note that the following calculation is only an approx-

imation because the scores of two overlapping substrings are not indepen-

dent. Depending on the position of the last binding site s[kb � w + 1 � � � kb],
the probability Pb(u, v, {ki}) of a random sequence s containing exactly b

non-overlapping binding sites at positions {k1,� � �,kb} with respect to any

threshold a in [au, av] can be calculated as follows.

Case I: kb > n� w, when the position of the last binding site is close to the
end of the sequence, it is impossible to have a binding site after kb.

Pbðu‚v‚fkigÞ ¼ ð1� puÞk1 �wpv � � � ð1� puÞkb � kb� 1 �wpv

¼ ð1� puÞkb � bwpbv:

Case II: kb � n � w when the substring s[kb + 1� � �n] is longer than the

motif length w

Pbðu‚v‚fkigÞ ¼ð1� puÞk1 �wpv � � � ð1� puÞkb � kb� 1 �wpv

· ð1� puÞn� kb �wþ1

¼ð1� puÞn�ðbþ1Þwþ1pbv :

Note that this probability does not depend on the positions of the binding

sites except the ending position of the last binding site kb.

Pbðu‚v‚fkigÞ ¼
ð1� puÞkb � bwpbv if kb > n � w

ð1� puÞn�ðbþ1Þwþ1pbv if kb � n � w:

(

By considering all the possible positions for the binding sites, we can cal-

culate the probability PB(u, v, b) that a length-n sequence contains exactly b
binding sites with respect to a particular matrix M and any threshold a in

[au, av].

PBðu‚v‚bÞ ¼
X

all possible fkig
Pbðu‚v‚fkigÞ

¼
Xn�w� 1

kb¼bw

��
kb � bwþ b � 1

b � 1

�
ð1� puÞn�ðbþ1Þwþ1pbv

�

þ
Xn

kb¼n�w

��
kb � bwþ b � 1

b � 1

�
ð1� puÞkb � bwpbv

�
:

Given X random length-n sequences, the following equation gives the proba-

bility PX,x(u, v) that there are exactly x binding sites in the X sequences with

respect to a particular matrix M and any threshold a in [au, av].

PX‚ xðu‚vÞ ¼
X

all possible fabg s:t:P
ab¼X and

P
bab¼x

X!Q
b ab!

·
Y
b

PBðu‚v‚bÞab ‚

where ab is the number of sequences with exactly b binding sites.

The probability that, using au as the threshold, T has exactly xt binding

sites of matrix M before planting any binding site is

P j T j ‚ xt ðu‚uÞ � P j T j ‚ xt ðu‚u � 1Þ. We have to minus P j T j ‚ xt ðu‚u � 1Þ
because we assume there is at least one substring s in T with score

(s, M) ¼ au. Similarly, the probability that, using au as thethreshold, F

has exactly xf binding sites of matrix M before removing any binding site is

ALSE
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P jF j ‚ xf ðu‚uÞ. Substituting these two probabilities in Equation (5), we have

LðM jT^FÞ/
X4w
u¼1

X
0�d0�t�1‚

fþ1�d
00 �mj f j

ððPjT j‚d0;ðu‚uÞ � P jT j‚d0ðu‚u� 1ÞÞ
PjFj‚d00 ðu‚uÞÞ:

ð6Þ

Thus the matrixM with the largest likelihood L(M j T ^ F) is likely to be the
hidden motif.

3.3 Interpretation of the testing function

Figures 1–3 show the values of L(M j T ^ F) calculated using Equation (6)

for different sequence length n when w ¼ 7, j T j ¼ 20 and jF j ¼ 50. As

shown in the figures, the likelihood of M being the hidden matrix increases

with t, the number of binding sites in T, and decreases with f, the number of

binidng sites in F. Moreover, when the sequence length n increases, the

number of length-w* substrings in the input sequences increases, so as the

expected number of binding sites of M*. Therefore, for a fixed t, i.e. the
number of binding sites in T, the likelihood L(M jT^F) decreases with the

increment of the sequence length n. In the extreme case when n tends to

infinity, the number of binding sites of M* in T tends to infinity and the

likelihood of a matrix with fixed number of binding sites approaches zero.

4 ALGORITHM

We use an heuristic algorithm called ALSE (stands for ALl

SEquences) to find the motif based on our model. ALSE contains

two main parts. The first part is to find a set of probability matrices

M with large L(M j T^F) as seeds. The second part is the heuristic

iterative step to refine these seed matrices to search for the hidden

motif. We will first discuss the second part, the refining steps in

Section 4.1 and then the method of finding seeds in Section 4.2.

4.1 Refining candidate matrix

Given a probability matrix M, an heuristic iterative procedure is

applied to refine it to another matrix M0 with larger L(M j T^F).
Algorithm ALSE first calculates the probability of each substring in

set T being a binding site. Based on these probabilities, matrix M is

refined toM0 such that those binding sites according toM will yield

a higher score with respect toM0. Although this refinement increases

the value of L(M j T^F) in practice, there is no guarantee that

L(M j T^F) will increase in each step because of the effect of the

sequences in F. By applying a similar approach as simulated anneal-

ing, we perform the above refinement even L(M j T^F) may

decrease. However, after the first few refinements (five refinements

in our experiments),M is refined toM0 if and only ifM0 has a larger
L(M j T^F), otherwise, the refinement will stop.

Algorithm ALSE can be described as follows:

Step 1: For each length-w substring s in T, calculate the proba-

bility score(s,M) that the substring s is a binding site of matrix M.

Step 2: Align these substrings and calculate a refined matrixM0 as
follows

M
0 ðc‚kÞ ¼

P
s js½k�¼c scoreðs‚MÞP

s scoreðs‚MÞ ð7Þ

These two steps will be repeated until L(M0 j T^F) � L(M j T^F)
or the number of iterations reaches a predetermined value.

4.2 Finding seeds

When the motif is short, the 4w seed matrices are constructed by a

similar method as Bailey and Elkan (1994). Each seed matrix is
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Fig. 1. Relative values ofL(M j T^F) whenw¼ 7 and n¼ 250. k is a constant

for normalization.
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converted from a length-w string s such that for each column i, the
valueofM(s[i], i) is 0.5 and the rest are0.5/3.Thismethodworkswell

when themotif is short. However, when themotif lengthw increases,

the number of seed matrices increases exponentially and the running

time of ALSE becomes unacceptably long. Therefore, we apply the

Votingalgorithm(ChinandLeung,2005b;LeungandChin,2005a) to

findasubsetof length-w stringmotifs, convert themintoseedmatrices

as discussed before and refine them (as discribed in Section 4.1) to

obtain probability matrices with larger L(M j T^F).

5 RESULTS

We implemented Algorithm ALSE in C++. All experiments were

run on a machine with 2.4 GHz CPU and 1 GB memory. Each

experiment took reasonable time (normally within a few minutes) to

find the motif.

5.1 Simulated data

We constructed two sets of length-n random sequences with back-

ground probability B ¼ {0.25, 0.25, 0.25, 0.25} of sizes 20 for

sets T. A 4 · 7 probability matrix M was constructed by assigning

each entry a random number in the range (0,1] under the uniform

distribution and normalizing the sum of entries in each column to

1. A total of t binding sites generated according to M were planted

in sets T. We generated 50 sequences for sets F similarly. However,

we ensured that F contains less binding sites than the expected

(calculated based on threshold a* which is the the lowest score

of the t binding sites planted in T). We compared the performance of

MEME (a popular motif finding algorithm based on strong-signal

sequences using EM algorithm), SeedSearch (algorithm based on

hyper-geometric approach) and ALSE. Sequences in sets T and F
were then taken as input for ALSE and SeedSearch. Since MEME

takes strong-signal sequences as the only input, the 20 sequences in

set T were taken as input for MEME. We use the default parameters

for these algorithms except the length of motifs.

We have experimented with different values of t, i.e. different
numbers of binding sites in set T and binding sites of different

information contents. Information content of a binding site s is

defined as

ICðsÞ ¼ log
Prðs generated according to the motif matrix MÞ

Prðs generated according to the background modelÞ ‚

which represents the amount of information of themotif contained in

eachbinding site.Thehigher the informationcontent, the easier for an

algorithm to find the motif. We controlled the IC of the generated

matrices by generating a new matrix repeatedly until the IC of the

matrix is within our specified range. For each set of parameters, we

repeated the experiments 50 times with different matrices and used

MEME, SeedSearch and ALSE to predict the hidden motifs.

We determined whether a predicted motif is correct by calcula-

ting the performance ratio ¼ j predicted binding sites \ planted

binding sites j / j predicted binding sites [ planted binding sites j . A
binding site is predicted correctly if it overlaps with some planted

binding sites. A high performance ratio indicates the predicted motif

can discover the planted binding sites accurately. A predicted motif

is correct if the performance ratio of it is at least 50%.

Instead of finding one motif, motif discovering algorithms usually

output a list of predicted motifs. Besides, the hidden motif seldom

occurs at the top of the predicted list especially when the amount of

information in the input sequences is small (i.e. number of binding

sites is small and the information content of each binding site is

small). Therefore, instead of considering one predicted motif only,

we scanned through the top 20 predicted motifs of each algorithm.

An algorithm is said to predict the hidden motif correctly if the

performance ratio of one of the 20 predicted motifs is at least 50%.

The results are shown in Table 1. Each entry represents the

percentage (out of 50 experiments) of hidden motifs found by

the corresponding algorithm. As shown in Table 1, the performance

of ALSE was no worse than SeedSearch and MEME in all cases.

In particular, when the number of binding sites in set T was large

(t �j T j ) and the information content of each binding site was

small (IC � 7.70), i.e. rows 7 and 8 of Table 1, ALSE and

MEME took advantage of the large number of binding sites in T
to find the hidden motif. However, SeedSearch did not perform as

good because of its assumption that each sequence contained at

most one binding site. Note that although SeedSearch made an

invalid assumption, its performance increased with the number

of binding sites because it had a higher chance to start from a

seed matrix close to the hidden matrix when the number of binding

sites was large. When the number of binding sites in T was small,

MEME had difficulties to find the motif because of noise (i.e. a

randomly picked matrix has a high probability to get a similar

likelihood as the hidden matrix). However, by considering the

weak-signal sequences in F, ALSE and SeedSearch performed bet-

ter than MEME as shown in rows 1, 2 and 3 of Table 1.

5.2 Real biological data

In the database SCPD (http://rulai.cshl.edu/SCPD/), coregulated

genes with known binding sites of yeast are reported. The TRANS-

FAC (http://www.gene-regulation.com/) contains similar informa-

tion of other species. We tested the performance of the three

algorithms MEME, SeedSearch and ALSE on these real biological

data. We have performed experiments on those transcription factors

with at least two published binding sites and the length of motif are

at most eight only. For each set of coregulated genes, we took the

450 bp upstream and 50 bp downstream of the transcription start site

(TSS) as the strong-signal sequences T. We randomly picked the

450 bp upstream and 50 bp downstream of the transcription start site

of other genes as the weak-signal sequences. Similar to the experi-

ments on simulated data, we evaluated the performance of these

Table 1. Results of ALSE, SeedSearch and MEME on simulated data

t IC Successful rate

ALSE (%) SeedSearch (%) MEME (%)

1 20 7.21 72 52 48

2 7.70 80 64 58

3 8.61 92 78 74

4 30 7.21 86 46 56

5 7.70 88 74 72

6 8.61 96 94 82

7 40 7.21 100 62 72

8 7.70 100 86 96

9 8.61 100 100 100

Therewere 20 length-500 sequences in setT and 50 length-500 sequences in setF. t is the

number of binding sites in set T. For each set of parameters, we repeated the experiments

50 times. IC is was the average information content of a binding site.
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three algorithms by calculating the performance ratio ¼ j predicted
binding sites \ published binding sites j / j predicted binding sites [
published binding sites j . A high performance ratio indicates the

algorithm can predict the binding sites accurately. Table 2 shows the

the performance of these three algorithms on all the data of the yeast

and fruitfly. (Results are not shown when all three algorithms had

similar performance.)

In these 23 datasets (�30% of the data), ALSE had the best

performance among three algorithms 19 times. It is because

ALSE can handle multiple binding sites and utilize the additional

information about the motif from the weak-signal sequences in F.
When compared with the performance of SeedSearch and MEME,

we can conclude that the weak-signal sequences contain much

information about the motif. Even for SeedSearch which does

not consider multiple binding sites in a sequence, it still can out-

perform MEME as indicated in Table 2.

6 DISCUSSION

In this article, we have introduced a newmodel for motif finding. By

considering those sequences that are not bound by a

transcription factor, we can eliminate those patterns that appear fre-

quently in every part of the genome asmotifs. SeedSearch is based on

this idea for finding motif. Unfortunately SeedSearch assumes that

eachsequencehasatmostonebindingsiteandusesasimplifiedtesting

function in its iterative step. Our proposed algorithm uses a more

accurate testing function (which considers the length of the motif

and also the length of the input sequences) and can handle sequences

withmultiple binding sites. For the simulated and real datasets,ALSE

performs favorably when compared with the common motif-finding

program MEME and SeedSearch.

Like other algorithms, ALSE cannot guarantee that the optimal

M� with the largest L(M j T^F) will be found and the success of

the algorithm depends on how the seed matrices are selected. In

our algorithm, a limited number of promising seeds are selected from

the 4w matrices generated from all the possible 4w length-w strings.

However, this approach offinding seeds will fail when the length of

the motif is large. Our future direction is to consider some new seed-

finding methods with acceptable time complexity and effectiveness.
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Table 2. Results of ALSE, SeedSearch and MEME on the set of data in

TRANSFAC

Factor name Performance ratio

ALSE (%) SeedSearch (%) MEME (%)

ANTP 33.33 25 25

AS-CT3 100 100 33.33

BAS1 75 0.00 0.00

BEAF-32B 33.33 28.57 0.00

BEF-1_7 75 100 66.67

Bfactor 66.67 22.22 22.22

Cad 50 0.00 0.00

Cut 0.00 100 0.00

Da 100 100 0.00

DTF-1 50 0.00 25

E4b 100 38.46 0.00

EcR_7 50 33.33 33.33

En_7 11.11 8.33 10

FTZ-F1 50 100 100

GATA 100 0.00 0.00

GCN4 100 65 0.00

HSTF_5 80 50 16.67

RAP1 80 75 50

TAB 25 33.33 33.33

T-Ag 6.06 3.33 7.69

Ttk88K 100 100 0.00

Ubx_a_7 100 50 0.00

v-myb_7 33.33 33.33 0.00

ALSE SeedSearch MEME

Number of times getting the best

performance among three

algorithms

19 8 3

H.C.M.Leung and F.Y.L.Chin
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APPENDIX

In this section, we give detail description of the experiments.
When performing experiments on MEME, we use the

command ‘meme [input sequences file path] -dna -w [motif
length] -nmotifs 20 [output file path]’ for the simulated
data and the command ‘meme [input sequences file path]-
dna -revcomp -w [motif length] -nmotifs 20 [output file
path]’ for the real biological data. When performing

experiments on SeedSearch, we use the command ‘seed-
n 20 -l [motif length] [input sequences file path]
[wighted file path] [output file path]’ for the simulated
data. weighted file is a file indicates which sequences are
in T and which sequences are in F. And we use the command
‘seed -n 20 -l [motif length] -reverse [input sequences
file path] [wighted file path] [output file path]’ for the real
biological data.
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