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Abstract—Predicting drug-target interaction using computa-
tional approaches is an important step in drug discovery and
repositioning. To predict whether there will be an interaction
between a drug and a target, most existing methods identify
similar drugs and targets in the database. The prediction is
then made based on the known interactions of these drugs
and targets. This idea is promising. However, there are two
shortcomings that have not yet been addressed appropriately.
Firstly, most of the methods only use 2D chemical structures and
protein sequences to measure the similarity of drugs and targets
respectively. However, this information may not fully capture
the characteristics determining whether a drug will interact
with a target. Secondly, there are very few known interactions,
i.e. many interactions are “missing” in the database. Existing
approaches are biased towards known interactions and have no
good solutions to handle possibly missing interactions which affect
the accuracy of the prediction. In this paper, we enhance the
similarity measures to include non-structural (and non-sequence-
based) information and introduce the concept of a ‘“‘super-target”
to handle the problem of possibly missing interactions. Based on
evaluations on real data, we show that our similarity measure is
better than the existing measures and our approach is able to
achieve higher accuracy than the two best existing algorithms,
WNN-GIP and KBMF2K.

I. INTRODUCTION

Drug targets (or simply targets) are proteins that are related
to diseases. If a drug interacts with a target, that drug can
possibly be used to treat the corresponding disease. The num-
ber of (approved) drugs (< 7,000) having known interactions
with targets is extremely small compared to the number of
all available chemical compounds (35 million) that could be
potential drug candidates [1]. Testing these candidates against
each possible target using laboratory experiments would re-
quire a huge amount of money and a very long time. In
the past, there has been quite a number of successful cases
where an approved drug was found to be useful to treat
another disease that is not the original target the drug was
designed for (drug repositioning [2]). Identifying new drug-
target interactions (DTI) for either approved drugs or new drug
candidates is a crucial step in drug discovery and repositioning.

To speed up the process, a possible direction is to predict
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new interactions for new (or approved) drugs based on known
drug-target interactions using computational approaches before
we conduct laboratory experiments. Existing computational ap-
proaches could be divided into two main categories — docking
simulation and machine learning. Docking simulation usually
requires the three-dimensional (3D) structures of targets (tra-
ditional docking) or a large set of drugs (inverse docking).
This requirement is always difficult to meet due to the small
size of known 3D structures or available drug set. Besides, the
docking approach could be rather time-consuming. In contrast,
machine learning is becoming more and more popular in DTI
prediction because it is much more efficient when dealing with
a large number of drug or target candidates.

We classify the DTI prediction problem into 4 types. A
known (approved) drug is a drug with at least one known
interaction with a target. A known target is a target known
to interact with at least one drug. A potential drug candidate
(“new drug”) is one without any known interaction. Similarly,
a “new target” is a potential target with no known interaction
with any drugs. Given a set of known DTI interactions, we can
predict (S1) new DTI between known drugs and known targets;
(S2) DTI between new drugs and known targets; (S3) DTI
between known drugs and new targets; and (S4) DTI between
new drugs and new targets. It is obvious that S1 has the most
information about the concerned drug and target pair, S2 and
S3 have less information, whereas S4 has the least information.
S2 and S3 are sort of symmetric (i.e., methods developed for
S2 can usually be used to solve S3 and vice versa). In this
paper, we mainly focus on new drugs, i.e. S2 and S4.

Existing algorithms predicting new drug-target interaction
based on known drug-target interaction usually represent the
known drug-target interaction as a bipartite graph [3] in which
drugs and targets are nodes and the interactions are undirected
edges between these nodes. Thus, predicting new drug-target
interaction is equivalent to predicting new edges in the bipartite
graph. Some algorithms (e.g. [4]) try to predict new edges
based on the topology of this graph. To predict if a drug d
interacts with a target ¢, a general idea is to consider the edges
involving d and t, e.g. (1) the shortest path between d and ¢
in the graph; (2) the number of length-2 paths connecting d
and another drug d’ interacting with ¢; and (3) the degree of ¢.
However, these algorithms do not work well for S2, S3, and
S4 since these problems involve either a new drug or a new
target which is not connected to the rest of the graph. Thus,
this approach could only handle S1 and may not be very useful



for other cases.

Another popular approach for predicting DTI is to build
a classifier based on known interactions (machine learning
approach). For example, [5] considers each drug-target pair
as one sample. Each drug-target pair is labeled as positive if
and only if they are known to interact and can be represented
by a feature vector. The features of a certain drug are based
on its two-dimensional (2D) chemical structure (see Fig. 1
for an example) while those of a target are derived from its
protein sequence. The classifier, e.g. support vector machines
(SVMs), is built on the structural similarity of the drugs and
the sequence similarity of the targets. By using kernel tricks,
[6] follows a similar approach which allows SVMs to learn a
nonlinear classifier effectively. Instead of building a general
classifier for all targets, [7], [8] tries to build a separate
classifier for each target based on the bipartite local model
(BLM) approach. For each target, each drug is considered as
one sample and the classifier is built based on the structural
similarity of the drugs. However, the BLM approach and all
the above-mentioned classifier based methods suffer the same
problem of biased training data since there are a lot more
negative samples than positive samples (known interactions).
In fact, quite a number of those negative samples should be
positive, just that we do not know that they interact (“missing
interactions”).

To solve this problem of biased training, Laarhoven et al.
introduced a variant of the BLM, named Gaussian interaction
profile (GIP) [9], by only using positive samples to build
the classifiers. However, this variant has another bias. The
targets interacting with more drugs are more likely to be
predicted to interact with a new drug since the classifier is
built on the sum of similarities between the new drug and the
drugs interacting with the concerned target. Its extension by
incorporating a weighted nearest neighbor (WNN) algorithm,
WNN-GIP [10] tries to rectify this bias by only considering the
nearest neighbors of the new drug (i.e., the drugs most similar
to the new drug). Nevertheless, GIP and WNN-GIP could not
handle S4 well because no positive samples are available for
the new drugs and targets in S4.

Recently, matrix factorization techniques such as kernel-
ized Bayesian matrix factorization (KBMF2K) [11], which
were originally employed in recommendation systems [12],
have been applied to DTT prediction. It tries to predict a set of
common features to represent each drug and target such that
the drug similarity, target similarity and known interactions
can be described based on these features. Then it uses these
common feature to predict the drug-target interactions. The
problem of this approach is that the features have no explicit
chemical or biological meaning. It is difficult to justify if
the prediction is reasonable and could practically guide drug
design. Again, since the factorization depends on the known
interactions, the missing interactions will still affect the cor-
rectness of both D and T'.

To summarize, two issues are not yet solved.

(1) Missing interactions: No existing approach is able
to handle the huge number of missing interactions in the
databases. For example, the drug D02356 has interactions with
121 targets, however, most of the drugs similar to D02356 only
have a few interactions and these drugs also share no common

targets. It is likely that there are missing interactions among
these drugs and targets.

(2) The similarity measure: Many approaches rely on the
similarity measures of drugs and targets. Existing measures
only consider the chemical 2D structures of the drugs and the
protein sequence of the targets. There are quite a few examples
showing that these measures cannot reflect the true similarity
with respect to the interaction with targets. One example is the
drugs D00316 and D01132. They share many targets but their
2D chemical structural similarity is only 0.275 which ranks 10
out of the most similar 25 drugs to DO1132 (Fig. 1 shows their
dissimilar 2D structures). This implies that structural similarity
alone cannot fully capture the characteristics of drugs affecting
DTI. The same argument applies to the sequence similarity of
targets.
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Fig. 1. The 2D chemical structures of the drugs D00316 and D01132, as

extracted from KEGG [13].

Our contributions: To handle the large amount of missing
interactions, we propose the concept of “super-target” to
cluster similar targets. A drug, if known to interact with a
target, is assumed to interact with the corresponding super-
target group. For example, in S2, given a new drug and a
known target, we consider the super-target group containing
the known target. Our prediction is based on two levels of
probabilities: how likely the new drug will interact with the
members in the super-target group and how likely the new
drug will interact with the concerned target. By combining the
probabilities, we compute a confidence score'. The idea can
be extended to handle S4 since even for a new target, we can
still group it into a target group based on the target similarity
(Section II-B).

In order to further reduce the bias on positive samples, we
extend WNN-GIP’s idea of using the top K nearest neighbors
to negative samples as well. Given a new drug and a known
target (S2), in addition to considering the top K nearest neigh-
bors of the known drugs interacting with the concerned target,
we also consider the top K nearest neighbors of the known
drugs that do not have interaction with the concerned target.
Thus, we have a more balanced set of positive and negative
samples. Considering that under most cases, only a few drugs
interact with the concerned target, we ran experiments with
K ranging from 1 to 5, and finally selected 3 as K’s value
since beyond K = 3, both the area under the curve (AUC)
and the area under precision-recall curve (AUPR) drop or do
not increase much.

We also developed new similarity measures for drugs and
targets. For drugs, in addition to 2D chemical structures,
we incorporate a score based on the Anatomical Therapeutic
Chemical (ATC) Classification System. The ATC Classification
System divides drugs into different groups according to the
organ or system on which they act as well as their chemical,

'We can use a similar concept of a “super-drug” to handle S3.



pharmacological and therapeutic properties [14]. Hence, the
ATC codes provide non-structural information related to target
interaction for drugs. For targets, besides the sequence similar-
ity score, we also make use of their functional categories (FCs),
which measure the target similarity according to the classified
chemical reactions catalyzed by targets or the annotating
functions of protein-coding genes.

Based on the real data, we show that our similarity measure
is superior to the existing similarity measures, and with the
concept of a “super-target”, our approach is able to handle
some of the missing interactions and achieve a higher accuracy
than both WNN-GIP and KBMF2K, which are the most
popular existing performing tools.

II. METHOD
A. DTI prediction as probabilistic events

The interactions between m known drugs and n known
targets are represented by an interaction matrix A,,xp, in
which A(Z,7) = 1 when there is a known interaction between
drug d; and target t;, and A(¢,j) = O otherwise. Given a
new drug d, (i.e. d, ¢ the set of known drugs {d;}), we
aim to predict the interaction between drug d, and target ¢;
(DTI prediction). In addition to the interaction matrix A,,x,
both the pairwise similarities between drugs and the pairwise
similarities between targets would be used for DTI prediction
(Section II-C).

Inspired by the multi-label K nearest neighbors algorithm
(ML-KNN) [15], we treat the DTI prediction between d, and
t; as probabilistic events. Consider a new drug d, with 3
similar drugs that interacts with a target ;. Assume among
all known drugs with exactly 3 similar drugs interacting with
t;, 90% of them also interact with ¢;. Then d, would have
a 90% probability to interact with ¢;. The calculation of this
probability depends on the drug similarities and known drug-
target interactions (Section II-B).

Let p*J be the probability that d, interacts with tjs
A(z,j) = 1. When d, € {d;}, if it interacts with ¢;, p =i 1
otherwise, p®/ = 0. When d, ¢ {d;}, p®7 € [0,1] is the
confidence score of the potential interaction between d, and
t;. Based on the pairwise drug similarities, the K neighbors
of a drug are defined to be the top K most similar drugs
to it. Let N(x, K) be the set of K neighbors of d,, and
n(z,j,K) = > 4en@ i) Ali,j) = c be the number of
neighbors that interact with ¢;. We attempt to calculate p™’
for a new drug d, ¢ {d;} based on the observed n(z, j, K)
as in (1).

Prla(z,j) = 1] - Prn(z,j, K) = cla(x
Zb:o,l Prla(xz,j) =b] - Pr

[n('r’ij) = c|a(x,j) = b]
(1)

where a(x, 7) is the binary indication of whether d,. inter-
acts with ¢;. We adopt the same way as that of ML-KNN [15]
to estimate the two probabilistic components Pr [a(z, j) = b]
and Pr[n(z,j, K) = cla(z,7) = b] in (1) from the m known
drugs. Pr[a(x, j) = b] is the prior probability which could be
estimated from A,,«, by (2).

Pria(e,) =1~ [1+ Y AG.)] /(m+2)
Prla(z,j) = 0] =1 — Prla(z,j) = 1]

(@)

Prn(z,j, K) = cla(x, j) = b] can be estimated similarly,
for each known drug d;, its K neighbors N (i, K) are first
obtained via drug similarities and the number n(%,j, K) of
these drugs interacting with each known target ¢; can be
counted. After collecting a set of n(¢, j, K) for different known
d;’s and t;’s, the value of Pr[n(z, j, K) = cla(z, j) = b] can
be estimated by (3).

1+, Ind[A(i, j) = b&n(i, j, K) = (|

(K +1)+ Y03, Ind[A(i,j) = b& n(i, j, K) = c/}@

where Ind|[P] is the binary indication of whether statement
P is correct or not. Notably, the 1’s in the numerators of
formulas (2) and (3) guarantee non-zero probabilities for the
interaction between a new drug and a new target (S4). Finally,
for each value of b, a table is built for the drugs interacting with
(b = 1) and not interacting with (b = 0) target ¢; respectively,
which contains K + 1 above probability entries corresponding
to the K + 1 possible values of ¢ =0,1,..., K.

B. Super-targets for DTI prediction

ot ottt

Fig. 2. Tllustration of the concept of a super-target.

When considering the missing but potential interaction
between ¢; and d, in A, x, (e.g. similar drugs share no
common target), we first cluster all the targets which are
similar to ¢; into one group. If d, interacts with this group of
targets, d, would very likely interact with ¢; as well. Let the
n targets be T = {t1,...,t,} which can be partitioned into
p groups {sti,...,st,} by a clustering algorithm according
to the pairwise similarities between targets such that each
group sty(g = 1,...,p) contains non-overlapped targets and
Ur_ sty =T. Each group st is defined as a super-target.
Aﬁ drugs interacting with at least one target in the super-target
form the set of drugs interacting with the super-target. Thus,
the profiles of targets belonging to the same group represented
in A,,x, are combined into the profile of a super-target as
represented in a new collapsed matrix S Ay, «, which indicates
the interactions between known drugs and super-targets. Fig.
2. illustrates the definition of a super-target.



We propose a two-stage approach to calculate the confi-
dence score of the potential interaction between a new drug d,,
and a known target ¢;. Using the same procedure in Section
II-A, we construct a new estimation of Prla(z,j) = b] and
Pr[n(z,j,K) = cla(z,j) = b] for each super-target by
replacing A, x» and target ¢;’s with SA,, ., and super-targets
sty’s respectively. Given a new drug d, and a known target
t;, we first calculate the confidence score s; between d, and
sty where t; € st,. Then we calculate the confidence score so
between d, and t; within super-target st,. The final confidence
score between d, and t; is defined to be the product of s; and
s2, which will be directly used to calculate the AUC and AUPR
when assessing the performance of our proposed method.

So far, we have focused on S2. S4 can also be handled
in a similar manner. Although there is no known interaction
between a new drug and a new target, if the new target can
be grouped with other targets (according to the similarity
measure) to form a super-target which interacts with some
known drugs that are similar to the new drug, we may predict
there is an interaction between the new drug and new target.

C. Similarity used in this paper

The drug similarities and target similarities widely used
in former publications are chemical-structure-based and
sequence-based respectively [8], [9], [10], [11], [16]. The
pairwise similarity between drugs is measured by aligning
their chemical structures [17], whereas the Smith-Waterman
alignment score [18] between protein sequences is used to
measure that between the targets.

Since drugs with different structures can interact with the
same target and proteins with different sequences may have
similar 3D structures corresponding to similar functions, we
propose to incorporate also ATC-based semantic similarity
for drugs and FC-based semantic similarity for targets. Both
ATC codes and FC codes are hierarchically semantic schemes
represented by a sequence of symbols and numbers, e.g. the
ATC code A10BAO2 and the FC code 3.4.11.4, organized from
high to low level. We calculate the semantic similarity between
two drugs according to their ATC codes (S%,(dy,d,)) and
that between targets according to their FC codes (S% (ty, t,,))
by counting the common sub-codes. Consider a ATC code or
FC code represented by a vector consisting of NV entries where
each entry denotes the sub-code in its corresponding level of
hierarchical scheme. If the first f entries of the two vectors
are the same, the semantic similarity between the two drugs
(targets) is % As we expect that drugs interacting with the
same target are similar, we only add the new semantic simi-
larities if combining them can make the drugs more similar,
otherwise we do not. Besides, when calculating the sequence
similarity score between two nuclear receptors (NRs) which
contain a highly conserved DNA-binding domain (DBD) and a
ligand-binding domain (LBD) [19], we calculate the sequence
similarity by performing Smith-Waterman alignment on the
sub-sequences in the LBDs of the proteins rather than their
whole sequences. The sub-sequences in the LBDs can be
extracted by the annotated boundary in SMART [20].

III. RESULTS

In this section, we first illustrate the effectiveness of the
new similarity measures for drugs and targets. Then we shall

compare our approach with two state-of-the-art approaches,
KBMF2K [11] and WNN-GIP [10], for predicting potential
interactions between new drugs and known targets (S2) using
four DTI datasets involving targets belonging to categories (1)
enzyme, (2) ion channel (IC), (3) G protein-coupled receptor
(GPCR) and (4) nuclear receptor (NR) respectively, which
were benchmark datasets for comparing the performance of
DTTI prediction algorithms originally provided in [7]. These
datasets were also used by KBMF2K [11] and WNN-GIP
[10]. Last, we shall exhibit the performance of our approach
in handling the missing interactions and S4.

A. Assessment

To evaluate the performance of the prediction algorithms,
based on all known DTI, we adopted the same datasets, the
same procedure and the same assessment as those used by both
KBMF2K [11] and WNN-GIP [10]. Note that the targets are
classified into four types: enzymes, IC, GPCR, and NR. We
adopted 5-fold cross validation (5-CV) as the testing strategy
in which we split randomly drugs in each dataset into 5 subsets
of roughly equal sizes, and used each subset as the testing set
and the remaining 4 subsets as the training set in turn. We
then repeated the whole procedure 5 times and evaluated the
performance of methods on four datasets. Finally, we adopted
Receiver Operator Characteristic (ROC) curve and Precision-
Recall (PR) curve to assess the performance by calculating
the areas under them (AUC and AUPR). Since AUPR punishes
incorrect top ranking predictions more than AUC [16], [21], we
paid more attention to AUPR in our experiments. The detailed
information of AUC and AUPR can be found in [21].

B. The effectiveness of new similarity

Recall that a good similarity measure is crucial in interac-
tion prediction since similar drugs tend to interact with similar
targets. We validated the effectiveness of our new measures
by comparing their performance for new drugs with that using
the old measures. Utilizing the new similarity measures, we
improved the performance for all datasets (Table I) in terms
of AUC and AUPR in cross-validation. This provides further
evidence that simply using the drug 2D chemical structures and
the target protein sequences may not be good enough to capture
their characteristics for prediction. Take the drug D00066
as an example which interacts with a protein HSA:2099.
Consider the top-five similar drugs to DO0066 interacting with
HSA:2099. If we use 2D structural similarity to rank the top-
five similar drugs, they are at ranks 7, 9, 10, 14 and 20
out of the 54 drugs (AUC = 0.938 and AUPR = 0.333). If
we integrate ATC-based semantic and 2D structural similarity
measures, they will be at ranks 4, 5, 7, 9 and 10 (AUC = 0.979
and AUPR = 0.792). Thus, using the ATC-based semantic
similarity measures can improve the performance of predicting
DTI. Since KBMF2K (AUC = 0.625 and AUPR = 0.093) and
WNN-GIP (AUC = 0.438 and AUPR = 0.066) consider 2D
structural similarity only, their performances on drug D00066
are not good.

Similarly, there is also a need to combine other information
derived from non-sequence based properties (e.g. FC) of the
target in order to assess target similarity more accurately. In
particular, if the sequences are remotely homologous, sequence
similarity may not be a good similarity measure.



TABLE 1.

COMPARING THE PERFORMANCES OF NEW AND OLD SIMILARITY MEASURES

Enzyme IC GPCR NR
AUC|std AUPR std AUC|std AUPR std AUC|std AUPR [std AUC|std AUPR [std
Old 0.8050.005  0.332]0.009  0.776]0.009  0.296/0.027  0.854|0.008  0.304]0.017  0.860/0.016  0.476]0.028
New  0.812/0.010  0.385/0.011  0.811]0.012  0.367]0.018  0.875/0.002  0.414|0.021 0.871/0.018  0.533]0.043

C. Comparison with other methods for new drugs

We compared our method with two recent approaches,
KBMF2K [11] and WNN-GIP [10] (Table II). From the results,
we can see that our method achieved better results in terms
of both AUC and AUPR. Though the performance of our
approach on Enzyme dataset shows a ~ 5% decrease in the
AUC value, it has a ~ 10% increase in the AUPR value. We
emphasis more on AUPR since we want to penalize highly-
ranked false positive predictions more when the number of
pairs without known interaction greatly exceeds the number
of pairs with known interaction. Regarding the running time,
our method has the lowest time complexity of O(kmn), where
k is the number of nearest neighbors, whereas the complexity
of KBMF2K is O(rm? + rn® + r®) where r is the dimension
of subspace in the method, and the complexity of WNN-GIP is
O(m?+n3) (we exclude the time for computing the similarity
matrices for drugs and targets). Therefore, our approach out-
performs both KBMF2K and WNN-GIP in accuracy and time
complexity (see the actual running times in Table II which
show that our approach is over 20 times faster in practice than
the other two approaches).

The drug D00548 is an example of explaining why we
out-performed other approaches in addition of using a better
similarity measurement. D00548 connects with 15 similar
targets of which 9 connect with other drugs dissimilar to
D00548. After wrapping those targets into a super-target, we
found that the top ranked drugs (such as DO00711) similar
to D00548 connect with the super-target and the known
interaction between D00711 and the proteins in the super-target
can be predicted with a high confidence level (AUC = 1.000
and AUPR = 1.000) which is better than our approach without
considering super-targets (AUC = 0.978 and AUPR = 0.743).
For the other two approaches KBMF2K (AUC = 0.714 and
AUPR = 0.115) and WNN-GIP (AUC = 0.832 and AUPR =
0.176) which do not introduce the notion of super-targets, the
performances are even worse.

D. Possible missing interactions

Missing interactions usually occur when a known drug
interacts with many targets but the drugs similar to it only
interact with a few targets and share with no or very few
common targets. The other case is for S4 (new drugs and new
targets) since we have little knowledge about both the drugs
and the targets. In this section, we investigate the performance
of our approach in two scenarios.

Defining a drug’s degree as the number of targets interact-
ing with it, we firstly investigated the algorithms’ performances
with high-degree drugs. We selected those drugs with %
maximum drug degree assuming that drug degrees follow the
power law distribution [22]. The prediction results confirm that
our approach outperforms the other two approaches with high-

degree drugs (Table III).

For S4, since the drug and target are new, there should
not be any known interaction between the new drug (target)
and known targets (drugs) and it is likely that there is only
one interaction between a new drug and a new target which
is unknown to us. Thus, the performance of a DTI prediction
algorithm cannot be appropriately evaluated using AUC and
AUPR as there is only one possible point on the curve. To
evaluate the performance of solving S4, we focus on the top-
ranked (i.e. most confidently) predicted interaction for each
new drug. We apply the one-error [23] metric to evaluate the
performance of the DTI prediction algorithms. For each drug,
we determine whether it has known interaction between its
top-ranked predicted target. If there is no known interaction
between the drug and its top-ranked predicted target, the
prediction is considered wrong. The one-error measures the
fraction of drugs with a wrong prediction — note that when
there is only one target interacting with the drug (the usual
case in S4), one-error is identical to an ordinary classification
error [15]. The smaller the value of one-error, the better the
performance. The prediction results for the drugs under S4 are
listed in Table IV. Since our approach have smaller one-errors
than the others (except in the NR dataset where all approaches
have the same performance), our approach outperforms other
approaches in predicting interactions between new drugs and
new targets.

IV. CONCLUSIONS

In this paper, we have addressed the following two impor-
tant issues that were not solved in previous approaches. All
the previous methods only compute the similarity of drugs
based on the 2D chemical structures of the drugs and the
similarity of targets based on the corresponding protein se-
quences. However, cases have shown that the 2D structures and
sequence similarity may not fully capture the characteristics
of the interaction between drugs and targets. To resolve this
issue, we introduced a non-structural-based similarity metric
for drugs and a functional-category-based similarity metric
for targets, integrating them with structure-based similarity of
drugs and sequence-based similarity of targets respectively.

Another critical issue is that many interactions are missing
in the database, and none of the previous approaches has a
good solution to handle missing interactions. In our approach,
we have proposed the concept of a “super-target” to group
similar individual targets together as well as drugs interacting
with them so that the drugs interacting with the same super-
target are as similar as possible when no or only a few
similar drugs interact with the same individual target. This
“super-target” idea is particularly useful in two scenarios in
which missing interactions may play an important role in the
prediction: (1) it could predict the interactions for a drug which
potentially interacts with a lot of similar targets even if other
drugs have few interactions with these targets; (2) it could
predict the interactions between new drugs and new targets if



TABLE II.

COMPARING THE PERFORMANCES OF KBMF2K, WNN-GIP AND OUR METHOD

Enzyme IC GPCR NR Total
AUC|std AUPR |std AUC|std AUPR |std AUC|std AUPR std AUC|std AUPR|std  running time

KBMF2K 0.812|0.004  0.287]0.021 0.802]0.006 0.245]0.023 0.840]0.009 0.347(0.028 0.810]0.025 0.354|0.063 115.4 min

WNN-GIP  0.861]/0.004  0.280]0.014  0.775]0.006 0.233]0.024  0.872]0.008 0.311]0.021 0.839]0.023 0.456|0.065 190.9 min

Ours 0.812|0.010  0.385]0.011 0.811]0.012 0.367]0.018 0.875]0.002 0.414(0.021 0.871]0.018 0.533]0.043 5.5 min

TABLE III. PERFORMANCE OF OUR METHOD: HIGH-DEGREE DRUGS . . . .
[8] J.-P. Mei, C.-K. Kwoh, P. Yang et al., “Drug—target interaction predic-
tion by learning from local information and neighbors,” Bioinformatics,
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