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Abstract. A conflict-free coloring for a given set of disks is a coloring
of the disks such that for any point p on the plane there is a disk among
the disks covering p having a color different from that of the rest of the
disks that covers p. In the dynamic offline setting, a sequence of disks
is given, we have to color the disks one-by-one according to the order
of the sequence and maintain the conflict-free property at any time for
the disks that are colored. This paper focuses on unit disks, i.e., disks
with radius one. We give an algorithm that colors a sequence of n unit
disks in the dynamic offline setting using O(log n) colors. The algorithm
is asymptotically optimal because Ω(log n) colors is necessary to color
some set of n unit disks for any value of n [9].

1 Introduction

The conflict-free coloring (CF-coloring) problem was introduced by Even et al. [9]
for modeling the frequency allocation problem that arises in wireless communi-
cation. In the frequency allocation problem, servers (base stations) and clients
are connected by radio links. To establish a communication, a client scans the
available frequencies in search for a base station with good reception. To avoid
interference, the client needs to choose a specific frequency such that only one
of the reachable base stations is assigned with that frequency. A naive solution
is to assign each base station a distinct frequency. Since the spectrum is limited
and costly, the target is to minimize the total number of frequencies assigned to
the base stations such that for any client, among the frequencies assigned to all
its reachable base stations, there is always a frequency assigned to exactly one
of these stations.

In the CF-coloring problem, the geometric regions covered by the base stations
are called ranges, and the goal is to find a coloring of these ranges (i.e., one color
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for each range) such that for every position that is covered by some subset of
ranges, we can always find a range in the subset with a unique color. A formal
and more general definition of CF-coloring is given as follows.

Definition 1 (Range Space). A Range Space is defined by a pair (X, R) where
X is a set of vertices, and R is a family of subsets of X. The subsets in R are
called ranges.

Definition 2 (CF-coloring). Let (X, R) be a range space. A coloring χ : R →
N , which maps R to the set of natural numbers N , is conflict-free if for every
vertex x ∈ X, there is an R ∈ R such that x ∈ R and χ(R) �= χ(R′) for all other
ranges R′ containing x.

In the literature, the frequency allocation problem was also modeled as a dual of
the CF-coloring problem [9]. The dual problem treats the base stations as vertices
and ranges as the subsets of base stations within some geometric regions. The
goal of the dual problem is to find a conflict-free coloring of the vertices such
that for any range, there is always a vertex among the vertices in the range with
a unique color.

Definition 3 (Dual CF-Coloring). Let (X, R) be a range space. A coloring
ψ : X → N is conflict-free if for every range R ∈ R, there exists a vertex x ∈ R
such that ψ(x) �= ψ(x′) for all other x′ ∈ R.

Note that the dual CF-coloring problem can be seen as a generalization of the
traditional graph coloring problem. We can consider a range space as a hyper-
graph. When every range in the range space contains exactly two vertices, the
range space is equivalent to a graph where a dual CF-coloring of the range space
is also a vertex coloring of the graph.

The problem of CF-colorings was first studied by Even et al. [9] and the PhD
work of Smorodinsky [13]. One of the results in [9] was about CF-coloring for n
disks (of arbitrary size) on the plane. The range space (X, R) of this problem
is defined with X equal to the set of all points on the plane and each range in
R is a subset of X covered by one of the n disks. They showed that the range
space, and equivalently the n disks, can be colored with O(log n) colors. They
also showed that Ω(log n) colors are necessary even to color some set of n unit
disks for any value of n. Alon et al. [2] showed that if every disk intersects at
most k others, all disks can be colored with O(log3 k) colors, no matter how
many disks there are.

The dual CF-coloring problem with respect to disks was studied in [9]. The
range space (X, R) is defined by a given set X of n vertices on the plane. A range
R ⊆ X is in R if and only if there exists a disk that covers only the vertices
in R. Even et al. [9] showed that a dual CF-coloring (on the n vertices) can be
constructed using O(log n) colors. A matching lower bound is proved by Pach
and Tóth [12] that Ω(log n) colors are required for CF-coloring every set of n
vertices on the plane with respect to disks.

The CF-coloring for rectangles and dual CF-coloring problems with respect
to rectangles have also been studied in several recent papers [1, 8, 9, 10, 14].
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The dual CF-coloring problem has been studied in the online model, where a
sequence of vertices are presented one-by-one and each vertex is colored without
knowledge of the vertices not yet presented. The assigned color of a vertex cannot
be changed later and The coloring has to guarantee that at any time, the set
of colored vertices holds the conflict-free property. Most of the previous works
focused on coloring of n vertices on a line where the ranges consist of all intervals
of the vertices. It was shown in [9] that the static version of this problem can
be solved using 1 + �log2 n� colors and this is also the best that we can do. For
the online case, Chen et al. [6] gave an algorithm that uses O(log2 n) colors. In
between the static and the online models, Bar-Noy et al. [4] studied two semi-
online models, namely the dynamic offline model where the entire sequence of
the vertices is given but the vertices have to be colored one-by-one according
to the order of the sequence and the colors cannot be changed later, and the
online absolute position model where the vertices are presented in the online
fashion but the positions of all vertices on the line are known, i.e, for every
vertex we know how many other vertices are on the left and right of this vertex.
Bar-Noy et al. showed that O(log n) colors are sufficient to construct a dual
CF-coloring in these two models.

Randomized algorithms have been proposed for the online dual CF-coloring
for intervals [6], unit disks [5,7], and hypergraphs (i.e., general range space) [3].

OurContribution. This paper focuses on the dynamic offline version of the CF-
coloring problem for unit disks (i.e., disks with radius one)1. Let 〈d1, d2, . . . , dn〉
be a sequence of n unit disks on the plane, which is given at the beginning. The
required CF-coloring χ of these n disks satisfies the following requirement:

Property 1. For any 1 ≤ i ≤ n, the coloring χ restricted to the subset of disks
Di = {d1, d2, . . . , di} is conflict-free, i.e., for any point x covered by such
disks, there is one d ∈ Di such that d covers x and for all other d ′ ∈ Di that
cover x, χ(d) �= χ(d ′).

To solve the above problem, we define and solve a dual CF-coloring problem with
respect to unit disks in the dynamic offline setting that is to find a coloring ψ
for a sequence of n vertices 〈c1, c2, . . . , cn〉 satisfying the following requirement.

Property 2. For any 1 ≤ i ≤ n, the coloring ψ restricted to the subset of
vertices Ci = {c1, c2, . . . , ci} is conflict-free, i.e., for any unit disk covering
a nonempty subset of vertices of Ci, there is one c ∈ Ci such that the unit
disk covers c and for all other c ′ ∈ Ci that is covered by the unit disk,
ψ(c) �= ψ(c ′).

We show that the primal and dual problems defined above are equivalent in the
sense that that they can be reduced to each other. The dual problem (in the
dynamic offline setting) is then solved by constructing an equivalent but static
dual CF-coloring problem. We show that the ranges of this static problem have
a nice property so that we can find a dual CF-coloring with O(log n) colors.
1 It is equivalent to to saying disks with fixed radius for the problem.
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This dual CF-coloring gives immediately, in the dynamic offline setting, a dual
CF-coloring for n vertices where ranges are defined by units disks, as well as the
corresponding primal problem for coloring unit disks, using O(log n) colors.

Our result is interesting theoretically. As mentioned above, the static version
of the CF-coloring problem for n disks requires Ω(log n) colors even when the
disks are restricted to unit disks. In fact, the conventional technique of solving
the problems is by reducing the problem to the coloring problem on simple
graphs. However, for unit disks, this technique might not work, as some range
spaces can only be represented by hypergraphs with hyperedges having more
than 2 elements. On the other hand, Even et al. [9] gave an example showing
that for the dynamic offline case, n colors are necessary for coloring n disks with
arbitrary radius. This paper shows that for the dynamic offline case coloring
unit disks can be done much more efficiently than disks of arbitrary size, where
O(log n) colors suffice.

Our algorithm has practical applications. First, base stations could have the
same power and thus the areas covered by them are congruent disks. Second,
the base stations are built according to some order, and before all of them are
built, we still need a conflict-free frequency assignment to those stations that
have been built.

The paper is organized as follows. In Section 2, we give a high-level algorithm
that finds a dual CF-coloring for any given range space. We also show a mod-
ification of the algorithm, which becomes crucial in Section 4 in bounding the
number of colors used. In Section 3, we show how the dynamic offline problem
of CF-coloring unit disks can be transformed to an equivalent but static dual
CF-coloring of range space. In Section 4, we first outline how the static problem
obtained in Section 3 can be decomposed into sub-problems, and explain why we
can focus on the sub-problems only. We proceed to show that the sub-problem
can be solved using O(log n) colors, and hence the static dual CF-coloring prob-
lem defined in Section 3, as well as the one for unit disks can be solved using
O(log n) colors.

2 An Algorithm to Find a Dual CF-Coloring

In this section, we describe a high-level algorithm of Even et al. [9] that uses
the independent set approach for constructing a dual CF-coloring for any range
space (X, R). The following notation and definition are used in the algorithm.
For any subset S ⊆ X and any 1 ≤ i ≤ n, define

R‖S = {R ∩ S | R ∈ R} (1)

to be the set of ranges in R with all elements not in S removed. For any I ⊆ X ,
we say that I is an independent set of (X, R) if for any range R ∈ R with
|R| ≥ 2, we have R �⊆ I.

Algorithm CF-color constructs a dual CF-coloring for (X, R) by assigning
the same color to the vertices in an independent set of (X, R) and repeat the
process using new colors for the range space induced by the uncolored vertices
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until all vertices are colored. It is not difficult to see that the resulting coloring
is conflict-free.

Theorem 1 (Even et al. [9]). The coloring χ of X constructed by Algorithm
CF-Color is a dual CF-coloring on (X, R).

Algorithm 1 : CF-color
Require: range space (X, R)
Ensure: a CF-coloring χ on X
1. i ← 1;
2. X1 ← X;
3. while Xi �= ∅ do
4. find an independent set Ii of (Xi, R‖Xi);
5. χ(x) = i for all x ∈ Ii; /* i.e., assign color i to all x in Ii */
6. Xi+1 ← Xi − Ii;
7. i ← i + 1;
8. end while

To bound the number of colors used to O(log n), it suffices to make sure that
in each iteration the size of the independent set is a constant fraction of the
number of vertices in the range space, so that O(log n) iterations, as well as
colors, are sufficient. The rest of the paper is devoted to applying this idea to
the problem of CF-coloring for unit disks in the dynamic offline setting.

2.1 Modified Algorithm Using Min-Range Subset

Define the min-range subset of a set R of ranges to be

min(R) = {R ∈ R | |R| ≥ 2 and � R′ ∈ R such that |R′| > 2 and R′ � R},

i.e., the set of non-trivial ranges in R that is minimum by set inclusion. The
following lemma makes sure that to find an independent set of a range space we
can focus on the min-range subset.

Lemma 1. Given a range space (X, R), an independent set of the range space
(X, min(R)) is also an independent set of (X, R).

Proof. Consider an independent set I for (X, min(R)). Suppose to the contrary
that I is not independent for (X, R). There is a range R ∈ R with |R| ≥ 2 such
that R ⊆ I. Since min(R) is a min-range subset of R, we have either R ∈ min(R)
or there is another range R′ ∈ min(R) with R′ ⊂ R. In both cases, there is a
range in min(R), R or R′, which is of size at least 2 and is a subset of or equal to
I. It contradicts to the assumption that I is an independent set of (X, min(R)).

We modify the Algorithm CF-Color in Step 4 as follows.

If min(R‖Xi) �= ∅, find an independent set Ii of (Xi, min(R‖Xi));
else Ii ← Xi.
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There is a case where every range in R‖Xi is a subset of Xi with single element.
We can take Xi as the independent set. By Lemma 1, the modified algorithm
works as the original one. The reason that we use min-range subset will become
clear in Section 4.1 when we show that the independent set thus obtained consists
of at least a constant fraction of vertices of Xi. This helps to bound the number
of colors used in the coloring.

3 Dynamic Offline CF-Coloring for Unit Disks

In this section, we show that the dynamic offline CF-coloring problem for n unit
disks can be transformed to a static dual CF-coloring problem on some special
range space. Then, in the rest of the paper, we show how to solve this dual
problem using O(log n) colors.

We first explain how to transform the static CF-coloring problem for n unit
disks to its dual problem as follows. Let D = {d1, d2, . . . , dn} be a set of n unit
disks. For each 1 ≤ i ≤ n, let ci be the center of the unit disk di. Define the
range space (C, R) where C = {c1, c2, . . . , cn} and

R =
{
R ⊆ C | ∃ a unit disk (not necessarily from D) that covers exactly R

}
.

A more general form of the following lemma has been shown in [9] that the static
CF-coloring for D can be reduced to the static dual CF-coloring on (C, R).

Lemma 2 (Even et al. [9]). Consider a set of unit disks D and the range space
(C, R) defined above. Let ψ : C → N be a dual CF-coloring on (C, R). Then,
the coloring χ : D → N where χ(di) = ψ(ci) for 1 ≤ i ≤ n is a CF-coloring
for D.

The following lemma extends Lemma 2 to the dynamic offline setting.

Lemma 3. Consider a sequence of unit disks D and the corresponding sequence
of centers C. Let ψ : C → N be a dual CF-coloring of C satisfying the dynamic
offline Property 2 (in the Introduction). Then, the coloring χ : D → N where
χ(di) = ψ(ci) for 1 ≤ i ≤ n is a CF-coloring for D satisfying the dynamic offline
Property 1 (in the Introduction).

Proof. For any 1 ≤ i ≤ n, let Ci = {c1, c2, . . . , ci} and RCi =
{
R ⊆ Ci | ∃ a unit

disk covers R but no other centers in Ci}. The lemma is true because according
to Property 2, ψ is a dual CF-coloring of (Ci, RCi) for any 1 ≤ i ≤ n. Then,
by Lemma 2, χ is a CF-coloring for Di for any 1 ≤ i ≤ n, and hence χ is a
CF-coloring for D satisfying Property 1.

To reduce the problem from the dynamic offline setting to a static setting, we
need some definition. For any 1 ≤ i ≤ n, let Ci = {c1, c2, . . . , ci} and define

RCi =
{
R ⊆ Ci | ∃ a unit disk covers R but no other centers in Ci},

and RC =
⋃

1≤i≤n RCi . The following lemma is suggested by Bar-Noy et al. [4]
(in a more general form) to reduce problem from the dynamic offline setting to
the static setting.
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Lemma 4 (Bar-Noy et al. [4]). Consider a sequence of centers C and the
range space (C, RC) defined above. Let ψ : C → N be a dual CF-coloring on
(C, RC). Then ψ is also a dual CF-coloring for C that satisfies the dynamic
offline Property 2.

4 Dual CF-Coloring of (C, RC) with O(log n) Colors

In this section, we show how to find a dual CF-coloring of (C, RC) defined by
a sequence of unit disks in Section 3 using the modified Algorithm CF-Color of
Section 2 with O(log n) colors. There are mainly two ideas that lead us to the
bound.

1. The plane can be partitioned into unit hexagons (with each side of length
one). Note that the hexagons can be divided into seven groups such that
no two hexagons in the same group intersect with the same unit disk. See
Figure 1. The set of centers C is partitioned into disjoint subsets such that
each subset consists of centers of C within the same unit hexagon. For each
subset F thus defined, we have a range space (F, RC‖F ) which we can color
independently, provided that we are using seven sets of different colors where
one set for each group of hexagons and the corresponding subsets of centers.

1

671234

671234

3

456 3 2 1

2

456 3 2

45671

7

456 3 2

4

1

567

Fig. 1. The plane is partitioned into hexagons

2. We show (in Section 4.1) that the dual CF-coloring of (F, RC‖F ) can be
obtained by using the modified Algorithm CF-Color with O(log n) colors,
where F ⊆ C is a subset of centers within the same unit hexagon.

Combining the two ideas, we can find the dual CF-coloring for (C, RC) with
O(log n) colors, as well as a dynamic offline CF-coloring for a sequence of n unit
disks. The theorem below follows.

Theorem 2. We can construct a dynamic offline CF-coloring for a sequence of
n unit disks using O(log n) colors.
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4.1 Dual CF-Coloring in a Unit Hexagon

In this section, we assume that the centers in C = {c1, c2, . . . , cn} are all within
a unit hexagon. We show how (C, RC) can be colored by the modified Algo-
rithm CF-Color using O(log n) colors. The input for the algorithm X and R,
are C and RC , respectively. Recall that in each iteration of the algorithm, say
the i-th iteration, we need to find an independent set Ii of (Xi, min(R‖Xi)) and
remove the centers in Ii from Xi before we continue in the next iteration. The
key property for us to prove the O(log n) bound is that Ii consists of a constant
fraction of Xi. Therefore, the number of iteration, as well as the number of col-
ors used, is at most O(log |X1|), i.e., O(log |C|) or O(log n). To prove the key
property, we prove the following claims.

Given any subset Y ⊆ C, let G be the range space (Y, min(RC‖Y )).
1. G is indeed a simple graph, i.e., each of its ranges consists of two

centers (Lemma 5), and
2. G consists of O(n) edges (Lemma 9).

With the second claims, we can guarantee that G has an independent set of size
Ω(n) and an independent set of size Ω(n) can be found in polynomial time [11].
Thus, the following theorem follows.

Theorem 3. We can construct a dynamic offline dual CF-coloring with respect
to unit disks for a sequence of n vertices (or points) all within a unit hexagon
using O(log n) colors.

The remainder of the section focuses on proving Lemmas 5 and 9. First, we show
that for any Y ⊆ C, (Y, min(RC‖Y )) corresponds to a simple graph2.

Lemma 5. For any Y ⊆ C, all R ∈ min(RC‖Y ) have |R| = 2.

Proof. Suppose that R = {ci1 , ci2 , . . . , cik
} ∈ min(RC‖Y ) where i1 < i2 < · · · <

ik. We have |R| = k. There is a unit disk d that covers all centers in R but no
other centers cj for j ≤ ik. It follows that d also covers only ci1 and ci2 at the
stage when center ci2 is presented. Therefore, we have {ci1 , ci2} ∈ min(RC‖Y ).
As the ranges are min-ranges, k must be 2; otherwise {ci1 , ci2} is a proper subset
of R, which is a contradiction.

To analyze the graph structure of G, which corresponds to (C, min(RC)) (or
equivalently (Y, min(RC‖Y )) as Y can be C), we consider the geometric property
of the unit disks D = {d1, d2, . . . , dn} where di is centered at ci. Let AD denote
the partition of the plane by the unit disks in D. A face is defined to be a
partition in AD, i.e., a face is the maximal contiguous region covered by the
same set of unit disks in D. ADi is defined similarly as AD but it corresponds to
the partition by Di = {d1, d2 . . . , di}. See Figure 4 for an example. We say that
a face is lv-k if the face is covered by k unit disks.
2 For the static dual CF-coloring (of a set of points) with respect to disks [9], this

simple graph is in fact the Delaunay graph induced by the set of points. However,
in the dynamic offline case, the graph may not be the Delaunay graph.
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We first give two properties, Lemmas 6 and 7, of AD with respect to a par-
ticular unit disk.

Lemma 6. Let D be a set of unit disks whose centers are within a unit hexagon.
For any d ∈ D, there are at most two lv-1 faces in AD covered by d.

Proof. For any three disks whose centers are in a unit hexagon, they must all
intersect at least one point (or a face). Figure 2 and 3 show the two different
cases. For Case 1, let p1, p2 and p3 be the three intersection points at the outer
boundary of the union of the three disks. It can be proved that any unit disk is
too small to inscribe all the three points p1, p2 and p3 so as to form three lv-1
faces of a unit disk. For Case 2, again there is no way for the new unit disk to
create three lv-1 faces.

3

p
1

p

p
2

Fig. 2. Three unit disks intersect
with each other: Case 1

p p
2

p
3

p
4

1

Fig. 3. Three unit disks intersect
with each other: Case 2

The following lemma give a bound of the number of a special kind of lv-2
faces of a unit disk, which is defined as follows. For a unit disk d ∈ D, a p-lv-2
faces of d in AD is defined to be a maximal intersecting region of d and a lv-1
face in AD−{d} and the intersecting region is strictly smaller than the lv-1 face.
(Note that p-lv-2 faces are subjected to unit disks. For example in Figure 4, f1
is a lv-2 face of both d1 and d2 but f1 is a p-lv-2 face of d2 but not a p-lv-2 face
of d1.)

Lemma 7. Let D be a set of unit disks whose centers are within a unit hexagon.
For any d ∈ D, d has at most nine p-lv-2 faces in AD, each of the faces corre-
sponds to d intersecting a distinct unit disk in D.

Proof. We prove by contradiction. Assume that d has ten or more p-lv-2 faces.
For each p-lv-2 face, it shares part of the boundary with d because by the def-
inition of p-lv-2 face the face must be next to some lv-1 face of a disk other
than d. For each of the ten p-lv-2 faces, select a point in the face which is on
the boundary of d, denoted as f-point. Consider five of the f-points in alternate
positions. See Figure 5. Out of the five f-points, there are at least three of them
with the property.
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Fig. 4. An example of lv-1 and lv-2 faces

For an f-point p, the part of the boundary of d defined by the f-points on
its left p� and right pr occupies at most 1/3 of the whole circumference
of d. Effectively, every point on the boundary of d from p� to pr through
p has a distance at most 1 from either p� or pr.

Let p1, p2 and p3 be the three f-points satisfying the property. Let c1, c2 and
c3 be the centers of three disks in D that intersect d to form the p-lv-2 faces
defined by p1, p2 and p3, respectively. By the property, all c1, c2 and c3 must be
outside d (because the distance between p� and pr is short) and all f-points are
outside the disks centered at c1, c2 and c3, except p1, p2 and p3, respectively. See
Figure 5. It follows that there is no region on the plane covered by d and all disks
centered at c1, c2, c3. In other words, c1, c2, c3 and the center of d, are not in the
same unit disk or unit hexagon, which is a contradiction to the assumption.

Recall that our task is to bound the number of edges in G, where G is the
simple graph corresponding to (C, min(RC)). The following lemma corresponds
the edges in G with the lv-2 faces in ADj for some j.

Lemma 8. There is an edge (ci, cj) in G for i < j if and only if there is a lv-2
face covered by unit disks di and dj in ADj .

Proof. If (ci, cj) is in G, then {ci, cj} ∈ min(RCj ) ⊆ RCj . There is a unit disk d
covering ci and cj but no other ck for k ≤ j. It follows that the center of d is at
a distance more than one with the other ck. Thus there is some region covered
only by ci and cj in ADj , which is a lv-2 face. Similarly, we can prove the other
way round.

We are now ready to bound the number of edges in G.

Lemma 9. There are at most 11n − 1 edges in G where n is the number of
centers in C.

Proof. For 1 ≤ k ≤ n, let deg−(ck) denote the number of edges (ck, ci) in G
for i < k. By Lemma 8, deg−(ck) is equal to the number of lv-2 faces of dk
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d
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c
2
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p
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p
1
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3

c

Fig. 5. Left: Ten f-points on the boundary of a disk, five highlighted in alternate
positions. Right: The three chosen f-points p1, p2 and p3 and the corresponding disks
centered at c1, c2 and c3 that cover them.

in ADk
. Let pcover(k) be the number of p-lv-2 faces of dk in ADk

. Define a
f-lv-2 face of dk to be a lv-2 face but not a p-lv-2 face of dk. Let fcover(k) =
deg−(ck) − pcover(k) denote the number of f-lv-2 faces of dk. Let create(k)
be the number of lv-1 faces of dk in ADk

. Since each f-lv-2 face of dk must
correspond to a distinct lv-1 face of some di in ADk−1 , i.e., i < k, overall, we
have

∑
1≤k≤n create(i) ≥

∑
1≤k≤n fcover(i).

Together with Lemma 7, the number of edges in G is equal to
∑

1≤k≤n deg−(ck) =
∑

1≤k≤n(pcover(k) + fcover(k))
≤

∑
1≤k≤n(9 + fcover(k))

≤ 9n +
∑

1≤k≤n create(k)
≤ 9n + 2n − 1 {since d1 has only one lv-1 face in AD1}
≤ 11n − 1

5 Remarks and Open Problems

Although the paper focuses on minimizing the colors used in constructing the
CF-coloring, we would like to mention the time complexity of our approach. By
the Algorithm CF-color, the running time mainly depends on the time to find
an independent set in a simple graph times the number of iterations, which turns
out to be O(log n) if the size of the independent set is a constant fraction of that
of the vertex set. Hochbaum [11] gave an algorithm that finds an independent
set (of a graph having linear number of edges) with size Ω(n) in O(n3/2) time.
As a result, our algorithm runs in O(n3/2 log n) time.
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In the dynamic offline model, we are given the whole sequence of disks at the
beginning, so that the corresponding range space is known and fixed. That is
why the general framework of the independent set method works. However, in
the online (or even the online absolute position) settings, the range space is not
known in advance and thus the general framework cannot apply. An interesting
open problem is to develop a deterministic algorithm to solve the online version
of the problem with polylog number of colors.
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