
OPTIMAL ALGORITHM FOR FINDING DNA MOTIFS WITH 
NUCLEOTIDE ADJACENT DEPENDENCY∗

FRANCIS Y.L. CHIN       HENRY C.M. LEUNG       M.H. SIU       S.M. YIU 
Department of Computer Science, University of Hong Kong, Pokfulam 

Hong Kong 

Abstract: Finding motifs and the corresponding binding sites is a critical and challenging problem in 
studying the process of gene expression. String and matrix representations are two popular models to 
represent a motif. However, both representations share an important weakness by assuming that the 
occurrence of a nucleotide in a binding site is independent of other nucleotides.  More complicated 
representations, such as HMM or regular expression, exist that can capture the nucleotide 
dependency. Unfortunately, these models are not practical (with too many parameters and require 
many known binding sites). Recently, Chin and Leung introduced the SPSP representation which 
overcomes the limitations of these complicated models. However, discovering novel motifs in SPSP 
representation is still a NP-hard problem. In this paper, based on our observations in real binding 
sites, we propose a simpler model, the Dependency Pattern Sets (DPS) representation, which is 
simpler than the SPSP model but can still capture the nucleotide dependency. We develop a branch 
and bound algorithm (DPS-Finder) for finding optimal DPS motifs. Experimental results show that 
DPS-Finder can discover a length-10 motif from 22 length-500 DNA sequences within a few 
minutes and the DPS representation has a similar performance as SPSP representation. 

1 Introduction 

A gene is a segment of DNA that can be decoded to produce functional products like 
protein. To trigger the decoding process, a molecule, called transcription factor, will 
bind to a short region (binding site) preceding the gene. One kind of transcription factor 
can bind to more than one binding site. These binding sites usually have similar patterns 
and are collectively represented by a motif. Finding motifs and the corresponding binding 
sites from a set of DNA sequences is a critical step for understanding how genes work. 

There are two popular models to represent a motif, string representation 
[4,6,10,11,16,17,19-22] and matrix representation [2,8,12-14]. String representation uses 
a length-l string of symbols (or nucleotides) ‘A’, ‘C’, ‘G’ and ‘T’ to represent a motif of 
length l. To improve the descriptive power of the representation, IUPAC symbols 
[6,20,22] can be introduced into the string to represent choices of symbols at a particular 
position (e.g. ‘K’ denotes ‘G’ or ‘T’). Matrix representation further improves the 
descriptive power by using position weight matrices (PWMs) or position specific scoring 
matrices (PSSMs) to represent a motif. PWMs and PSSMs are matrices of size 4 × l with 
the j-th column, which has four elements corresponding to the four nucleotides, 
effectively giving the occurrence probability of each of the four nucleotides at position j. 
While the matrix representation model appears superior, the solution space for PWMs 
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and PSSMs is huge, which consists of 4l real numbers, and thus, algorithms generally 
either produce a sub-optimal motif matrix [2,8,12,13] or take too long to run when the 
motif is longer than 10 [15]. 

However, both the string and the matrix representations share an important common 
weakness: they assume that the occurrence of each nucleotide at a particular position of a 
binding site is independent of the occurrence of nucleotides at other positions. This 
assumption may not represent the actual situation. According to the analysis of wild-type 
and mutant Zif268 (Egr1) zinc fingers by Bulyk et al [5], it gives compelling evidence 
that nucleotides of transcription factor binding sites should not be treated independently, 
and a more realistic motif model should be able to describe nucleotide interdependence. 
Man and Stormo [18] have arrived at a similar conclusion in their analysis of Salmonella 
bacteriophage repressor Mnt: they found that interactions of Mnt with nucleotides at 
positions 16 and 17 of the 21 bp binding site are in fact not independent.  

When there are sufficient number of known binding sites of a transcription factor, 
people can use some complex representations, e.g. the hidden Markov model (HMM) 
[24], Bayesian network [3] or enhanced PWM [9], to represent nucleotide 
interdependence. However, when we want to discover novel motif or describe a motif 
with only a few known binding sites, the input data may not contain enough information 
for deriving the hidden motif. Chin and Leung overcame the problem by introducing the 
SPSP representation [7], a generalized model of string representation and matrix 
representation, that can model the adjacent dependency of nucleotides with much less 
parameters than HMM and regular expression. Since the SPSP representation is simple, it 
can be used to discover novel motifs even if there are only five DNA sequences 
containing the binding sites of the transcription factor. However, like other models, 
discovering novel motifs in SPSP representation is a NP-hard problem. No efficient 
algorithm exists that can guarantee finding the hidden motif in reasonable amount of 
time. 

After studying the binding sites of real biological data, we found that many motifs 
can be described by a simpler model. In this paper, we further simplify the SPSP 
representation to the Dependency Pattern Sets (DPS) representation. DPS representation 
is a generalized model of string representation, which can model adjacent nucleotide 
dependency. Although it has a lower descriptive power than SPSP representation, 
experimental results on real biological data showed that it has almost the same 
performance as SPSP representation. Besides, since DPS representation uses fewer 
parameters to describe a motif, it is possible to find the “optimal” motif in reasonable 
amount of time. We have introduced a branch and bound algorithm DPS-Finder that 
guarantees finding the “optimal” motif. In practice, DPS-Finder takes only a few minutes 
to discover a length-10 motif from 20 length-600 DNA sequences. For other approaches 
such as HMM, it may take hours or even days for a dataset of similar size. 

This paper is organized as follows. In Section 2, we describe the DPS representation 
and the scoring function for determine the “optimal” motif in a set of DNA sequences. 
We introduce the branch and bound algorithm DPS-Finder in Section 3. Experimental 
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results on real biological data comparing DPS-Finder with some popular software are 
given in Section 4, followed by concluding remarks in Section 5. 

2 Problem Definition 

2.1 DPS Representation 

Motif is an abstract model for a set of binding sites with similar patterns. For example, 
the transcription factor CSRE [25], which activates the gluconeogenic structural genes, 
can bind to the following binding sites. 

CGGATGAATGG 
CGGATGAATGG 
CGGATGAAAGG 
CGGACGGATGG 
CGGACGGATGG 

Note that there is dependence between the fifth and the seventh symbols, and the 
binding sites “CGGATGAATGG” occurs twice in the DNA sequences. The string 
representation models these binding sites by the length-11 string “CGGAYGRAWGG” 
where ‘Y’ denotes ‘T’ or ‘C’, ‘R’ denotes ‘A’ or ‘G’ and ‘W’ denotes ‘A’ or ‘T’. 
However, this representation has a problem that the strings “CGGATGGATGG”, 
“CGGATGGAAGG”, “CGGACGAATGG”, “CGGACGAAAGG” and 
“CGGACGGAAGG” are also considered as binding sites (false positives). Instead of 
modeling the CSRE motif by one string, the SPSP representation uses a pattern P and a 
set of score S (negative of logarithm of the occurrence probability) to represent the CSRE 
motif as follows. 

( ) ( ) (GGT
AACGG

TGACGGA ⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛=P )  and 

 ( ) ( ) ( )log(1)-log(0.8)-
log(0.2)-log(1)-log(0.4)-

log(0.6)-log(1)- ⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛=S

A length-11 string is considered as a binding site of CSRE if it matches with P and 
its score (sum of corresponding entries) is at most some threshold, say 3.1. For example, 
the score of the binding site “CGGATGAATGG” is -log(1)+ -log(0.6) + -log(1) + -
log(0.8) + -log(1) = 1.05 < 3.1. The score of a non-binding site string 
“CGGACGGAAGG” is -log(1)+ -log(0.4) + -log(1) + -log(0.2) + -log(1) = 3.6 > 3.1. 
The string “TGGATGAATGG” does not match with P, so it is not a binding site. In this 
example, the SPSP representation can model the motif with no false positive. 

Although SPSP representation can describe the motif well, it is difficult to determine 
the score S for novel motifs (motifs with no known binding site) in real biological data. A 
challenge is to have a simpler model, which describes real motifs using fewer parameters 
than the SPSP representation while having fewer false positives than string 
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representation. We observed that using only the pattern P without S, we already can 
describe most real motifs. For example, if we consider those strings matching with P as 
binding sites, we only have one false positive “CGGACGGAAGG” (instead of five for 
the string representation). 

Apart from this, SPSP representation allows a motif having any number of wildcard 
pattern sets (positions with more than one possible choice of patterns, i.e. brackets with 
more than one pattern in it). For example, the following pattern P is allowed. 

( ) ( ) ( ) ( ) ( )GG T
AAG

AGC
TA

TT
GT
GG

C ⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=P  

Since the binding sites of a motif should be conserved in most positions, the number of 
wildcard pattern sets should be small. We found that allowing at most two wildcard 
pattern sets is enough for describing most motifs. Based on the above observations, we 
define the Dependency Pattern Sets (DPS) representation as follows. 

A DPS representation P contains a list of patterns sets Pi, 1 ≤ i ≤ L, where at 
most two are wildcard pattern sets Pi containing 2 to k length-li patterns Pi,j of 
symbols ‘A’, ‘C’, ‘G’ and ‘T’, li ≤ lmax where the Hamming distance between 
these patterns is at most dmax. Each of the other pattern set Pi contains exactly 
one length-li pattern Pi,1 and ∑i l i = l. A length-l string σ = σ1σ2…σL where |σi| 
= l i is considered as a binding site of P if σi ∈  Pi, 1 ≤ i ≤ L. 

2.2 Scoring Function and Problem Definition 

Given a set of DNA sequences T with X length-l substrings bound by the same 
transcription factor, we should find many candidate motifs having different number of 
binding sites in T. In order to discover the hidden motif, we should have a scoring 
function for comparing different motifs. Given two motifs P1 and P2, a naive scoring 
function is to count the number of binding sites represented by the motifs, that is, P1 is 
more likely to be the hidden motif if P1 have more binding sites than P2 in the set of 
sequences T. However, this scoring function has a weakness that it has not considered the 
number of possible binding sites for P1 and P2. Consider the following motifs. 

( ) ( ) ( )TCT
ACC

GT
CG
AT

C1 ⎟
⎠
⎞⎜

⎝
⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=P  and  ( ) (AAACT

AGACG2 ⎟
⎠
⎞⎜

⎝
⎛=P )

Even P1 has slightly more binding sites than P2, we cannot conclude that P1 is more 
likely to be the hidden motif because P1 has more possible binding site patterns (3 × 2 = 
6 patterns) than P2 (2 patterns). In order to have a fair comparison, given a motif P with b 
binding sites in T, we calculate the probability (p-value) that P has b or more binding 
sites in T by chance based on a background model. Under the assumption that the hidden 
motif should have an unexpectedly large number of binding sites, a motif P with small p-
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value is likely to be the hidden motif. The p-value of a motif can be calculated as follows 
[7]. 

Let B be the background model for the non-binding region of the DNA sequences T 
and B(σ) be the probability that a length-l string σ occurs in a particular position in T. B 
can be a Markov Chain or an uniform distribution etc. Given a DPS motif P with w 
possible binding sites s1, s2, …, sw, the probability that P has a binding site at a particular 
position in T is . Assuming the probability that motif P has a binding site at any 
positions in T are independent, the probability that P has b or more binding sites in T is 
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Based on the scoring function in Eq(1), we define the motif discovering problem as 
follows. 

Given a set of DNA sequences T, the background model B and the motif length 
l, we want to discover a length-l DSP motif P with the minimum p-value. 

3 DPS-Finder Algorithm 

In this section, we introduce the DPS-Finder Algorithm for solving the motif discovery 
problem described in Section 2. DPS-Finder Algorithm first constructs a l-factor tree [1], 
a suffix tree with all nodes of depth > l being removed, to represent all possible motifs in 
the input sequences T with different positions of the wildcard pattern sets. For each 
possible motif P, it finds the set of patterns in each wildcard pattern set that minimizes p-
value(P) using a branch and bound approach. Experiments showed that DPS-Finder 
Algorithm has to deal in the best case only 25% of the number of cases to be dealt by the 
brute force algorithm. 
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Figure 1. The 8-factor tree of the sequences “CA(…)(…)GGATGGCA(…)(…)GG”. For examples, the pattern 
“(CA)(…)(…)”, “(A)(…)(…)(G)” and “(…)(…)(GG)” occur twice in the sequences. 
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3.1 Factor Tree Representation 

In order to discover the optimal motif, we should consider all possible positions (C(2 + l 
– 2lmax, 2) = O(l2)) of the wildcard pattern sets. For example, when the motif length l is 8 
and the maximum wildcard pattern length lmax is 3, the length-8 substring 
“CGCAGGTG” (binding site of the AC transcription factor) can be a binding site of 
motifs in the following formats, (…)(…)(TG), (…)(A)(…)(G), (…)(AG)(…), 
(C)(…)(…)(G), (C)(…)(G)(…) and (CG)(…)(…), where (…) represents a wildcard 
pattern set of length 3. Note that motifs with wildcard pattern shorter than 3 or with one 
wildcard pattern set only have also been considered in the above formats. For example, 
(…)(AGG)(..) and (…)AGGTG are special case of the motif (…)(AG)(…). When we 
find the optimal motif in form of (…)(AG)(…), we have also considered motifs in form 
of (…)(AGG)(..) and (…)AGGTG. Since it takes O(l) time to convert a length-l 
substring to a motif and there are X length-l substrings in T, brute force method takes 
O(Xl3) time to get the list of O(Xl2) possible forms of motif. 

However, when a motif of a substring is considered, we can easily get another motif 
for the adjacent substring by shifting one symbol. For example, when the motif 
(CG)(…)(…) of the substring “CGCAGGTG” in the input sequence 
“…CACGCAGGTGGG…” is considered, by shifting one symbol, we will get another 
motif (G)(…)(…)(G) for the substring “GCAGGTGG”. When we represent the input 
sequence in the form of “…CACGCAGGTGGG…”, each length-8 sliding window 
containing the two length-3 brackets represents one possible motif. Based on this 
observation, DPS-Finder Algorithm constructs a generalized l-factor tree [1] of O(l2) 
(represent the O(l2) motifs for a length-l substring) length-O(X) sequences (input 
sequences with some positions represented by brackets) to represent the O(Xl2) possible 
motifs. A l-factor tree is a suffix tree [23] of height l where each path from the root to a 
leaf represents a length-l substring occurring in the input sequence. Figure 1 shows a 
factor tree of height-8 for the sequence “CA(…)(…)GGATGGCA(…)(…)GG”. Since 
constructing the generalized l-factor tree takes O(Xl2) time [1] only, DPS-Finder 
Algorithm speeds up the process by a factor of O(l) when compares with the brute force 
algorithm. 

3.2 Branch and Bound Approach 

Each leaf of the l-factor tree represents a candidate motif. These candidate motifs may 
not be in DPS representation because they may have more than k patterns in their 
wildcard pattern sets. Therefore, giving a candidate motif P, we have to reduce the 
number of patterns in each of its wildcard pattern set to at most k and at the same time, to 
minimize the p-value. Although this problem is NP-hard when the value of k is large (see 
Appendix), in practice we usually consider motifs with small k (e.g. k = 4) and finding 
the optimal motif is still feasible. 

When refining a candidate motif P to a motif P’ in DSP representation with the 
minimum p-value(P’), we perform a depth-first-search to check all possible combinations 
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of patterns in the two wildcard pattern sets of P. We first pick two patterns, each forms a 
wildcard pattern set of P. Then we pick more patterns for P’ until k patterns have been 
selected for each wildcard pattern set. In the selection process, we consider patterns with 
increasing order of p-values. After picking a new pattern Pi, the additional number of 
binding sites covered by P’ is upper bounded by the number of binding sites covered by 
Pi. Therefore, in many cases, we can stop picking new patterns because the p-value of the 
refined motif P’ must not be smaller than the suboptimal motif we have already found. 

Apart from applying a branch and bound approach on refining each candidate motif 
P, we also apply similar approach on checking the O(Xl2) candidate motifs. We first 
refine those candidate motifs with two patterns, each forms a wildcard pattern set, 
covering the largest number of binding sites. Since the number of binding sites covered 
by a candidate motif is upper bounded by the total number of binding sites covered by 
the top-k patterns in its wildcard pattern sets, many candidate motifs can be pruned out. 

4 Experimental Results 

We compared the performance of some popular motif discovering algorithms, i.e. 
Weeder [19], MEME [13] and SPSP-Finder [7], with DSP-Finder on the yeast data set in 
SCPD [25]. SCPD contains information of the motif patterns and the binding sites for a 
set of transcription factors of yeast. For each transcription factor, we chose the 600 base 
pairs in the upstream of those genes bound by the transcription factor as the input 
sequences T. Given the motif length, the four algorithms were used to discover the 
hidden motif in T. 

Weeder and MEME used string representation and matrix representation to model a 
motif respectively. Both of them could not model the nucleotide dependency in motifs. 
SPSP-Finder, used the SPSP representation, can model the nucleotide dependency in 
motifs. However, all these algorithms applied a heuristic approach which cannot 
guarantee finding the “optimal” motifs. 

In the experiments, DSP-finder used an order-0 Markov chain calculated based on 
the input sequence to model the non-binding regions. The width of a wildcard pattern set 
was at most 3 (lmax = 3), the Hamming distance between patterns in a wildcard pattern set 
was at most 1 (d = 1) and there were at most 4 patterns in a wildcard pattern set. The 
experimental results were shown in Table 1. All algorithms finished in 10 minutes for 
each dataset. Note that we have not listed out those motifs which could not be discovered 
by any of the algorithms. 

In general, SPSP-Finder and DSP-Finder has better performance than the other 
algorithms because they can model nucleotide dependency. DSP-Finder performs better 
than SPSP-Finder when finding motif of MCM1 because DSP-Finder guarantees finding 
the motif with the lowest p-value while SPSP-Finder is trapped in local minimum. 

DSP-Finder performs worse than MEME and SPSP-Finder in two cases, the 
HAP2/3/4 and SFF datasets. For the HAP2/3/4 dataset, there was nucleotide dependency 
between the fifth and the sixth nucleotides. However, since the Hamming distance 
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between the possible patterns is 2, DSP-Finder could not discover the motif in our setting 
(d = 1). DSP-Finder could not discover the motif of SFF while MEME was successful 
because there were no strong bias at most positions of this motif. In these cases, a matrix 
representation can model the motif better than a string representation, i.e. Weeder also 
fails in this case.  
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Table 1. Experimental results on yeast data. 

Name Pattern Weeder MEME SPSPFinder DPSFinder 
13nt ACGAGGCTTACCG - - )T)(TACC)(G(ACGA)(GGC  )GC)(TTACCG(A)(CGA)(G  

ACE2 GCTGGT - - (GCTG)(GT)  ( )( )
CGT
GGT

GCT
GCA

 

ADR1 TCTCC - TCTCC (TCTC)(C)  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

TGC
TTC
TCC

(TC)  

AP1 TTANTAA - - ( )(TAA)
C
G

(TTA)  ( )(A)
CTA
GTA

(TTA)  

CCBF CNCGAAA CACGAAA - CGAA)(A)(

T
G
C
A

)C(
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
 ( )( )(A)

CAA
GAA

CGC
CAC

 

CPF1 TCACGTG CACGTG TCACGTG CACG)(TA)(  ( )
GAG
GTG

(C)
GCA
CCA
TCA

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 

CSRE CGGAYRRAWGG - - ( ) )GG(
T
A

A)(
CGG
TAA
TGA

)CGGA( ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 ( ) (GG)

AAG
AAA
AAT

ATA
ATG

(CGG) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 

CuRE TTTGCTC TTTGCTCA  ( )C)(
TCG
GCT

)TTT(  ( )(CTC)
GTG
TTG

(T)  

GATA CTTATC CTTATC - )TC)(CTTA(  ( )(ATC)
CTA
CTT

 

HAP2/3/4 CCAATCA - - )A(
CC
TG
TC

)CCAA( ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 - 

LEU CCGNNNNCGG CCGGGACCGG CCGGAACCGG ( ) G))(ACCG(
G
A

CGG)(  ( )( )(GG)
CCC
ACC

GGG
GGT

(CC)  

MAT2 CRTGTWWWW CATGTAATTA - ( )
C
A

TG
TC
TA
AC

)AATT(
TA
GT
GA

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 ( )( )

AAT
ATT

GTT
GTA

(CAT)  

MCM1 CCNNNWWRGG CCCGTTTAGG CCTAATTAGG - ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

AGG
TGG
GGG

AAT
AAC
AAA

(CCTA)  

SFF GTMAACAA - GTCAACAA - - 

UASCAR TTTCCATTAGG - - ( )
AGGA
AGCG

)TT(
TCCA
TCAC
GCCC

)T( ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 ( )(CAT)(TAG)

TGC
TTC

(AT)  

Motifs of transcription factors that cannot be found by any algorithms were not shown in this table. ‘M’ stands 
for ‘A’ or ‘C’, ‘N’ stands for any nucleotide. ‘R’ stands for ‘A’ or ‘G’, ‘W’ stands for ‘A’ or ‘T’, ‘Y’ stands for 
‘C’ or ‘T’. 

5 Conclusion 

In this paper, we introduced the DPS representation to capture the nucleotide dependency 
in a motif, which is simpler than the SPSP representation. We also developed a branch 
and bound algorithm DPS-Finder to locate the optimal DPS motif. Experimental results 
on real biological datasets show that DPS-Finder is efficiency and the DPS representation 
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is powerful enough to capture most of the real motifs. Further directions include 
extending the model and the algorithm to local motif pairs or non-linear motifs.  
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Appendix 

In this section, we prove that the Candidate Motif Refinement Problem is NP-hard. 

Candidate Motif Refinement (CMR) Problem: given a motif P, reducing the 
size of P’s wildcard pattern sets to at most k with the minimum p-value. 

We prove it by reducing the Balanced Complete Bipartite Subgraph problem, which is 
NP-hard, to this problem. 

Balanced Complete Bipartite Subgraph (BCBS) Problem: given a bipartite 
graph G = (V,E) and a positive integer k, we want to determine if there are two 
disjoint subsets V1, V2  V such that |V⊆ 1| = |V2| = k and 1Vu∈ , 2Vv∈  implies 
that Evu ∈},{ . 

Given a BCBS Problem, we construct a motif P as follows: Let lmax be the smallest 
integer such that 4lmax ≥ k|V|. Each vertex vi of G is represented by a unique length-lmax 
string s(vi). The candidate motif P is a length-2lmax pattern with exactly two wildcard 
pattern sets, each contains length-lmax string s(vi), representing the vertices in one partite 
of G. There are |E| length-2lmax input DNA sequences T. s(vi)s(vj) is an input DNA 
sequence if and only if  Evv ji ∈},{ .

Under the restriction that the size of the wildcard pattern sets is at most k, the refined 
motif P’ has the minimum p-value when the concatenation of each pair of patterns in the 
two wildcard pattern sets of size k exists in the input DNA sequences T (i.e. P’ has 
exactly k2 binding sites). Therefore, the BCBS problem can be solved by solving the 

http://cgsigma.cshl.org/jian/
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CMR problem and check if refined motif P’ has exactly k2 binding sites.                         
∎  
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