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Abstract

Background: DNA assembling is the problem of determining the nucleotide sequence of a
genome from its substrings, called reads. In the experiments, there may be some errors on the
reads which affect the performance of the DNA assembly algorithms. Existing algorithms, e.g.
ECINDEL and SRCorr, correct the error reads by considering the number of times each length-k
substring of the reads appear in the input. They treat those length-k substrings appear at least M
times as correct substring and correct the error reads based on these substrings. However, since
the threshold M is chosen without any solid theoretical analysis, these algorithms cannot guarantee
their performances on error correction.

Results: In this paper, we propose a method to calculate the probabilities of false positive and false
negative when determining whether a length-k substring is correct using threshold M. Based on this
optimal threshold M that minimizes the total errors (false positives and false negatives).
Experimental results on both real data and simulated data showed that our calculation is correct
and we can reduce the total error substrings by 77.6% and 65.1% when compared to ECINDEL and
SRCorr respectively.

Conclusion: We introduced a method to calculate the probability of false positives and false
negatives of the length-k substring using different thresholds. Based on this calculation, we found
the optimal threshold to minimize the total error of false positive plus false negative.

Background BAC-by-BAC approach [1], Sanger technique [2], for get-
DNA assembling is the problem of determining the nucle-  ting reads from a genome and there are many assembly
otide sequence of a genome from its substrings, called  algorithms [3-5] for solving the DNA assembling prob-
reads. Since DNA assembling is the first step in bioinfor-  lem. In recent years, there is a technology breakthrough

matics research, there are many different technologies, e.g.  on getting reads from genomes. While the traditional
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technologies produce long reads (600-700 bp) with low
coverage (each nucleotide is covered by 10 different
reads) and low error rate, the Next Generation Sequencing
(NGS) technologies, e.g. Solexa [6], Illumina [7], can pro-
duce short reads (25-300 bp) with high coverage (each
nucleotide is covered by > 30 different reads) and high
error rate using much less time and cost. Theoretically, we
can determine the sequence of a genome in much shorter
time and lower cost using the NGS technologies. How-
ever, many existing DNA assembling algorithms [8-10]
were designed for traditional technologies which can han-
dle reads with low error rate only and many new algo-
rithms [11-14] designed for the NGS technologies assume
the input reads are error free. Correcting errors in reads
becomes an important problem for DNA assembling [15].

Since the NGS technology produces reads with high cov-
erage, a read may be sampled several times in the genome.
Under the assumption that an error read is unlikely to be
sampled several time, Sundquist et al. [16] designed an
algorithm called SHRAP which corrects the error reads by
considering the number of times a read being sampled. If
aread is sampled more than M times, for some predefined
threshold M, it is considered as a correct read, otherwise,
an error read which will not be used in the assembly step.

However, since the reads are randomly sampled from the
genome, some correct reads may be sampled less (<M
times) than the others, it is difficult to determine the
threshold M to minimize the number of false negatives
(increases with M) and the number of false positives
(decreases with M). Besides, many reads with only one or
two errors are wasted and will not be considered in the
assembly step.

In order to consider reads with only one or two errors in
the assembly step (which will increase the performance of
the algorithm), Chaisson et al. [17] proposed another
approach, called ECINDEL, to correct the errors in reads.
Instead of considering the number of times a read being
sampled, they considered the number of times each
length-k substrings, called k-tuple, being sampled. A k-
tuple is treated as correct if and only if it is sampled at least
M times. By reducing the value of k, a higher threshold M
can be set (compared to SHRAP) such that both the false
positives and false negatives are small. Besides, error reads
can be corrected by replacing some nucleotides in the
reads such that all length-k substrings in the reads are cor-
rect k-tuples. Although this method seems nice, the value
of k cannot be set to an arbitrary small number, e.g. when
k = 1, we know that all 1-tuple, 'A’, 'C', 'G' and 'T" are cor-
rect and we cannot use this information to correct the
error reads. Thus there is still a problem of how to set the
optimal thresholds k and M.
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Wong et al. [15] designed another algorithm, called
SRCorr, which improves ECINDEL by considering multi-
ple k and M. Instead of considering only one pair of
thresholds k and M, several sets of correct k-tuples with
different lengths are determined and used to correct the
error reads. Although some improvements have been
made on correcting error reads, it is still difficult to set the
thresholds.

In this paper, (1) we propose a method to calculate the
probabilities of false positive and false negative for differ-
ent substring lengths k and thresholds M in a data set.
Experimental results show that the calculated probabili-
ties match with the real data and simulated data. (2)
Based on this calculation, we calculate the optimal M
(minimizing the total errors = false positives + false nega-
tives) for each substring length k. By using the optimal
threshold M, the total errors can be reduced by 77.6% and
65.1% when compared to ECINDEL [17] and SRCorr [15]
respectively.

Results and Discussion

When the hidden genome G is known, we can count the
number of true positives TP (k-tuples occur in G which are
sampled at least M times), false positives FP (k-tuples do
not occur in G which are sampled at least M times) and
false negatives FN (k-tuples occur in G which are sampled
less than M times) for each threshold M. Therefore, we can
find the optimal threshold M that minimizes the total
errors FP + FN.

However, when solving the DNA assembling problem, the
genome G is unknown. Both ECINDEL [17] and SRCorr
[15] do not have a sound theoretical analysis on how to
set the threshold M. When the number of sampled reads
is large, even the incorrect k-tuples are sampled M times or
more, these algorithms have many false positives. When
the number of sampled reads is small, even the correct k-
tuples are sampled less than M times, these algorithms
have many false negatives. Instead of using an arbitrary
threshold M, we calculate the expected number of true
positives, false positives and false negatives according to
the equations described in the Methods Section. By con-
sidering the optimal threshold M that minimizes the
expected false positives plus false negatives (FP + FN), we
can get a set of k-tuples with the minimum expected
number of errors. In this paper, we will perform experi-
ments on both real experimental data and simulated data.
The experimental results show that (1) the expected
number true positives, false positives and false negatives
match with the real data. Therefore, the optimal threshold
M calculated by us minimizes the total errors (FP + FN).
(2) By using the optimal threshold M calculated by us, the
total errors reduced by 77.6% and 65.1% when compared
to ECINDEL and SRCorr respectively.
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Experimental results on real data

We performed experiments on a real data set from the
human genome. The hidden genome is a subregion of the
human genome of length 173427, length-35 reads are
sampled from the genome using Solexa [6] techniques.

Figures 1 and 2 show the number of false positives and
false negatives for different threshold M on this data set
when the substring length & are 15 and 20 respectively.
Since the number of false positives decreases with M and
the number of false negatives increases with M, the total
errors (FP + FN) is a U-shape curve. The minimum point
of this curve represents the optimal threshold M that min-
imizes the total errors. Besides, the optimal M* increases
when the length of the k-tuple decreases. For example, the
optimal threshold M* for 15-tuples is 32 which is larger
than the optimal threshold M* for 20-tuples (M* = 24).
According to the equations in the Method Section, we can
calculate the expected number of false positives and false
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negatives. Thus, we can find the threshold M with the
minimum expected number of errors. We find that the
threshold M is exactly the same as the optimal threshold
M*

We compared the number of false positives and false neg-
atives of ECINDEL and SRCorr with our algorithm. In the
experiment, we used k = 15 which is the default parameter
of SRCorr. Since SRCorr uses a range of substring length k,
when comparing the performance on k-tuples, we consid-
ered the 15-tuples of SRCorr only. When comparing the
performance on reads, SRCorr runs with multiple k and M
to correct errors on reads. Tables 1 and 2 show the per-
formance of the algorithms on 15-tuples and reads respec-
tively.

As described in Table 1, ECINDEL produces a set of 15-
tuples with 12670 errors (FP + FN). By considering multi-
ple thresholds, SRCorr reduces the number of errors to

false positive

------ false negative

—»x—f.p.+f.n.

101 121 141 161 181

k = 15. Number of false positives, false negatives and their sum of |5-tuples from real data versus multiplicity.
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8140. Since the converge of this dataset is high, instead of
using a small threshold M (12 and 15), we calculated an
optimal threshold M* = 32 and reduced the number of
errors to 2839. Therefore, the number of errors were
reduced by 77.6% and 65.1% when compared with ECIN-
DEL and SRCorr respectively. With a better set of 15-
tuples than ECINDEL and SRCorr, we corrected the reads
such that the total errors reduced to 33477 when com-
pared with ECINDEL(192533) and SRCorr(212287)
respectively. Note that when considering the corrected
reads, we have less false positives and less false negatives
than these two algorithms.

Experimental results on simulated data

In this section, we compared the performance of ECIN-
DEL, SRCorr and our algorithm on simulated data. The
simulated data was generated as follows: We generated a
length-g genome sequence G with equal occurrence prob-
ability of each nucleotide (1/4). n length-35 reads were
sampled from G with equal probabilities. Each nucleotide
in each read could mutate to another nucleotide with
probability p,,.. The probability that a nucleotide mutates
to each of the other nucleotide is the same (1/3). The n
length-35 reads (after mutation) were considered as input
for the algorithms. Similarly with the experiments on real
data, we set the default parameter k = 15 of SRCorr when
comparing the k-tuples. When comparing the perform-
ance on reads correction, SRCorr runs with multiple k and
M.

Tables 3 and 4 show the performances of the algorithms
on 15-tuples and reads respectively when g = 79745, n =
220000 and p,,, = 4%.

Since there were relatively fewer reads being sampled
(coverage = 2.75x) in this data set, SRCorr applied a small
threshold M = 4 for the 15-tuples. As SRCorr chose this
threshold without much analysis, the threshold selected
was too small such that there were many false positives
and the total errors was 5269 for the 15-tuples. ECINDEL
applied a fix threshold M = 12 and the total errors was 22.
Based on the optimal threshold M* = 11 we derived, we
produced a set of 15-tuples with the fewest number of
errors (18 errors). Similarly for the real data set, since we
have derived a set of 15-tuples with less errors than ECIN-
DEL and SRCorr, we could correct more error reads than
ECINDEL and SRCorr (8872 errors instead of 95663
errors and 84735 errors). The corrected reads produced by
us had less false positives and false negatives than ECIN-
DEL. Since SRCorr applied a small threshold, 75863 more
false positive reads were introduced when compared with
our algorithm.

http://www.biomedcentral.com/1471-2105/10/S1/S15

Table 5 and 6 show the performances of the algorithms on
15-tuples and reads respectively when g = 79745, n =
1000000 and p,,, = 4%.

When compared to the previous set of simulated data, we
had more sampled reads in this data set (coverage =
12.53x). Since ECINDEL and SRCorr applied a small
threshold (12 and 15) for determining correct 15-tuples,
they had many errors (1703 and 1016). Instead of using a
small threshold, we arrived at an optimal threshold M* =
52 which cound determine the correct 15-tuples with 18
errors only. With a set of 15-tuples with less errors, we
could correct the errors in reads better than ECINDEL and
SRCorr and produced a set of reads with 1265 errors,
much less than ECINDEL and SRCorr (163188 and
103800 errors respectively), and in terms of the number
of false positives and false negatives; both of them were
less than ECINDEL's and SRCorr's results.

Conclusion

We have studied the problem of correcting error reads in
DNA assembling. We introduced a method to calculate
the probability of false positives and false negatives of the
k-tuples using different thresholds M. Based on this calcu-
lation, we found the optimal threshold M* that mini-
mizes the total error (FP + FN). Our calculation can also
be extended to total errors with different weightings of FP
and FN. Our algorithm, which uses optimal threshold M*
to correct error reads, performs better than the popular
algorithms ECINDEL and SRCorr.

In the real biological data, we might not be able to remove
all the false positives and false negatives by a fixed thresh-
old M. It is mainly because the probability of each read
being sampled is not the same in real experiment. This
probability depends on the patterns of the reads, the posi-
tions of the reads in the genome and the adjacent reads. A
better model might be needed to determine whether a k-
tuple is correct (instead of using a fixed threshold M) and
to correct more error reads.

Methods

In this section, we will first describe Chaisson et al.'s [17]
approach, called ECINDEL, for correcting error reads.
Sundquist et al.'s [16] approach is a special case of ECIN-
DEL by setting k equals read length and Wong et al.'s [15]
approach is a general case of ECINDEL by considering
multiple k. Then we will describe how to calculate the
probability of true positive, false positive and false nega-
tive for determining whether a k-tuple is correct by thresh-
old M. Based on this calculation, we will describe how to
determine the optimal threshold M* for Chaisson et al.'s,
Sundquist et al's and Wong et al's approach.
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false positive

------ false negative

—>—f.p.+f.n.

101 121 141 161 181

k = 20. Number of false positives, false negatives and their sum of 20-tuples from real data versus multiplicity.

ECINDEL algorithm

Given a set of reads R from a hidden genome G, ECINDEL
determines a set G,, of length-k substrings, k-tuples, which
appear in more than M reads in R. ECINDEL considers all
k-tuples in G, correct (are substrings of G) and all k-tuples
not in G,, incorrect (are not substrings of G). Under the
assumption that all k-tuples of a correct read are correct,
ECINDEL considers reads with all its k-tuples in G, as cor-
rect reads. For those reads s with k-tuples not in G;, ECIN-
DEL tries to correct errors in s by modifiying s to another
read s' with the minimum number of operations (edit dis-
tance) such that all k-tuples in s' are in G,,. As you can see,
the performance of this algorithm depends on the quality
of the set G,. If there are many false negatives(correct k-

Table I: Comparison of |15-tuples on real data set

tuple not in G,), ECINDEL will modifiy the correct reads
to error reads or another correct reads which will decrease
the number of correct reads in the input. If there are many
false positives (incorrect k-tuple in G,), ECINDEL will
treat some error reads as correct reads which will affect the
performance of the assembly algorithms.

In order to calculate the probabilities of false positive and
false negative, we assume the reads R sampled from G are
generated as follows: Let G be a genome sequence of
length g and we sample n length-I substrings (reads) (set
R) from G independently. Every position is uniformly
sampled from G with the same probability 1/(g -1 + 1)
(The same position can be sampled more than once).

M # of false positives # of false negatives total errors
ECINDEL 12 12494 176 12670
SRCorr 15 7890 250 8140
Our Algorithm 32 1583 1256 2839
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Table 2: Comparison of corrected reads on real data set
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M # of false positives # of false negatives total errors
ECINDEL 12 19334 173199 192533
SRCorr 15 181628 30659 212287
Our Algorithm 32 30039 3438 33477

Each nucleotide in each read in R may be erroneous with
probability p,.,. We consider all length-k substrings (k-
tuples) of every length-I read in R, k = |, as input.

Given a k-tuple T, let

e T,be a variant of T with exactly t mismatches (t =0, ..., k,
T,=T).

¢ Y, be the event that T appears exactly r times in R.
¢ X, be the event that T, is a part of the reference sequence.

Assume we treat all k-tuples T with sample numbers r > M
as substrings of G, we want to calculate the probabilities
of T being a true positive Pr(X,|U,s,, Y,), false positive 1 -
Pr(X,|U,sy Y,) and false negative Pr(X,|u, ., Y,)).

Probabilities of false positive and false negative

In this section, we will calculate the probabilities of T
being a true positive Pr(X,|U,s, Y,), false positive 1-
Pr(X,|u, . v Y,) and false negative Pr(X,|u, -\, Y,)) assum-
ing that T is a k-tuple where sample number > threshold
M. Since the calculation of these probabilities depends on
the value of Pr(Y,), the probability that T appears exactly r
times in R, we will first describe how to calculate Pr(Y,).
Then we will describe how to calculate the true positive,
false positive and false negative based on Pr(Y,). Assume
k-tuple T is sampled r times in the set of reads R, the r sam-
ples of T coming from r reads (length-I substrings in G)
appear in different positions of G and multiple copies of
T may be sampled from the same position. Copies of T are
sampled at different positions either because (1) a k-tuple
T = T, occurs in one of these positions of G or (2) a variant
T, of T occurs in one of these positions of G and T is sam-
pled because of error. When t is small (e.g. t = 0, 1, 2), the
probability that T being sampled from these positions will
be considered. When ¢ is large (e.g. t = k), the probability

that T being sampled from these positions is low and can
be ignored. We first calculate the probability p,.(g, ) that
avariant T,of T, t = 0, ..., k, appears in a particular position
of a length-g genome sequence G. Then we calculate the
probability p,,,,(g s') that a particular position is sampled
s' times and the probability p,,,(g s’ r') that ' out of
these s' samples are T . By considering all positions of G,
we can calculate the probability Pr(Y,) that T appears
exactly r times in R.

Given a length-g random genome G with each nucleotide
having the same occurrence probability (1/4), the proba-
bility that a variant T, of T occurs at a particular position i
of G,i.e. G [i...i + k- 1] is a variant T, of T, is

3t k
Pocc(g,t) =
occ 4k

Genome sequences, especially the non-coding sequences,
are highly heterogeneous in composition. The i.i.d. model
cannot reflect the real situation of the genome sequences
well. On the other hand, genome G is generated by other
models, e.g. Markov Chain, p,..(g, t) can also be calculated
easily. However, this part has little effect on the overall
result, as the number can be cut in the later calculation.

Let T, be a k-length substring obtained at position i of G.
Since only those reads containing the substring from posi-
tion i to i - k + 1 can contribute T, copy of T, can be
obtained from at most [ - k + 1 different reads, exactly ! - k
+ 1 reads in most cases when -k +1<i<g-1+ 1. When
g >> |, the probability that T,is sampled s' times at can be
approximated by

(ke Y (. 1k Y
psam(gls):( ,)( ] (1_ J
i g

Table 3: Comparison of |5-tuples on simulated data (coverage = 2.75x)

M # of false positives
ECINDEL 12 4
SRCorr 4 5264
Our Algorithm I 5

# of false negatives total errors

18 22
5 5269
13 18
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Table 4: Comparison of corrected reads on simulated data (coverage = 2.75x%)

M # of false positives # of false negatives total errors
ECINDEL 12 46459 49204 95663
SRCorr 4 53036 31699 84735
Our Algorithm I 308 8564 8872

When g is large, p,,,,( s') can be approximated by the nor-
mal distribution with mean equals

I-k+1
n
8
and variance equals

I-k+1 I-k+1
n 1-

In some real experimental data where each position is not
sampled with the same probability, we may estimate the
mean and variance of p,, (g s') from training data.

When a read with variant T, of T is sampled, the probabil-
ity p, that we get the k-tuple T instead of T, as input because
of error is

t
p: = (1 _perr)k_l(pe?)rrj

where p,,. is the probability of single nucleotide error
occurrence. Note that as p,,,. is usually very small, p, can be
ignored and assumed zero when ¢ > 3 in practice. Here we
assume when there is error, the occurrence probability of
each nucleotide (three possible nucleotides) is the same.
Similar as p,.(g t), the formula for p, can be modified
when genome G is generated by other models. The prob-
ability that the k-tuple G [i...i + k - 1] is sampled s' times
and r'(r' <s") of them is T because of errors is

t ’

pcount(g' S/’ T’) = ZPOCC(g’ t’)psum(g' S’)[( sl ]p; (1 - Pt,)s - J
t'=0 !

where G [i...i+k-1]=T,, 0<t'<t. In order to getr samples

of T from the n reads, d(d = 1, ..., r) variants of T appear in

different positions of G and r; samples of T are getting

from the j-th variants such that Zr; = r. Therefore, the prob-

ability that T appears exactly r times in the input is approx-
imately

P(Y,)

=2 Z Z WH%@M(X/SV@)

d=1 rsz sj <n(l-k+1) T;<s; ,z =1

n(l-k+1)-Y s

pocc(g' t)(l - pt)
t=1,...k

Equation (1) is an approximation because we have not
considered the interdependence of the positions of the d
variants of T and the samples in the remaining positions.
This approximation is fine when g >> d and n is large,
which is valid for most experimental data.

Once we calculate Pr(Y,), we can calculate the probability
of true positive as follows:

PT(XO | UTZMYT)
_ Pr(Ur>m(YrNX0)
P(Ur>mYr)

_ 2o m Pr(YrNXo)
M P(Yy)
?:M (1-Pr(Y;N—=X0))
o P(Yr)
XN\ A=Pr(Yr|=Xo)Pr(—X))
) n_ P(Yy)

P(Y,) can be calculated from Equation (1). Pr(- X,) = (1 -
Pocc(g 0))r*+1 and Pr(Y,|- X,) can be calculated from
Equation (1) by considering that the probability that T

Table 5: Comparison of k-tuples on simulated data (coverage = 12.53%)

M # of false positives # of false negatives total errors
ECINDEL 12 1699 4 1703
SRCorr 15 1011 5 1016
Our Algorithm 52 3 15 18
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Table 6: Comparison of corrected reads on simulated data (coverage = 12.53x%)

M # of false positives # of false negatives total errors
ECINDEL 12 132850 30338 163188
SRCorr 15 102288 1512 103800
Our Algorithm 52 1216 49 1265
appearing in G is zero, i.e. set p}.. (g, 0)=0and p,. (g Acknowledgements

t) = pocc (g' t)/(l - pocc(g' O))

The probability of false positive one minus the probability
of true positive

1- Pr(XO | UTZMY’f)
S (=Pr(Y, X 0)Pr(=X())
S P(Yy)

=1

The probability of false negative can also be calculated
similarly:

PT(XO | Ur<MYr)
_ Pr(Ur<m(YrNXo)
P(Ur<mYr)
3 2%61 Pr(YrNXp)
er\/if)l P(Yy)
_ > ML (1-Pr(Y,N—X))
2?161 P(Yy)
_ MG (1=Pr(Yy|=X0)Pr(=X0))
2%61 P(Yy)
Since we only consider integer threshold M, once we cal-
culate the probabilities of true positive, false positive and
false negative for all possible thresholds M for a particular
substring length k. We can then find the optimal thresh-

old M* for that particular k¥ which minimizes the total
errors FP + FN or maximizes the total accuracy.
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