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Abstract

Finding minimum triangulations of convex 3-polytopes is NP-hard. The best approximation algorithms on
an approximation ratio of 2 for this problem, which is the best possible asymptotically when only combin
structures of the polytopes are considered. In this paper we improve the approximation ratio of finding m
triangulations for some special classes of 3-dimensional convex polytopes. (1) For polytopes without 3-cy
degree-4 vertices we achieve a tight approximation ratio of 3/2. (2) For polytopes where all vertices have degr
at least 5, we achieve an upper bound of 2− 1/12 on the approximation ratio. (3) For polytopes withn vertices and
vertex degrees bounded above by∆ we achieve an asymptotic tight ratio of 2− �(1/∆) − �(∆/n). When∆ is
constant the ratio can be shown to be at most 2− 2/(∆ + 1).
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1. Introduction

A triangulation of a d-dimensional polytope is its subdivision into a set of simplices, such tha
simplices do not overlap and intersect only at common faces. We are interested in three-dime
polytope triangulations (also calledtetrahedralizations), which have important applications in compu
graphics, finite element analysis, computer-aided design, etc. as well as having fundamental th
significance. In particular, we want to find triangulations consisting of a small number of tetra
Since we only consider polytopes in three dimensions, we simply call ‘3-polytopes’ as ‘polytop
this paper.

The problem of polytope triangulation has been studied extensively. Convex 3-polytopes can alw
triangulated, but triangulations of the same polytope can differ in size, i.e., contain different num
tetrahedra. It is shown in [2] that finding a minimum triangulation, i.e., a triangulation with the mini
possible size, is NP-hard. There are several algorithms to triangulate a polytope, but not spe
addressing the problem of minimum triangulation. For example, the simplepulling heuristic [8], which
picks a vertex and connects it to all other non-adjacent faces of the polytope, gives an approx
ratio of 2 for finding minimum triangulations. Though simple, no better triangulation algorithms
known for a long time.

In [5] a new triangulation algorithm was given, by making use of the properties of 3-cycles. A 3-cycleis
a cycle of length three on the surface graph of a polytope such that both sides contain some other
(i.e., the triangular faces of the polytope are not regarded as 3-cycles). A 3-cycle separates a poly
two parts. The idea of the algorithm (which we callCutPull in this paper) is very simple: the polytope
partitioned along all the 3-cycles into subpolytopes, each is free of 3-cycles. Then the pulling heu
applied to each resulting subpolytope. It was shown that this algorithm gives an approximation
2− �(1/

√
n) wheren is the number of vertices of the polytope.

Although the above bound seems to be a slight improvement only, it was proved in the same pa
this approximation ratio is the best possible, for algorithms that only consider the combinatorial st
of the polytopes. This lower bound is proved by utilizing a property of vertex-edge chain stru
(VECSs), first introduced in [2]. A VECS of sizes consists of the vertices (a, b, q0, q1, . . . , qs+1), forming
the set of triangular faces{aqiqi+1, bqiqi+1 (0 � i � s)} (Fig. 1(a)). It consists of a chain of degree
vertices. An important property of the VECS is [5]: if the graph of a polytope contains a VECS
substructure, and the interior edgeab (called themain diagonal) is not present in a triangulation of th
polytope, then in this triangulation at least 2s tetrahedra are ‘incident’ to the VECS. On the other han
ab is present,s + 1 incident tetrahedra may be sufficient for the triangulation. Note that in a VECS
are two verticesa andb having high degrees.

In view of these results, the following question is raised in that paper: can the approximation r
improved when the maximum vertex degree of the polytope is bounded? Another interesting que
whether there are special types of polytopes that have optimal triangulations or with better approx
ratios usingCutPull. In this paper we give some results about these questions.

The rest of this paper is organized as follows:

• In Section 2, we give new bounds on the relationship between the size of minimum triangulati
maximum vertex degree, and the number of 3-cycles of a polytope, improving the previous
given in [5].
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Fig. 1. (a) A VECS of sizes. (b) A bipyramid withn − 2 vertices in the middle chain; heren = 8.

• In Section 3, we show that when a polytope has no degree-4 vertices and no 3-cycles, any tr
tion of the polytope has at least≈ 4n/3 tetrahedra, and this bound is achievable. Thus we can p
that CutPull gives an improved approximation ratio, 3/2 instead of 2, and this bound is tight. F
polytopes with all vertices of degree-5 or above, an upper bound 2−1/12 on the approximation rati
can be proved.

• In Section 4, we give a generalized analysis of theCutPull algorithm for polytopes with verte
degrees bounded above by∆. The analysis gives an asymptotically tight approximation ratio
algorithms that only consider the combinatorial structures of polytopes. In particular, the r
better than 2 for the constant-degree case, e.g., 12/7 for ∆ = 6 and 7/4 for ∆ = 7.

2. Preliminaries

Throughout this paper, letP be a convex polytope in�3 with n vertices,∆ be the maximum verte
degree, andk be the number of 3-cycles. We only consider polytopes with vertices ingeneral position,
i.e., no four vertices are coplanar. The sizet of a triangulation and the number of interior edgesei it
uses satisfy the formulat = ei + n − 3 [1]. Let tm be the size of minimum triangulation ofP , andem

be the number of interior edges in this minimum triangulation. It follows thattm = em + n − 3. It is also
shown in [5] thatem is related to∆ under the restriction that the polytope has no 3-cycles, by the for
2em(∆ + 1) � n. In this section we improve this formula by tightening the inequality by almost a fa
of 2 (the constant-factor improvement is important when we come to Section 4), and also extend
the case with 3-cycles.

Lemma 1. For a polytopeP with no3-cycles andn > 4 vertices,em∆ � n − 2, and this is tight.

Proof. Consider a facev0v1v2 in P . We claim that each face must be incident by at least one int
edge. Assume this is not so. Then there is a facev0v1v2 of P that has no incident interior edges. It is
some tetrahedron with fourth vertexv3, andv0v3, v1v3, v2v3 have to be surface edges ofP . Therefore the
three trianglesv0v1v3, v1v2v3, v2v0v3 are either 3-cycles or faces. But 3-cycles are forbidden. If all t
triangles are faces, thenP is simply a tetrahedron withn = 4. Therefore our claim holds.
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Since there are 2n − 4 faces in a polytope withn vertices, there are at least 2n − 4 interior edges
but each is counted at most 2∆ times since each of the endpoints can be incident to at most∆ faces.
Thusem(2∆) � 2n − 4, i.e.,em∆ � n − 2. This bound can be achieved by considering a bipyramid
(Fig. 1(b)), in whichem = 1,∆ = n − 2. �

We can generalize Lemma 1 to polytopes havingk 3-cycles:

Lemma 2. For a polytope withk 3-cycles andn > 4 vertices,em∆ � n − 2− 3k.

Proof. As in Lemma 1, for each of the 2n − 4 faces, there should be at least one incident interior e
unless, among the three bounding edges of the face, at least one is on a 3-cycle. Each 3-cycle c
an edge with at most six faces (on both sides of the three edges). Thus there remain at least 2n − 4− 6k

faces having incident interior edges. With the same argument as in Lemma 1,em(2∆) � 2n−4−6k, and
the result follows. �

The following lemma, which relates the size of triangulations produced byCutPull and the numbe
of 3-cycles of a polytope, can easily be deduced from Lemmas 6 and 7 of [5].

Lemma 3. TheCutPull algorithm produces a triangulation of size at mostmin(2n−4−∆,2n−7− k).

3. Analysis for a special class of polytopes

From the results in [2] and [5], it can be seen that the major problems in finding minimum
gulations appear in 3-cycles and VECSs. In this section we first analyze the special case in wh
polytopes concerned have no 3-cycles and no degree-4 vertices (thus no VECSs). Note that
existence of 3-cycles implies that there are no degree-3 vertices, and thus all vertices have de
least five. We show that in this case the approximation ratio of theCutPull algorithm is at most 3/2, bet-
ter than the general case ratio 2− �(1/

√
n ) [5]. Moreover this is tight: we construct polytopes havi

an approximation ratio no better than 3/2 − ε usingCutPull for any ε > 0. We then consider the ca
when 3-cycles are present.

Empirically, it has been observed that 3-cycles are not very common in polytopes, in particula
not induced by degree-3 vertices (every degree-3 vertex induces a 3-cycle); and there are certai
of polytopes, such as prisms, antiprisms, etc. [6] that have no 3-cycles and degrees at least five (
that the coplanar points are perturbed so that the faces are suitably triangulated, and if necess
simple modification/replication). Moreover our results also have the following significance:

(i) as far as we know this is one of the very few classes of polytopes that is known to have approx
ratio 2− ε for constantε > 0. For example, ‘stacked polytopes’ [8] can be triangulated optimal
linear time, or the ‘k-opt polytopes’ [10].

(ii) the existence of 3-cycles and degree-4 vertices can be checked in linear time ([9] and [4] gave
time algorithms for enumerating 3-cycles in planar graphs). This is in contrast tok-opt polytopes
where no algorithm is known to check whether a polytope isk-opt.

(iii) they may arise as intermediate polytopes in the processing of other triangulation algorithm
peeling [7].
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Fig. 2. Ear and internal triangles.

We classify all vertices of a polytopeP into two types (w.r.t. a particular triangulation): a vertex
calledtype-I if some interior edge is directly incident to it. Otherwise it is calledtype-II. For any vertex
v, we define theneighborhoodN(v) of v to be the set of vertices directly connected tov on the surface
graph, i.e.,N(v) = {u | (u, v) ∈ surface edges ofP }. N(v) forms a 3-dimensional polygon. Consider a
triangulation of the polygonN(v). (Note that this is slightly different from the definition of ‘dome’
‘cap’ [3,5] in that a triangulation ofN(v) may not yield a convex patch of triangular faces.) Triangles w
two edges on the polygonN(v) are called‘ear’ triangles, and all others are called‘internal’ triangles
(Fig. 2).

We present some observations about type-II vertices in the lemma below, which we shall skip t
proof:

Lemma 4. Supposev is a type-II vertex of degreed in a polytopeP with respect to a triangulation.
(i) All tetrahedra incident tov form a triangulation of the region bounded by the3-D polygonN(v)

and the faces ofP aroundv. There ared − 2 tetrahedra in this part of the triangulation. Their bas
triangulate the polygonN(v).

(ii) For any triangulation ofN(v), if d � 5 and v is not lying on any3-cycles, there is at least on
type-I vertex inN(v) having two or more incident interior edges. The triangulation ofN(v) consists of
at least two ‘ear’ triangles and at least one ‘internal’ triangle.

Lemma 5. For a polytopeP having no3-cycles and all vertices have degrees at least five, there a
least4n/3− 8/3 tetrahedra in any triangulation ofP .

Proof. Suppose there aren1 type-I vertices andn2 type-II vertices inP , n1 + n2 = n. We give two
different bounds for the size of triangulation:

Bound 1: We want to count the number of interior edge endpoints incident to the vertices (eac
rior edge having two endpoints). By definition, for each type-I vertex there is at least one interio
endpoint incident to it. This givesn1 edge endpoints. In addition, for each of then2 type-II vertices,
there is at least one type-I vertex in the neighborhood that has two or more edge endpoints inc
it (Lemma 4). But the previous step did not count the extra endpoints (only one endpoint was c
for each type-I vertex). Thus there are at leastn2 additional edge endpoints, if all of them are distinct
can be shown that at most two type-II vertices share such an additional endpoint; the worst case
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Fig. 3. Two type-II vertices sharing an additional edge.

Fig. 3 where two type-II vertices (v1 andv9) sharing a type-I vertex (v3) that only has two interior edg
endpoints. Thus at leastn2/2 edge endpoints are added. Since each interior edge has two endpoin
counted,

em � 1

2

(
n1 + n2

2

)
= 1

2

(
n − n2

2

)
.

Thus the size of minimum triangulation ofP ,

tm = em + n − 3� 3n

2
− n2

4
− 3.

Bound 2: For each type-II vertexv, all tetrahedra incident to it constitute a triangulation ofN(v)

(Lemma 4) (Fig. 2). Consider any triangulation of the 3-D polygonN(v), with each triangle correspond
ing to a tetrahedron havingv as a vertex. We count the number of tetrahedra incident to the ty
N(v)’s. All ‘internal’ tetrahedra of a type-II vertexv will not be counted by other type-II vertices (sin
the other three vertices of the tetrahedron are type-I). The ‘ear’ tetrahedra may be counted tw
example in Fig. 3 tetrahedrav1v2v3v4 andv1v3v5v6 are ‘ear’ tetrahedra of a type-II vertexv1, but the
tetrahedrav1v2v3v4 (resp.v1v3v5v6) may also be counted byv2 (resp.v6) if v2 (resp.v6) are type-II. It
cannot be counted more than twice since the other two vertices of the tetrahedron are type-I. Sincd � 5,
there is at least one ‘internal’ tetrahedron and at least two ‘ear’ tetrahedra, giving a total of at le
tetrahedra (each ‘ear’ counted as 0.5 for this vertex to avoid double counting) incident to each
vertex. Thus the total number of tetrahedra incident to these type-II vertices is at least 2n2.

Considering both bounds, the number of tetrahedra is at least max(3n/2 − n2/4 − 3,2n2). Since the
two expressions are decreasing and increasing functions ofn2, respectively, the maximum is minimize
when the expressions are equal, i.e.,n2 = (2n − 4)/3, andtm � 4n/3− 8/3. �

The above bound is tight (up to a constant additive factor) as shown below:

Lemma 6. There exist polytopes without3-cycles and degree-4 vertices, and with constant vertex degre
such that the sizes of minimum triangulations are at most4n/3+ 8/3.
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Fig. 4. The construction. (a)m triangles in the horizontal plane. (b) Tetrahedra placed above them triangles (top view). (c) The
resulting polytope (3D view), with two ends to be further processed. (d) Patch structure. The two triangles at the
indicated by the dashed line) are to be attached to newly exposed faces.

Proof. Consider a sequence ofm triangles in a horizontal plane (Fig. 4(a)). We place a tetrahedro
top of and below every triangle. Then for every two adjacent tetrahedra on the top half, connect th
vertices, thus ‘filling the valley’ between the two tetrahedra with another tetrahedron. The bottom
treated similarly. This gives a convex polytope with 3m+2 vertices and triangulated by 4m−2 tetrahedra
(Fig. 4(b,c)). All the vertices in the polytope have degrees at least 5, except the vertices at the tw
labelleda, d, e, f, i, j in Fig. 4(c). We handle them as follows. For the left end, we remove the tetra
abce andbcde, leaving a non-convex polytope withbc being a non-convex edge, andabc, bcd being
two newly exposed faces. We patch the structure in Fig. 4(d) to cover those newly exposed face
maintaining convexity of the polytope. This structure has 12 vertices (8 of them are new vertice
patched), all with degrees at least five. This patched part itself is a convex polytope triangulable u
most 2n − 4 − 5 = 2(12) − 9 = 15 additional tetrahedra (by pulling). Apply the same to the right e
The resulting polytope has 3m+ 2+ 2(−1+ 8) = 3m+ 16 vertices, no 3-cycles, and can be triangula
using at most 4m − 2+ 2(−2+ 15) = 4m + 24 tetrahedra. The bound follows.�

The tight bound on the size of triangulations gives a tight bound on the approximation ratio ofCutPull:

Theorem 1. The approximation ratio ofCutPull algorithm for polytope without3-cycles and all vertices
having degrees at least five is at most3/2, and this is tight.

Proof. The bound on the approximation ratio follows from Lemmas 3 and 5:

r � 2n − 7
<

3
.

4n/3− 8/3 2



8 S.P.Y. Fung et al. / Computational Geometry 32 (2005) 1–12

ex de-

are

the
ting
can
s occurs
That the bound is tight follows from the constructed polytope in Lemma 6, having constant vert
grees, no 3-cycles, andtm � 4n/3+ 8/3. Thus for those polytopes,CutPull gives

r � 2n − 4− ∆

4n/3+ 8/3
= 3

2
− ε

whereε = �(1/n) tends to 0 asn tends to infinity. �
With the presence of 3-cycles (but still without degree-3 and degree-4 vertices), we have:

Theorem 2. For polytopes withk 3-cycles and all vertices have degrees at least five,CutPull gives an
approximation ratio

r � 2n − 7− k

max(n − 3, (4n − 8)/3− 4k)
< 2− 1

12

for anyk.

Proof. The argument in Lemma 5 works for vertices not lying on any 3-cycles. Suppose theren′
vertices not lying on 3-cycles. We haven′ � n− 3k, sotm � 4(n− 3k)/3− 8/3 = (4n− 8)/3− 4k. With
Lemma 3 we have the approximation ratio

r � 2n − 7− k

max(n − 3, (4n − 8)/3− 4k)
.

Note thatn − 3� (4n − 8)/3− 4k if and only if k � (n + 1)/12. So ifk � (n + 1)/12, we have

r � 2n − 7− k

n − 3
� 2n − 7− (n + 1)/12

n − 3
< 2− 1

12
.

If k < (n + 1)/12, we have

r � 2n − 7− k

(4n − 8)/3− 4k

and since the value of this fraction increases withk, we have

r � 2n − 7− (n + 1)/12

(4n − 8)/3− 4(n + 1)/12
< 2− 1

12
.

Thus the ratio is at most 2− 1/12 for anyk. �

4. Analysis for polytopes with bounded vertex degrees

In this section, we consider convex polytopes with vertex degrees bounded above by a given∆. We
show that in this case theCutPull algorithm can be applied with improved approximation ratio, and
ratio is tight up to combinatorial considerations. The analysis generalizes that in [5] by incorpora∆

in the bound. This is useful when∆ is small or has known asymptotic behaviour. In particular, we
improve the approximation ratio when the vertex degrees are bounded above by a constant. Thi
frequently, for example, in randomly generated polytopes.
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Theorem 3. TheCutPull algorithm gives an approximation ratio of2− �(1/∆) − �(∆/n).

Proof. Without loss of generality assume∆ � 4. Recall thatk is the number of 3-cycles. In the followin
we will repeatedly make use of the following inequality: ifA,B > 0 andA/B < 2 then A

B
< A+2x

B+x
for

x > 0. We consider two cases.
Case 1:k + 1 � ∆/6. Then from Lemmas 2 and 3

r � 2n − 4− ∆

em + n − 3
� 2n − 4− ∆

(n − 2− 3k)/∆ + n − 3
= 2n∆ − ∆(∆ + 4)

(1+ ∆)n − 2− 3k − 3∆

<
2n∆ − ∆(∆ + 4) + 6∆ + 6k + 4

(1+ ∆)n
= 2∆

1+ ∆
− ∆(∆ + 1) − 3∆

(1+ ∆)n
+ 6k + 4

(1+ ∆)n

<
2∆

1+ ∆
− ∆

n
+ 3

n
+ 6(k + 1)

(1+ ∆)n
� 2∆

1+ ∆
− ∆ − 3

n
+ ∆

5n
= 2− 2

∆ + 1
− 0.8∆ − 3

n
.

Case 2:k + 1 > ∆/6. Then from Lemmas 2 and 3

r � 2n − 7− k

em + n − 3
<

2n − (k + 1)

(n − 2− 3k)/∆ + n
= 2n∆ − ∆(k + 1)

(1+ ∆)n − (3k + 2)
<

2n∆ − ∆(k + 1) + (6k + 4)

(1+ ∆)n

= 2∆

∆ + 1
− (∆ − 6)k + (∆ − 4)

(∆ + 1)n
<

2∆

∆ + 1
− (∆ − 6)(∆/6− 1) + (∆ − 4)

(∆ + 1)n

= 2− 2

∆ + 1
− �

(
∆

n

)
. �

It can be seen that the worst case occurs when∆ = �(
√

n ) in which the bound reduces to 2−
�(1/

√
n ) in [5].

When the maximum degree∆ is bounded by a constant, Theorem 3 shows an improved approxim
ratio:

Corollary 1. When∆ is constant, theCutPull algorithm gives an approximation ratio no larger tha
2− 2

∆+1. For example, the ratio is12/7 for ∆ = 6 and7/4 for ∆ = 7.

4.2. Lower bound

It is proved in [5] that no algorithm that only considers the combinatorial structures of poly
can give an approximation ratio better than 2− O(1/

√
n ) for the minimum triangulation problem. Th

proof is based on constructing two polytopes P1 and P2 with the same combinatorial structure bu
different sizes in their minimum triangulations. In this subsection we prove a more general result w
maximum degree∆ of the polytope is given. This shows that our upper bound in the previous subs
is asymptotically tight when only combinatorial information is considered.

We construct two combinatorially equivalent polytopes P1 and P2. The construction is similar t
is shown in [5] except that in [5] some vertices have unbounded degrees. In our construction, we
bound the maximum degree of all vertices.
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Fig. 5. (a) Construction of P1 and P2, showing 3 wedges.qi ’s are not shown. (b) The wedges withm = 5, showing the zig-zag
paths on the vertical plane.

First, a set ofm VECSs each of sizes are placed as in Fig. 5(a). WedgeWi has vertices (ai, bi, ci, di)
with aibi being the main diagonal. All main diagonals pass through the origin. All facesaicidi lie on
the vertical planey = −1 while all facesbicidi lie on the horizontal planez = 1. Verticesq1

i , . . . , q
s
i

are added betweenci anddi for each wedge to form a VECS. Theai ’s form a convex chain w.r.t. (0
−1,−∞), and thebi ’s form a convex chain w.r.t. (∞, 0, 1). We haven = m(s + 4).

Second, notice that all vertices lie on two planes, violating the general position assumption. We
this degeneracy by perturbing the vertices slightly, so that the polytope has the following set of edg
Fig. 5):

akck, akdk, bkck, bkdk (1� k � m);
dkak+1, dkck+1, bkck+1, akak+1, bkbk+1 (1 � k � m − 1);
qi

kq
i+1
k , q1

k ck, qs
kdk (1 � i � s − 1, 1� k � m);

qi
kak, qi

kbk (1 � i � s, 1 � k � m);
c1bm, a1bm, a1dm.

To cope with our constant-degree construction, theai ’s andbi ’s are connected together in a zig-z
manner, i.e.,a1ana2an−1, . . . , b1bnb2bn−1, . . . (Fig. 5(b)). It is easy to show that in this constructio
the maximum degree∆ = s + 7 (attained at, e.g.,a2 in Fig. 5(b)), and we can apply sufficiently sma
perturbations to the vertices so that they are in general position.

Now the main diagonals all intersect at the origin. In the third step for P1, we ‘push’ the w
towards each other slightly so that all wedges intersect each other. For P2, we shrink the wedges
so that they do not intersect. The exact details can be found in [5]. In this way, P1 will have a lar
of triangulation because the wedges are ‘interlocked’ (i.e., penetrating each other), while P2 can
small triangulation, although the two have the same combinatorial structure.

Theorem 4. Any triangulation algorithm that only considers the combinatorial structure of a co
polytope cannot give an approximation ratio better than2− O(1/∆) − O(∆/n).
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Proof. We first show that any minimum triangulation of P1 has at least(2∆−14
∆−3 )n − ∆ tetrahedra, while

any minimum triangulation of P2 has at most(∆+1
∆−3)n tetrahedra.

As discussed in Section 1, the wedges have the property that they admit triangulation of size e
mosts + 1 or at least 2s, depending on the presence of their ‘main diagonal’ in the triangulation. Fo
at most one main diagonal of thesem wedges can be present in any triangulation. Thus

tP1 � (m − 1)(2s) + (s + 1) =
(

n

∆ − 3
− 1

)
(2∆ − 14) + (∆ − 6) >

(
2∆ − 14

∆ − 3

)
n − ∆.

For P2, each wedge can be triangulated intos + 1 tetrahedra using their main diagonals. Removing th
wedges leaves a non-convex region. This can be triangulated into 4(m − 1) + 3(m − 2) + 2 = 7m − 8
tetrahedra, using the ‘shielding’ argument same as that in [5]; due to space limitation we do not r
here. Note that theai ’s andbi ’s have to be ‘zig-zagged’ in a matching manner for the proof to work.

tP2 � m(s + 1) + 7m − 8=
(

n

s + 4

)
(s + 1+ 7) − 8 <

(
∆ + 1

∆ − 3

)
n.

An algorithm that only considers combinatorial structures cannot distinguish P1 and P2, and
has to give the triangulation of larger size. With the above bounds, we thus have

r �
(

2∆−14
∆−3

)
n − ∆(

∆+1
∆−3

)
n

= 2∆ − 14

∆ + 1
− ∆(∆ − 3)

n(∆ + 1)
= 2− O

(
1

∆

)
− O

(
∆

n

)
. �

5. Conclusion

We gave improved approximation ratios for the minimum polytope triangulation problem fo
special classes of polytopes: one having no 3-cycles and no degree-4 vertices, and one with
maximum vertex degrees. For the case without 3-cycles and degree-4 vertices, our algorithm
ratio of 3/2. This seems to be a rather restricted class of polytopes; can it be optimally triangula
polynomial time? Can we identify the (more restricted?) class of polytopes which our algorithm wi
the optimal triangulation? Stacked polytopes are one known type. Can we identify classes of po
that can be triangulated optimally or near-optimally in polynomial time, using perhaps other algor
The results may also be generalized to polytopes having few (but nonzero) degree-4 vertices.

For the constant degree case, we get an asymptotically tight approximation ratio 2− �(1/∆) −
�(∆/n), the lower bound being established if only combinatorial structure is considered. It is
ally not known whether the constant-degree case is NP-hard (like the general-degree case), a
happens when non-combinatorial information is considered.
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