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Abstract

Finding minimum triangulations of convex 3-polytopes is NP-hard. The best approximation algorithms only give
an approximation ratio of 2 for this problem, which is the best possible asymptotically when only combinatorial
structures of the polytopes are considered. In this paper we improve the approximation ratio of finding minimum
triangulations for some special classes of 3-dimensional convex polytopes. (1) For polytopes without 3-cycles and
degree-4 vertices we achieve a tight approximation ratio/af @) For polytopes where all vertices have degrees
at least 5, we achieve an upper bound ef 2/12 on the approximation ratio. (3) For polytopes witkertices and
vertex degrees bounded above fywe achieve an asymptotic tight ratio of2Q2(1/4) — Q(A/n). WhenA is
constant the ratio can be shown to be at most2/ (A + 1).
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1. Introduction

A triangulation of a d-dimensional polytope is its subdivision into a set of simplices, such that the
simplices do not overlap and intersect only at common faces. We are interested in three-dimensional
polytope triangulations (also calléetrahedralizationl which have important applications in computer
graphics, finite element analysis, computer-aided design, etc. as well as having fundamental theoretical
significance. In particular, we want to find triangulations consisting of a small number of tetrahedra.
Since we only consider polytopes in three dimensions, we simply call ‘3-polytopes’ as ‘polytopes’ in
this paper.

The problem of polytope triangulation has been studied extensively. Convex 3-polytopes can always be
triangulated, but triangulations of the same polytope can differ in size, i.e., contain different numbers of
tetrahedra. It is shown in [2] that finding a minimum triangulation, i.e., a triangulation with the minimum
possible size, is NP-hard. There are several algorithms to triangulate a polytope, but not specifically
addressing the problem of minimum triangulation. For example, the sipybli@g heuristic [8], which
picks a vertex and connects it to all other non-adjacent faces of the polytope, gives an approximation
ratio of 2 for finding minimum triangulations. Though simple, no better triangulation algorithms were
known for a long time.

In [5] a new triangulation algorithm was given, by making use of the properties of 3-cyclesy&l@s
a cycle of length three on the surface graph of a polytope such that both sides contain some other vertices
(i.e., the triangular faces of the polytope are not regarded as 3-cycles). A 3-cycle separates a polytope into
two parts. The idea of the algorithm (which we dalitPull in this paper) is very simple: the polytope is
partitioned along all the 3-cycles into subpolytopes, each is free of 3-cycles. Then the pulling heuristic is
applied to each resulting subpolytope. It was shown that this algorithm gives an approximation ratio of
2 — Q(1/4/n) wheren is the number of vertices of the polytope.

Although the above bound seems to be a slight improvement only, it was proved in the same paper that
this approximation ratio is the best possible, for algorithms that only consider the combinatorial structure
of the polytopes. This lower bound is proved by utilizing a property of vertex-edge chain structures
(VECSS), firstintroduced in [2]. A VECS of sizeconsists of the verticea (b, go, g1, . . ., gs+1), forming
the set of triangular faceig;q; 11, bgigi11 (0 <i <)} (Fig. 1(a)). It consists of a chain of degree-4
vertices. An important property of the VECS is [5]: if the graph of a polytope contains a VECS as a
substructure, and the interior edgk (called themain diagona) is not present in a triangulation of the
polytope, then in this triangulation at leasttetrahedra are ‘incident’ to the VECS. On the other hand, if
ab is presents + 1 incident tetrahedra may be sufficient for the triangulation. Note that in a VECS there
are two verticea andb having high degrees.

In view of these results, the following question is raised in that paper: can the approximation ratio be
improved when the maximum vertex degree of the polytope is bounded? Another interesting question is
whether there are special types of polytopes that have optimal triangulations or with better approximation
ratios usingCutPull. In this paper we give some results about these questions.

The rest of this paper is organized as follows:

e In Section 2, we give new bounds on the relationship between the size of minimum triangulation, the
maximum vertex degree, and the number of 3-cycles of a polytope, improving the previous results
given in [5].



S.P.Y. Fung et al. / Computational Geometry 32 (2005) 1-12 3

9541
@ ®

Fig. 1. (@) A VECS of siza. (b) A bipyramid withn — 2 vertices in the middle chain; hene= 8.

e In Section 3, we show that when a polytope has no degree-4 vertices and no 3-cycles, any triangula-
tion of the polytope has at least4n /3 tetrahedra, and this bound is achievable. Thus we can prove
that CutPull gives an improved approximation ratio/ZBinstead of 2, and this bound is tight. For
polytopes with all vertices of degree-5 or above, an upper bountl/A22 on the approximation ratio
can be proved.

e In Section 4, we give a generalized analysis of @&Pull algorithm for polytopes with vertex
degrees bounded above by The analysis gives an asymptotically tight approximation ratio for
algorithms that only consider the combinatorial structures of polytopes. In particular, the ratio is
better than 2 for the constant-degree case, e.¢g7 i# A =6 and 74 forA=7.

2. Preliminaries

Throughout this paper, le® be a convex polytope i with n vertices,A be the maximum vertex
degree, and be the number of 3-cycles. We only consider polytopes with verticgemeral position
i.e., no four vertices are coplanar. The sizef a triangulation and the number of interior edgest
uses satisfy the formula=¢; + n — 3 [1]. Let ¢, be the size of minimum triangulation &f, ande,,
be the number of interior edges in this minimum triangulation. It follows that ¢,, + n — 3. It is also
shown in [5] that,, is related taA under the restriction that the polytope has no 3-cycles, by the formula
2¢,,(A + 1) > n. In this section we improve this formula by tightening the inequality by almost a factor
of 2 (the constant-factor improvement is important when we come to Section 4), and also extending it to
the case with 3-cycles.

Lemma 1. For a polytopeP with no3-cycles and: > 4 verticese,, A > n — 2, and this is tight.

Proof. Consider a facegviv, in P. We claim that each face must be incident by at least one interior
edge. Assume this is not so. Then there is a fgegv, of P that has no incident interior edges. It is in
some tetrahedron with fourth vertey, andvgus, v1v3, vouz have to be surface edges Pf Therefore the
three trianglesgvyvs, v1vv3, VUL are either 3-cycles or faces. But 3-cycles are forbidden. If all three
triangles are faces, theh is simply a tetrahedron with = 4. Therefore our claim holds.
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Since there are/i2— 4 faces in a polytope with vertices, there are at least 2 4 interior edges,
but each is counted at mosp2imes since each of the endpoints can be incident to at mdstces.
Thuse,,(2A) > 2n — 4, i.e.,e,, A > n — 2. This bound can be achieved by considering a bipyramid [11]
(Fig. 1(b)), in whiche,, =1,A=n—-2. O

We can generalize Lemma 1 to polytopes havirgjcycles:
Lemma 2. For a polytope withk 3-cycles and: > 4 verticese,, A >n — 2 — 3k.

Proof. Asin Lemma 1, for each of then2— 4 faces, there should be at least one incident interior edge,
unless, among the three bounding edges of the face, at least one is on a 3-cycle. Each 3-cycle can shar
an edge with at most six faces (on both sides of the three edges). Thus there remain at-ledst @k

faces having incident interior edges. With the same argument as in Lenapé) > 2n — 4 — 6k, and

the result follows. O

The following lemma, which relates the size of triangulations produce@uiull and the number
of 3-cycles of a polytope, can easily be deduced from Lemmas 6 and 7 of [5].

Lemma 3. TheCutPull algorithm produces a triangulation of size at mash(2n —4— A, 2n — 7 —k).

3. Analysisfor a special class of polytopes

From the results in [2] and [5], it can be seen that the major problems in finding minimum trian-
gulations appear in 3-cycles and VECSs. In this section we first analyze the special case in which the
polytopes concerned have no 3-cycles and no degree-4 vertices (thus no VECSSs). Note that the non-
existence of 3-cycles implies that there are no degree-3 vertices, and thus all vertices have degrees a
least five. We show that in this case the approximation ratio o€utéull algorithm is at most &, bet-
ter than the general case ratic-X2(1/+/n) [5]. Moreover this is tight: we construct polytopes having
an approximation ratio no better thap23— ¢ usingCutPull for any e > 0. We then consider the case
when 3-cycles are present.

Empirically, it has been observed that 3-cycles are not very common in polytopes, in particular those
not induced by degree-3 vertices (every degree-3 vertex induces a 3-cycle); and there are certain classe
of polytopes, such as prisms, antiprisms, etc. [6] that have no 3-cycles and degrees at least five (providec
that the coplanar points are perturbed so that the faces are suitably triangulated, and if necessary with
simple modification/replication). Moreover our results also have the following significance:

(i) asfaraswe know this is one of the very few classes of polytopes that is known to have approximation
ratio 2— ¢ for constant > 0. For example, ‘stacked polytopes’ [8] can be triangulated optimally in
linear time, or thek-opt polytopes’ [10].

(ii) the existence of 3-cycles and degree-4 vertices can be checked in linear time ([9] and [4] gave linear-
time algorithms for enumerating 3-cycles in planar graphs). This is in contrasoj polytopes
where no algorithm is known to check whether a polytope @pt.

(i) they may arise as intermediate polytopes in the processing of other triangulation algorithms, e.g.,
peeling [7].
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ear triangles internal triangles

Fig. 2. Ear and internal triangles.

We classify all vertices of a polytopB into two types (w.r.t. a particular triangulation): a vertex is
calledtype-lif some interior edge is directly incident to it. Otherwise it is caltgpe-Il. For any vertex
v, we define theneighborhoodV (v) of v to be the set of vertices directly connected ton the surface
graph,i.e.N(v) ={u | (u, v) € surface edges af}. N (v) forms a 3-dimensional polygon. Consider any
triangulation of the polygomVv (v). (Note that this is slightly different from the definition of ‘dome’ or
‘cap’ [3,5] in that a triangulation oV (v) may not yield a convex patch of triangular faces.) Triangles with
two edges on the polygoN (v) are calledear’ triangles, and all others are calléthternal’ triangles
(Fig. 2).

We present some observations about type-Il vertices in the lemma below, which we shall skip the easy
proof:

Lemma 4. Suppose is a typeH vertex of degred in a polytopeP with respect to a triangulation.

(i) All tetrahedra incident ta form a triangulation of the region bounded by tBéD polygonN (v)
and the faces oP aroundv. There ared — 2 tetrahedra in this part of the triangulation. Their bases
triangulate the polygomv (v).

(i) For any triangulation ofN (v), if d > 5 and v is not lying on any3-cycles, there is at least one
typed vertex inN (v) having two or more incident interior edges. The triangulationVafy) consists of
at least two ‘ear’ triangles and at least one ‘internal’ triangle.

Lemma 5. For a polytopeP having no3-cycles and all vertices have degrees at least five, there are at
least4n /3 — 8/3 tetrahedra in any triangulation of.

Proof. Suppose there arme, type-l vertices andi, type-ll vertices inP, ni + np, = n. We give two
different bounds for the size of triangulation:

Bound 1: We want to count the number of interior edge endpoints incident to the vertices (each inte-
rior edge having two endpoints). By definition, for each type-I vertex there is at least one interior edge
endpoint incident to it. This gives; edge endpoints. In addition, for each of thetype-Il vertices,
there is at least one type-| vertex in the neighborhood that has two or more edge endpoints incident to
it (Lemma 4). But the previous step did not count the extra endpoints (only one endpoint was counted
for each type-I vertex). Thus there are at legsadditional edge endpoints, if all of them are distinct. It
can be shown that at most two type-Il vertices share such an additional endpoint; the worst case is as in
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Fig. 3. Two type-Il vertices sharing an additional edge.

Fig. 3 where two type-Il verticea{ anduvg) sharing a type-1 vertexvg) that only has two interior edge
endpoints. Thus at leag$/2 edge endpoints are added. Since each interior edge has two endpoints to be
counted,

>l +I’l2 _1 ny
em/zl’ll 2 —zn 2.

Thus the size of minimum triangulation &,

tm=em+n—3>3?n—nz2—3.

Bound 2: For each type-Il vertex, all tetrahedra incident to it constitute a triangulationofv)
(Lemma 4) (Fig. 2). Consider any triangulation of the 3-D poly@b), with each triangle correspond-
ing to a tetrahedron having as a vertex. We count the number of tetrahedra incident to the type-Ii
N(v)’s. All ‘internal’ tetrahedra of a type-Il vertex will not be counted by other type-Il vertices (since
the other three vertices of the tetrahedron are type-I). The ‘ear’ tetrahedra may be counted twice. For
example in Fig. 3 tetrahedna vovsvs andvivsvsvg are ‘ear’ tetrahedra of a type-Il vertex, but the
tetrahedravi1vovzvs (resp.vivsvsvg) may also be counted by (resp.ve) if vo (resp.vg) are type-Il. It
cannot be counted more than twice since the other two vertices of the tetrahedron are typed >Stce
there is at least one ‘internal’ tetrahedron and at least two ‘ear’ tetrahedra, giving a total of at least two
tetrahedra (each ‘ear’ counted as 0.5 for this vertex to avoid double counting) incident to each type-ll
vertex. Thus the total number of tetrahedra incident to these type-Il vertices is atdgast 2

Considering both bounds, the number of tetrahedra is at leagBnydx— n,/4 — 3, 2n,). Since the
two expressions are decreasing and increasing functioms oéspectively, the maximum is minimized
when the expressions are equal, i9.= (2n — 4)/3, andt,, > 4n/3—8/3. O

The above bound is tight (up to a constant additive factor) as shown below:

Lemma6. There exist polytopes withoBtcycles and degredvertices, and with constant vertex degrees,
such that the sizes of minimum triangulations are at Mag8 + 8/3.
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Fig. 4. The construction. (ag triangles in the horizontal plane. (b) Tetrahedra placed above thiengles (top view). (c) The
resulting polytope (3D view), with two ends to be further processed. (d) Patch structure. The two triangles at the back (as
indicated by the dashed line) are to be attached to newly exposed faces.

Proof. Consider a sequence af triangles in a horizontal plane (Fig. 4(a)). We place a tetrahedron on
top of and below every triangle. Then for every two adjacent tetrahedra on the top half, connect their top
vertices, thus ‘filling the valley’ between the two tetrahedra with another tetrahedron. The bottom half is
treated similarly. This gives a convex polytope with 3 2 vertices and triangulated by 2 tetrahedra

(Fig. 4(b,c)). All the vertices in the polytope have degrees at least 5, except the vertices at the two ends,
labelleda, d, e, f,i, j in Fig. 4(c). We handle them as follows. For the left end, we remove the tetrahedra
abce andbcde, leaving a non-convex polytope wifit being a non-convex edge, andc, bed being

two newly exposed faces. We patch the structure in Fig. 4(d) to cover those newly exposed faces, while
maintaining convexity of the polytope. This structure has 12 vertices (8 of them are new vertices when
patched), all with degrees at least five. This patched part itself is a convex polytope triangulable using at
most 21 — 4 — 5=2(12) — 9= 15 additional tetrahedra (by pulling). Apply the same to the right end.
The resulting polytope has3+ 2 + 2(—1+ 8) = 3m + 16 vertices, no 3-cycles, and can be triangulated
using at most# — 2 + 2(—2 + 15) = 4m + 24 tetrahedra. The bound followso

The tight bound on the size of triangulations gives a tight bound on the approximation r@tioRflI:

Theorem 1. The approximation ratio oCutPull algorithm for polytope withou8-cycles and all vertices
having degrees at least five is at m8g2, and this is tight.

Proof. The bound on the approximation ratio follows from Lemmas 3 and 5:
2n—17 3
Fr<—rr——2<=2.
4n/3—-8/3 2
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That the bound is tight follows from the constructed polytope in Lemma 6, having constant vertex de-
grees, no 3-cycles, ang < 4n/3+ 8/3. Thus for those polytope§utPull gives

2n—4-—-A 3
r>— == —
4n/3+8/3 2
wheree = ®(1/n) tends to 0 ag tends to infinity. O

With the presence of 3-cycles (but still without degree-3 and degree-4 vertices), we have:

Theorem 2. For polytopes withk 3-cycles and all vertices have degrees at least fiugPull gives an

approximation ratio
2n—7T—k 1

< 2—
"Shaxn—3,4n—8)/3—4 12
for anyk.

Proof. The argument in Lemma 5 works for vertices not lying on any 3-cycles. Suppose there are
vertices not lying on 3-cycles. We haxé> n — 3k, sot,, > 4(n — 3k)/3—8/3 = (4n — 8) /3 — 4k. With
Lemma 3 we have the approximation ratio
2n—7—k
r< .
max(n — 3, (4n — 8)/3 — 4k)
Note thatn — 3> (4n — 8)/3 — 4k ifandonly ifk > (n + 1)/12. So ifk > (n + 1)/12, we have

r<2n—7—k<2n—7—(n+1)/12<2_i.
n—3 n—3 12
If k <(n+1)/12, we have
2n—"7—k

r <
(4n — 8)/3 — 4k
and since the value of this fraction increases witive have
2n—7—(m+1)/12 1
"S@n—8/3-an+n/12- " 12
Thus the ratio is at most2 1/12 for anyk. 0O

4. Analysisfor polytopeswith bounded vertex degrees

In this section, we consider convex polytopes with vertex degrees bounded above by a gitden
show that in this case theutPull algorithm can be applied with improved approximation ratio, and the
ratio is tight up to combinatorial considerations. The analysis generalizes that in [5] by incorpatating
in the bound. This is useful when is small or has known asymptotic behaviour. In particular, we can
improve the approximation ratio when the vertex degrees are bounded above by a constant. This occurs
frequently, for example, in randomly generated polytopes.
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4.1. Upper bound
Theorem 3. TheCutPull algorithm gives an approximation ratio @— Q(1/A) — Q(A/n).

Proof. Without loss of generality assurae> 4. Recall thak is the number of 3-cycles. In the following
we will repeatedly make use of the following inequality:4f B > 0 andA/B < 2 then4 < A+2x for
x > 0. We consider two cases.

Case 1k +1< A/6. Then from Lemmas 2 and 3

_m-4-A 2n—4— A _ 2nA—A(A+ 9
Sew+n—3 m—-2-3k)/A+n—-3 (A+An—-2-3k—3A
_MA-AA+4H+6A+6k+4 24 A(A+D)-34  6k+4

1+ A)n T 1+A 1+ A A+ A)n
Z_A_é 3 6(k+l)< 2A _A—3+£:2_ 2 _0.8A—3'
1+A n n (A4+An 1+A n 5n A+1 n
Case 2k + 1> A /6. Then from Lemmas 2 and 3
2n 7 — k 2n—(k+1) _ 2nA—Ak+1) <2nA—A(k+1)+(6k+4)
em+n—3 n—2-3k)/A+n (A+A)n—(3k+2) 1+ A)n
2A (A—-6)k+ (A -4 2A (A-6)(A/6—-1)+ (A -9
A+l (A+Ln Ay1 (A+ Dn

=2 2 Q A O
o A+1 n)

It can be seen that the worst case occurs whea ©(,/n) in which the bound reduces to-2
Q(1/4/n)in[5].

When the maximum degretis bounded by a constant, Theorem 3 shows an improved approximation
ratio:

Corollary 1. WhenA is constant, theCutPull algorithm gives an approximation ratio no larger than
2— A+1 For example, the ratio i§2/7 for A=6and7/4for A =7.

4.2. Lower bound

It is proved in [5] that no algorithm that only considers the combinatorial structures of polytopes
can give an approximation ratio better thar-2(1/./n) for the minimum triangulation problem. The
proof is based on constructing two polytopes P1 and P2 with the same combinatorial structure but having
different sizes in their minimum triangulations. In this subsection we prove a more general result when the
maximum degree\ of the polytope is given. This shows that our upper bound in the previous subsection
is asymptotically tight when only combinatorial information is considered.

We construct two combinatorially equivalent polytopes P1 and P2. The construction is similar to what
is shown in [5] except that in [5] some vertices have unbounded degrees. In our construction, we have to
bound the maximum degree of all vertices.
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Fig. 5. (a) Construction of P1 and P2, showing 3 wedggs.are not shown. (b) The wedges with= 5, showing the zig-zag
paths on the vertical plane.

First, a set ofn VECSs each of size are placed as in Fig. 5(a). Wed#é has verticesd;, b;, c;, d;)
with a;b; being the main diagonal. All main diagonals pass through the origin. All fages; lie on
the vertical planey = —1 while all facesb;c;d; lie on the horizontal plane = 1. Verticesg?, ..., ¢’
are added between) andd; for each wedge to form a VECS. The's form a convex chain w.r.t. (O,
—1, —00), and theb;’s form a convex chain w.r.tcf, 0, 1). We haver = m(s + 4).

Second, notice that all vertices lie on two planes, violating the general position assumption. We remove
this degeneracy by perturbing the vertices slightly, so that the polytope has the following set of edges (see
Fig. 5):

akck, ardy, brck, brdy (1< k<m);

dragy1,  dick1,  brck1,  arary1,  bibkyr A<k <m—1);

agai™t gice. gid (1<i<s—1 1<k<m);

diar, qiby (A<i<s, 1<k <m);
Clbm’ albm» aldm-

To cope with our constant-degree construction,dfi® andb;’s are connected together in a zig-zag
manner, i.e.aia,a2a, 1, ..., bib,bab, 1, ... (Fig. 5(b)). It is easy to show that in this construction,
the maximum degreeé = s + 7 (attained at, e.gaz in Fig. 5(b)), and we can apply sufficiently small
perturbations to the vertices so that they are in general position.

Now the main diagonals all intersect at the origin. In the third step for P1, we ‘push’ the wedges
towards each other slightly so that all wedges intersect each other. For P2, we shrink the wedges slightly
so that they do not intersect. The exact details can be found in [5]. In this way, P1 will have a large size
of triangulation because the wedges are ‘interlocked’ (i.e., penetrating each other), while P2 can have a
small triangulation, although the two have the same combinatorial structure.

Theorem 4. Any triangulation algorithm that only considers the combinatorial structure of a convex
polytope cannot give an approximation ratio better ttizanr O(1/A) — O(A /n).
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Proof. We first show that any minimum triangulation of P1 has at Ie%ﬁ%‘)n — A tetrahedra, while
any minimum triangulation of P2 has at mc@j—é)n tetrahedra.
As discussed in Section 1, the wedges have the property that they admit triangulation of size either at
mosts + 1 or at least 2, depending on the presence of their ‘main diagonal’ in the triangulation. For P1,
at most one main diagonal of thesewedges can be present in any triangulation. Thus

n 2A — 14
tpl>(m—1)(2s)+(s+1)=(m—l)(ZA—l4)+(A—6)> ( <3 )n—A.
For P2, each wedge can be triangulated itol tetrahedra using their main diagonals. Removing these
wedges leaves a hon-convex region. This can be triangulated @mte-4) + 3(m —2) +2=7m — 8
tetrahedra, using the ‘shielding’ argument same as that in [5]; due to space limitation we do not repeat it
here. Note that the;’s andb;’s have to be ‘zig-zagged’ in a matching manner for the proof to work. So

A-3

An algorithm that only considers combinatorial structures cannot distinguish P1 and P2, and always
has to give the triangulation of larger size. With the above bounds, we thus have

24-14\, _ A _ _
e I I Y
(455)n A+l n(A+D) A n

A+1
fP2<m(s+1)+7m—8=(%)(s+1+7)—8<( + )n
s

5. Conclusion

We gave improved approximation ratios for the minimum polytope triangulation problem for two
special classes of polytopes: one having no 3-cycles and no degree-4 vertices, and one with boundec
maximum vertex degrees. For the case without 3-cycles and degree-4 vertices, our algorithm gives a
ratio of 3/2. This seems to be a rather restricted class of polytopes; can it be optimally triangulated in
polynomial time? Can we identify the (more restricted?) class of polytopes which our algorithm will give
the optimal triangulation? Stacked polytopes are one known type. Can we identify classes of polytopes
that can be triangulated optimally or near-optimally in polynomial time, using perhaps other algorithms?
The results may also be generalized to polytopes having few (but nonzero) degree-4 vertices.

For the constant degree case, we get an asymptotically tight approximation rati@(2/A) —

Q(A/n), the lower bound being established if only combinatorial structure is considered. It is actu-
ally not known whether the constant-degree case is NP-hard (like the general-degree case), and wha
happens when non-combinatorial information is considered.

Acknowledgements

We thank C.A. Wang for raising the problem of whether polytopes with vertex degrees at least five
have better triangulations, and for many helpful discussions. We would also like to thank the anony-
mous referees for their many suggestions that improved the presentation of the paper, in particular a new
construction in Lemma 6.



12 S.P.Y. Fung et al. / Computational Geometry 32 (2005) 1-12

References

[1] A. Below, U. Brehm, J. De Loera, J. Richter-Gebert, Minimal simplicial dissections and triangulations of convex 3-
polytopes, Discrete Comput. Geom. 24 (2000) 35-48.

[2] A. Below, J. De Loera, J. Richter-Gebert, Finding minimal triangulations of convex 3-polytopes is NP-hard, in: Proceed-
ings of 11th Annual ACM-SIAM Symposium on Discrete Algorithms, 2000, pp. 65—-66.

[3] B. Chazelle, L. Palios, Triangulating a non-convex polytope, Discrete Comput. Geom. 5 (1990) 505-526.

[4] N. Chiba, T. Nishizeki, Arboricity and subgraph listing algorithms, SIAM J. Comput. 14 (1985) 210-223.

[5] F.Y.L. Chin, S.P.Y. Fung, C.A. Wang, Approximation for minimum triangulations of simplicial convex 3-polytopes, Dis-
crete Comput. Geom. 26 (4) (2001) 499-511; A preliminary version appeared in: Proceedings of 12th Annual ACM-SIAM
Symposium on Discrete Algorithms, 2001, pp. 128-137.

[6] P.R. Cromwell, Polyhedra, Cambridge University Press, Cambridge, 1997.

[7] H. Edelsbrunner, F.P. Preparata, D.B. West, Tetrahedrizing point sets in three dimensions, J. Symbolic Comput. 10 (1990)
335-347.

[8] C.W. Lee, Subdivision and triangulations of polytopes, in: Goodman, O’Rourke (Eds.), Handbook of Discrete and Com-
putational Geometry, CRC Press, 1997.

[9] C.H. Papadimitriou, M. Yannakakis, The clique problem for planar graphs, Inform. Process. Lett. 13 (1981) 131-133.

[10] C.A. Wang, B. Yang, Optimal tetrahedralizations of some convex polyhedra, in: 16th European Workshop on Computa-
tional Geometry, 2000.

[11] C.A. Wang, B. Yang, Minimal tetrahedralizations of a class of polyhedra, in: Proceedings of 12th Canadian Conference on
Computational Geometry, 2000, pp. 81-90.



