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Abstract—Feature selection is important for many biological
studies, especially when the number of available samples is limited
(in order of hundreds) while the number of input features is
large (in order of millions), such as eQTL (expression quantitative
trait loci) mapping, GWAS (genome wide association study) and
environmental microbial community study. We study the problem
of multiple output regression which leverages the underlying
common relationship shared by multiple output features and
propose an efficient and accurate approach for feature selection.
Our approach considers both intra- and inter- group sparsities.
The intergroup sparsity assumes that only small set of input
features are related to the output features. The intragroup
sparsity assumes that each input features may relate to multiple
output features which should have different kinds of sparsity.
Most existing methods do not model the intragroup sparsity well
by either assuming uniform regularization on each group, i.e.
each input feature relates to similar number of output features,
or requiring prior knowledge of the relationship of input and
output features. By modelling the regression coefficients as a
mixture distributions of Laplacian and Gaussian, we can shrink
group regression coefficients to be small adaptively and learn
the intergroup, intragroup sparsity and shrinkage estimation
patterns. Empirical studies on the synthetic and real environ-
mental microbial community datasets show that our model has
better predictions on test dataset than existing methods such as
Lasso, Elastic Net, dirty model and rMTFL (robust multi-task
feature learning). Moreover, by using least angle regression or
coordinate descent and projected gradient descent techniques for
optimization, we can obtain the optimal regression efficiently.

I. INTRODUCTION

Many biological studies focus on finding a subset of
features from a large set of features related to particular set
of observations, for example, eQTL (expression quantitative
trait loci) mapping aims at finding loci of the genome related
to gene expression levels [10]; GWAS [1] (genome wide
association study) examines many common genetic variants
in different individuals to see if any variant is associated with
a trait; and environmental microbial community study wants to
discover sets of microbes sensitive to different environmental
features. The most popular method to model this kind of
problem is to fit a linear regression model from input features
X (loci of genome, genetic variants, microbes communities)
to output features Y (gene expression levels, different traits,
environmental factors). By learning the regression coefficients
B from Y = XB+ ε where ε is the noise matrix, the non-zero
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coefficients are interpreted as potential interactions between
input and output features. There are two main reasons why we
consider linear regression:

• Linear model is less likely to overfit than non-linear
models;

• Linear model is easier to be interpreted than other
models.

However, in biological studies, the number of available sam-
ples is usually much less than the number of input features. For
example, there can be thousands of loci, hundred thousands of
genetic variants and millions of microbes for the eQTL map-
ping, GWAS and environmental microbes community study
respectively but the number of samples are usually less than
one thousand. Therefore, the existing learning model is likely
to encounter overfitting problem when applying on biological
data because the covariance matrix XT X might be singular.
Luckily, the number of input features relates to a particular
out feature is usually small in biological studies. For example,
only a few loci may relate to the expression of a gene; about
hundreds of genetic variants may relate to a trait; only about
hundreds of microbes sensitive to a particular environment.
To overcome the overfitting problem, regularizations are em-
ployed while learning from data with an assumption that only
a small number of input features are related to output features.

When there is only one output feature, one regularization
approach is to restrict the number of non-zero regression
coefficients by including ||B||0 (the L0 of the regression
coefficients) as penalty. However, this linear regression prob-
lem with L0 penalty is NP-hard [26]. Lasso [26] proposes
another regularization approach to impose sparsity on the
regression coefficients by approximating L0 using L1, i.e using
||B||1 as penalty. This approach can generate sparse solutions,
equivalent to select a small number of input features (feature
selection). However, when there are many highly dependent
input features, Lasso is sensitive to the noise matrix and
has bad performance. Ridge regression [18] employs ||B||2
(the L2 of the regression coefficient) for regularization, which
tends to reduce the value of regression coefficients (shrinkage
estimation) to avoid overfitting [18] with the increase of the
number of the non-zero coefficients. Elastic Net [30], which
employs both L1 and L2 penalty for regularization has the
advantages of both Lasso and Ridge, i.e. simultaneous feature
selection and shrinkage estimation. All the above algorithms
assume each input feature is independent. In real situation,



some input features may be related and they should have
similar coefficients. For example, loci and genetic variants
located closely in the genome are more likely related to the
expression of similar set of genes and similar traits respectively
than loci and genetic variants located far away. Microbes
usually live together are likely to be sensitive to similar
environmental features. Group Lasso [29] and its extension
[15] assign input features with similar values (in all samples)
into groups and grouped input features should be selected or
injected together, i.e. with all non-zero or zero coefficients on
the grouped input features. However, they fail to consider those
not-so-similar features.

When there are multiple output features, the above algo-
rithms can be applied for each output feature independently.
However, by considering all output features together, better
regression could be obtained because

• some output features may be associated and should
have similar regression coefficients;

• some input features may be highly related to a subset
of output features.

For example, genes with similar expression profiles should be
related to similar loci, microbes live in deep sea should be
sensitive to temperature, too. Models may benefit from this
shared common relationship and prevent overfitting [20], [22],
[24]. [9], [20] use trees to model the relationship of input and
output features. Although these algorithms work well when
proper tree structures are available, the prior knowledge of
the tree structures is difficult to be determined in practice
and thus limits the applicability of these algorithms. [3], [4],
[17], [19], [22] model the shared common relationship without
prior knowledge by minimizing the number of non-zero entries
in matrix B, i.e. the number of rows with non-zero entries
(intergroup sparsity) and the number of non-zero entries in
each row (intragroup sparsity). Although no prior knowledge
of the data is required by these methods, the performances of
these methods are not good as the intragroup sparsity is treated
uniformly, i.e. each input feature is assumed to be related to
similar number of output features. In real situation, each input
feature may be related to different number of output features,
e.g. genetic variants in transcription factor gene should relate to
more traits than genetic variants in non-gene region, microbes
appear in specific environment should be more sensitive to
multiple environmental features than microbes appear globally.
Thus different rows of matrix B may have different kinds of
sparsity and should be considered separately. [5] studies the
eQTL problem and considers adaptive penalties for different
rows of matrix B. It requires the prior knowledge about ge-
nomic locations such as conservation scores and transcription
factor binding sites.

In summary, for the regression problem with multiple
output features, the existing algorithms either assume each
input feature should be related to similar number of output
features (uniform intragroup sparsity) or require detailed prior
knowledge of the relationship of input features and association
of output features. To solve this problem, our contributions are
to have non-uniform intragroup sparsity for matrix B and to
learn the intragroup sparsity from the input X and Y with-
out any prior knowledge. Different intragroup regularization
parameters are assigned for each row of matrix B with the

assumption that the regression coefficients in different rows
of matrix B should follow different Laplacian distributions
and our model can learn the intragroup sparsity regularization
parameters adaptively from the data, instead of cross validation
which is impractical when there are many rows of matrix B.
At the same time, in order to reduce the unstable feature selec-
tion caused by highly dependent input features, we consider
adaptive shrinkage estimation for rows of matrix B and the
shrinkage regularization parameters can be learned adaptively
from the data by assuming different Gaussian distributions
on different rows of matrix B. Also our penalty is modeled
in a probability way by considering mixtures of Laplacian
and Gaussian distributions on the regression coefficients. Our
model can learn the intergroup sparsity simultaneously by only
selecting a small sets of input features which are related to
at least one output features. By applying our model to the
simulated data of different sparsity levels, our model is able
to learn sparsity, shrinkage patterns and recover true related
input features with higher probability compared to existing
methods such as Lasso, Elastic Net, dirty model [19] and
rMTFL [17]. Also we apply our model to the global microbes
communities to study the interaction patterns, our model has
better prediction ability on microbes community data for both
family cut and genus cut datasets.

The rest of paper are organized as follows. In Section II, we
give a brief review of background and formulate our problem.
Later we propose our method for adaptive sparsity learning and
shrinkage estimation. In Section III, we present the empirical
results on both simulated and real applications followed by the
conclusion in Section IV.

II. METHOD

Background and Problem Formulation

Let X be an N × P matrix for N samples and P input
features, where each element xi j represents the value of the
jth input feature in the ith sample. Let Y be an N×Q matrix
representing N samples and Q output features where yik ∈ R
denotes the value of kth output feature in the ith sample. We
assume that all samples are independent and the feature values
are represented by identically distributed random variables. A
univariate linear regression method can be employed to model
the relationship between the input features X and each output
feature yk separately as:

yk = XB∗k + εk,∀k = 1, ..,Q; (1)

where B∗k is a length-P vector of regression coefficients for the
kth output feature. Let B= {B1, ...,BQ} and εk be the error term
of length N with zero mean and constant variance following
Gaussian distribution. We denote the jth row and kth column
of matrix B as B j∗ and B∗k respectively for convenience. We
can obtain an optimal B by minimizing the residual sum of
squares:

B̂ = argminB

Q

∑
k=1

1
2
(yk−XB∗k)T (yk−XB∗k); (2)

The linear regression model may overfit especially when
P� N since XT X will be singular. Regularizations in terms
of penalties [18], [26], [29], [30] are introduced to avoid



overfitting, whereas the optimization problem can be defined
as

B̂∗k = argminB∗k
1
2
(yk−XB∗k)T (yk−XB∗k)

+Penaltyk,∀k = 1, ...,Q.
(3)

Usually only a few input features are related to each output
feature so as to avoid overfitting. In order to minimize the
number of non-zero entries in B∗k, an intuitive penalty should
be λk||B∗k||0 (count of non-zero elements in B∗k) with larger
λk(λk > 0), but unfortunately this induces to an NP-hard
problem. By setting Penaltyk = λk||B∗k||1(λk > 0) [26], the
problem can be solved efficiently by the least angle regression
[12] or coordinate descent algorithm [28]. Ridge regression
sets Penaltyk = λk||B∗k||2 to shrink the B∗k coefficients to be
small. Many studies [18] have shown that Ridge can reduce
overfitting when there are many highly related input features.
By using a mixture penalty of norm one and norm two, Elastic
Net [30] sets Penaltyk = λk(αk||B∗k||1+ 1−αk

2 ||B∗k||
2
2) where

λk > 0 and 0≤ αk ≤ 1, which becomes Lasso or Ridge when
αk = 1 or αk = 0 respectively. Since finding the optimal B∗k in
(2) is equivalent to find the best B∗k such that yk follows the
Gaussian distribution N (XB∗k,σ2IN) where σ2 is variance
and IN is identity matrix. The models with different kinds
of regularizations in (3) can be viewed as finding maximum
likelihood B∗k under different assumptions of the distributions
of entries in B∗k. Lasso, Ridge and Elastic Net can be treated
as MAPs (Maximum a posterior) of Laplacian, Gaussian
and mixture of Laplacian and Gaussian distribution on B∗k.
Even these methods for single output features could be easily
extended to multiple output features cases by considering each
output feature independently, studies [20], [22], [24] show that
by considering multiple output features simultaneously, the
estimation of regression coefficients may benefit from taking
into account the underlying relationships shared by different
outputs features. Similarly, for multiple output setting we
can model the relationship between input features and output
features as multiple output regression and the parameters can
be estimated as follows:

B̂ = argminB

Q

∑
k=1

1
2
(yk−XB∗k)T (yk−XB∗k)+Penalty. (4)

Multi-Lasso, Multi-Ridge and Multi-Elastic Net set
Penalty to be λ ∑

P
j=1||B j∗||1, λ ∑

P
j=1||B j∗||22 and

λ ∑
P
j=1(α||B j∗||1+ 1−α

2 ||B j∗||22) respectively.

A. Group Sparsity

We learn the interaction effects (each row of B) of input
features to all output features together. Multi-Lasso assumes
that each row of matrix B should have similar level of
sparsity and tends to penalize each row of matrix B with
an uniform penalty. It does not consider the case that some
input features are related to less output features while some
are related to more. In reality it is reasonable to assume that
different rows have different sparsity structures and different
sparsity level dependent penalties should be considered. We
consider a two-level framework for model group sparsity.
Firstly, when considering intergroup (different rows of matrix
B) sparsity, we assume that only a small number of input
features may be related to the output features, i.e. many rows

of matrix B will be zero. Secondly, for intragroup (each row
of matrix B) sparsity, we assume that each row of matrix
B will also be sparse, but has different level of intragroup
sparsity. We set Penalty = λ ∑

P
j=1 a j||B j∗||1 where λ > 0, and

a j > 0 ∀ j = 1, ...,P. We define A = [a1, ...,aP]
T to model the

intragroup sparsity where a j is non-negative scaling parameter
for modelling the sparsity level for the jth row of matrix B.
Intuitively larger a j will induce more sparse solutions on jth
row of B, and smaller a j will have more non-zero entries.
When the dimensionality of input features is high (number of
rows of matrix B is also large), it is impractical to determine
the regularization parameters a j by cross validation while our
method can automatically choose those a js which can best
fit the data. The penalty λ is used to model the intergroup
sparsity. Larger λ value means more rows of matrix B to be
zero while smaller λ has less. We model the two-level sparsity
pattern by assuming different distributions on B and propose
the following model:

Â, B̂ = argminA,B

Q

∑
k=1

1
2
(yk−XB∗k)T (yk−XB∗k)+Penalty. (5)

By considering a serial of Laplacian distributions on B, we
propose the penalty for LapMOR (Laplacian Multiple Output
Regression) which is defined as follows:

Penalty =−log
( P

∏
j=1

Q

∏
k=1

λa j

2
exp−λa j |B jk|

)
= λ

P

∑
j=1

a j||B j∗||1−Q
P

∑
j=1

log a j + const.

s.t. λ > 0, a j > 0 ∀ j = 1, ...,P
P

∑
j=1

a j = 1.

(6)

The first term in (5) is the error for fitting and (5) is the
regularization term with a j automatically learned from data. By
setting ∑

P
j=1 a j = 1, the learned optimal a j can be interpreted

as the relative sparsity for jth row with larger a j for more
sparse B j∗. In order to reduce the unstable estimations made by
LapMOR introduced by the highly dependent input features,
we further extend the model by imposing a serial of mixtures
of Laplacian and Gaussian distributions on B j∗ and propose the
following penalty for model LGMOR (Laplacian and Gaussian
Multiple Output Regression):

Penalty =−log
(
(

P

∏
j=1

Q

∏
k=1

λαa j

2
exp−λαa j |B jk|)

• (
P

∏
j=1

Q

∏
k=1

√
λ (1−α)a j√

2π
exp−

λ (1−α)a j
2 B2

jk)

)
= λα

P

∑
j=1

a j||B j∗||1+
λ (1−α)

2

P

∑
j=1

a j||B j∗||22

− 3Q
2

P

∑
j=1

log a j + const,

s.t. λ > 0, 0≤ α ≤ 1, a j > 0 ∀ j = 1, ...,P
P

∑
j=1

a j = 1.

(7)



LGMOR uses a more general assumption (mixture of Lapla-
cian and Gaussian) on the distribution of regression coeffi-
cients rather than Laplacian alone. It takes advantage of both
Laplacian distribution for sparsity and Gaussian distribution
for shrinkage. There is always a trade-off between the sparsity
level introduced by Laplacian and the shrinkage estimation
from the Gaussian.

We use cross validation to choose λ , α in LGMOR by
choosing the parameter with best prediction performance. The
prediction performances on normalized validation datasets with
various αs and λ s are shown in Fig. 1 (for family cut dataset
in section III).
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Fig. 1. The validation RMSE by using different λ s and αs for LGMOR

B. Parameter Estimation

Although the optimization problem in equation (5) is non-
convex, by fixing either A or B, the equation (5) becomes
convex for B or A with respect to the other parameter, which
can be solved efficiently by alternatively solving the equation
with A or B fixed [21] in Algorithm 1. By fixing A, we can
solve (5) efficiently by least angle regression or coordinate
descent algorithm. By fixing B, we can solve (5) by the
projected gradient descent method [11].

III. EMPIRICAL STUDIES

We compare the performance of our approaches LapMOR
and LGMOR with other approaches linear regression, inde-
pendent Lasso, independent Elastic Net, dirty model, rMTFL,
LapMOR and LGMOR on both synthetic and real datasets.
Experiments show that our method can reduce the false
positive rates and produce better prediction results on the
testing datasets. We use the packages glmnet [13], [14] and
MALSAR [6] for Lasso, Elastic net and Dirty model, rMTFL
for comparison.

A. Synthetic data

We generate data with N = 60 samples, P = 100 input
features and Q= 10 output features. The matrix X is generated
with each feature sampled randomly and independently from

Algorithm 1: Algorithm for solving equation (5)
Input:

X: an N×P matrix for input features;
Y: an N×Q matrix for output features;
α: percentage for Laplacian prior (for LGMOR

only);
λ : penalizing coefficient;
ε: convergence threshold.

Output:
A: a length P vector [a1, ...,aP] for different rows

of matrix B;
B: a P×Q regression coefficient [B jk]P×Q matrix.

1 for j = 1 to P do
2 a(0)j = 1

P ;
3 for k = 1 to Q do
4 B(0)

jk = Random Number;

5 t = 0;
6 repeat
7 t = t +1;
8 Case LapMOR:
9 B(t) = argminB ∑

Q
k=1

1
2 (yk−XB∗k)T (yk−XB∗k)+

λ ∑
P
j=1 a(t−1)

j ||B j∗||1;

10 A(t) = argminA λ ∑
P
j=1 a j||B(t)

j∗ ||1−Q∑
P
j=1 loga j,

such that a j > 0 ∀ j = 1, ...,P and ∑
P
j=1 a j = 1;

11 Case LGMOR:
12 B(t) = argminB ∑

Q
k=1

1
2 (yk−XB∗k)T (yk−XB∗k)+

λα ∑
P
j=1 a(t−1)

j ||B j∗||1 +λ (1−α)
2 ∑

P
j=1 a(t−1)

j ||B j∗||22;
13 A(t) =

argminA λα ∑
P
j=1 a j||B(t)

j∗ ||1+
λ (1−α)

2 ∑
P
j=1 a j||B(t)

j∗ ||22
− 3Q

2 ∑
P
j=1 loga j, such that a j > 0 ∀ j = 1, ...,P and

∑
P
j=1 a j = 1;

14 until ||A(t)−A(t−1)||∞< ε and ||B(t)−B(t−1)||∞< ε;
15 A = A(t),B = B(t);

Gaussian distribution N (0,1). We set 65 rows of matrix B to
be exactly zero. For the remaining 35 rows, we divide them
into five groups, each with seven rows. Each element in the ith
group is set to be non-zero with probability i

5 for 1≤ i≤ 5. All
non-zero elements in B are randomly generated with Gaussian
distribution N (0,0.5), and two Gaussian noises ε1 and ε2 with
distribution N (0,0.02). Finally we set Y =XB+ε2 and update
X = X +ε1. By using cross validation on all 60 samples (each
time 48 samples for training and the left 12 for validation),
we set the optimal λ for LapMOR and LGMOR (α = 0.5)
to be 21 and 22 respectively. For easy comparison of the
performance, we fix α = 0.5 for both Elastic Net and LGMOR.
The plots of generated and estimated parameters B are shown
in Fig. 2. The receiver operating characteristic (ROC) curves
of various methods for Bs predicted by different methods are
shown in Fig. 3 (darker grids mean larger absolute values).
From the ROC curve, LapMOR and LGMOR have better
performances with less False Negatives and True Negatives.
Lasso performs better than Elastic Net because the simulated
data does not contain any highly dependent input features,
similarly for LapMOR and LGMOR. Dirty model performs



poorly because the sparsity for each row of matrix B is very
strict since without considering the outliers. Note that these
methods consider an uniform penalty parameter which leads
to their poor performances.

Generated Elasti.Lasso rMTFL LGMORLapMORDirty

Fig. 2. Real parameters, Lasso, Elastic Net (α = 0.5), Dirty Model, rMTFL,
LapMOR and LGMOR (α = 0.5)
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B. Real World Data

We use the published sequencing data from the ICoMM
(International Census of Marine Microbes) project [25] (avail-
able in http://icomm.mbl.edu/microbis/) for comparison. The
ICoMM database contains altogether 644 environmental sam-
ples collected from sea water, river water, sediments or
biofilms in 297 different geography sites over the world.
The published sequencing data includes sequences from the
bacteria communities of 487 samples (in 246 sites), which are
sequenced from the V6 region of the prokaryote 16S rRNA.
The sequenced data is processed by the VAMPS pipeline
(http://vamps.mbl.edu) and altogether 8,570, 814 cleaned, an-
notated sequences (1,378,983 non-redundant) are published.

1) Preprocessing of ICoMM Data: We employ ESPIRIT-
Tree [8] to cluster sequences into OTUs at various distance
levels. To tackle the problem that ESPRIT-Tree uses a fixed
distance threshold to define OTUs (operational taxonomy
units) [7], which is inconsistent with genomic variations be-
tween taxa in real-world. We further process the clustering
tree obtained by ESPRIT-Tree using a semi-supervised method
called VI-Cut [23]. VI-Cut adopts the portion of annotated
sequences in the dataset to aid the partitioning of OTUs, which
generalizes well on unknown groups [27]. It should be noted
that the annotations given by VAMPS may contain errors,
which will degrade the quality of OTU picking. Hence, before
running VI-Cut, we examine the OTUs generated by ESPRIT-
Tree at distance levels, which are believed to have no family
and genus mixing. If sequences from two or more family- or
genus-levels co-exist in the same OTU, the annotations are
considered unreliable. As a result, 18,620 family-level OTUs
and 26,185 genus-level OTUs, are extracted using the above
pipeline.

2) Experiment Results: We select the top 500 abundant
OTUs for family and genus cut with abundance of 91.3%
and 86.07% among all samples. We select 271 samples with
complete depth, temperature and salinity information, these
three factors, chosen based on principal coordinate analysis,
are strongly related to most variant principal coordinates (PCs)
and consistent with previous findings such as [16]. We extract
the OTU abundance matrices from the top 500 abundant OTUs
for both family and genus cut OTUs with depth, temperature
and salinity information to form the environmental factor
matrix, i.e. OTU abundance matrix as input feature matrix X
and environmental matrix as output feature matrix Y . We get
the value ranges for depth (between 0.000 and 11.949 on log
scale), salinity (between 0.000 and 40.878), and temperature
(between -2.000 and 28.700). The OTUs and environmental
factors are normalized to have zero mean and unit variance.
The data are divided into 200 samples for training and the
remaining 71 samples for testing. For obtaining the optimal
λ and α , we use five-fold cross validation. We repeat the
experiment for 66 times by randomly partitioning our dataset.
The results of average RMSE (root mean square error) and
derivative for family cut dataset and genus cut dataset are
shown in Table I and Table II respectively. By using five-
fold cross validation, for LapMOR, we set λ = 1000 for
both family cut and genus cut dataset, similarly, α = 0.1
and λ = 7000 for LGMOR for both datasets. Regression has
the worst performance since the empirical covariance XT X is
singular which leads to overfitting. LapMOR and LGMOR
perform better on the OTU datasets than others with lower
variances of prediction errors. Elastic Net performs better than
Lasso since there are a lot of highly dependent OTUs, similar
reason for the performance of LapMOR and LGMOR. rMTFL
performs better than dirty model since it considers a looser
restriction on the row sparsity. As our method is more flexible
on the rows sparsity and shrinkage estimation, our methods
have the best performance and they fit better on the training
dataset than others too except for regression.

IV. CONCLUSIONS

In this paper, we propose a multiple output regression
method with intra- and inter-group sparsity and shrinkage
estimation. We propose a probabilistic formulation for the



TABLE I. PREDICTION PERFORMANCE COMPARISON FOR FAMILY
CUT DATASET

Depth Salinity Temperature Average
Regre. 8.298±2.063 11.091±2.411 9.467±2.629 9.618±2.368
Lasso 2.195±0.584 4.711±1.646 4.931±3.957 3.946±2.062
Elast. 1.905±0.428 3.845±0.970 5.149±4.864 3.633±2.087
Dirty 2.263±0.226 4.730±1.000 4.498±0.535 3.830±0.587

rMTFL 1.860±0.864 4.013±1.730 4.048±1.770 3.307±1.454
LapMOR 1.674±0.174 3.878±0.974 3.084±0.501 2.879±0.550
LGMOR 1.513±0.152 3.533±0.800 2.967±0.527 2.671±0.493

TABLE II. PREDICTION PERFORMANCE COMPARISON FOR GENUS
CUT DATASET

Depth Salinity Temperature Average
Regre. 6.556±1.857 8.250±2.100 8.864±2.271 7.889±2.076
Lasso 1.962±0.331 4.229±1.205 4.377±2.184 3.523±1.240
Elast. 1.798±0.325 3.960±1.329 3.746±0.921 3.169±0.858
Dirty 1.948±0.225 4.092±0.907 3.924±0.654 3.321±0.595

rMTFL 1.785±0.603 3.908±0.976 3.781±0.946 3.158±0.842
LapMOR 1.535±0.174 3.706±0.838 3.038±0.499 2.760±0.503
LGMOR 1.456±0.135 3.426±0.728 2.993±0.526 2.625±0.463

distributions of regression coefficients (Mixture of Laplacian
and Gaussian distributions). We apply our method to the
global ICoMM dataset to study the interaction effects between
microbe communities and environmental factors. Our method
outperforms other methods such as Lasso, Elastic Net, dirty
model and rMTFL on prediction.
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