
An Efficient Cache Replacement Algorithm for Multimedia

Object Caching

Keqiu Li†,‡, Takashi Nanya‡, Hong ShenG, Francis Y. L. Chino, and Weishi Zhang†

† College of Computer Science and Technology

Dalian Maritime University

No 1, Linghai Road, Dalian, 116026, China

‡ Research Center for Advanced Science and Technology

The University of Tokyo

4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan

G Graduate School of Information Science

Japan Advanced Institute of Science and Technology

1-1, Asahidai, Nomi, Ishikawa, 923-1292, Japan

oDepartment of Computer Science and Information Systems

University of Hong Kong, Pokfulam Road, Hong Kong

Abstract

Multimedia object caching, by which the same multimedia object can be adapted to
diverse mobile appliances through the technique of transcoding, is an important technol-
ogy for improving the scalability of web services, especially in the environment of mobile
networks. In this paper, we address the problem of cache replacement for multimedia ob-
ject caching by exploring the minimal access cost of caching any number of versions of a
multimedia object. We first present an optimal solution for calculating the minimal access
cost of caching any number of versions of the same multimedia object and its extensive
analysis. The performance objective is to minimize the total access cost by considering
both transmission cost and transcoding cost. Based on this optimal solution, we propose
an efficient cache replacement algorithm for multimedia object caching. Finally, we evalu-
ate the performance of the proposed algorithm with a set of carefully designed simulation
experiments for various performance metrics over a wide range of system parameters. The
simulation results show that our algorithm outperforms comparison algorithms in terms of
all the performance metrics considered.

Keywords: Multimedia object caching, cache replacement, transcoding, mobile network, In-
ternet.

1



1 Introduction

The World Wide Web has become the most successful application on the Internet since it
provides a simple way to access a wide range of information and services. However, due to the
dramatic growth in demand, considerable access latency is often experienced in retrieving web
objects from the Internet, and popular web sites are suffering from overload. An efficient way
to overcome such deficiencies is web caching, by which multiple copies of the same object are
stored in geographically dispersed caches.

As many mobile appliances are divergent in size, weight, I/O capabilities, network connec-
tivity, and computing power, differentiated devices should be employed to satisfy their diverse
requirements. In addition, different presentation preferences from users make this problem
more serious. Transcoding, used to transform a multimedia object from one form to another,
frequently through trading off object fidelity for size, is a such technology that can meet these
needs [11,16,20,22].

Multimedia object caching, by which the same multimedia object can be adapted to di-
verse mobile appliances through the technique of transcoding, is an important technology for
improving the scalability of web services, especially in the environment of mobile networks. In
this paper, we address the problem of cache replacement for multimedia object caching. There
are many cache replacement algorithms available in the literature. However, these algorithms
cannot be directly applied to solve the problem of cache replacement for multimedia object
caching since they consider the case in which the objects are independent while each multime-
dia object has several versions and all these versions are dependent in that one version may be
transformed to another by the technique of transcoding. In [7], the authors proposed a cache
replacement algorithm for transcoding proxies (AE for short), which removes objects from the
cache according to their generalized profits. When one object is removed from the cache, the
generalized profits for the relevant objects will be revised. If the free space cannot accommo-
date the new object, another object with the least generalized profit is removed until enough
room is made for the new object. In this paper, the objects are removed from the cache at
the same time according to their generalized composite profits. In Section 3, we will present
detailed analysis for computing the composite profit of caching multiple versions of the same
multimedia object, which usually differs from simple summation of their individual profits. The
following example shows the importance and significance of applying the composite profit for
determining the replacement candidates for multimedia object caching.

Example Suppose there are two objects and each object has three versions, i.e., the object
set is o1,1, o1,2, o1,3, o2,1, o2,2, o2,3, where oi,j denotes version j of object i. We also assume that
the size of each object and the generalized profits of caching one or two versions of each object
are shown in Table 1, where s(·) and p(·) denote the size and the profit, respectively. For
example, the size of o1,2 is s(o1,2), the generalized profit of caching o2,3 is p(o2,3), and the
generalized profit of caching o1,1 and o1,3 is p(o1,1, o1,3). The profit of caching two versions from

2



two different objects are the summation of the profit of caching each version since these two
versions are independent.

Table 1: Data Used in the Example

s(o1,1) s(o1,2) s(o1,3) s(o2,1) s(o2,2) s(o2,3)

3 2 1 3 2 1

p(o1,1) p(o1,2) p(o1,3) p(o2,1) p(o2,2) p(o2,3)

18 20 16 16 18 18

p(o1,1, o1,2) p(o1,1, o1,3) p(o1,2, o1,3) p(o2,1, o2,2) p(o2,1, o2,3) p(o2,2, o2,3)

29 25 28 26 30 28

If an object with size 2 is to be inserted, it is obvious that object o2,1 should be removed
because it has the least generalized profit, and its size is enough to accommodate the new object.
In this case, AE is efficient. If an object with size 4 is to be inserted, AE will first remove object
o2,1 from the cache, and then remove o1,3 from the cache because these two objects are the ones
with the least profits, and the total size of them is enough for the new object. The lost profit
by removing these two objects is 32. We can see AE is not efficient in this case because the
lost profit is 25 when o1,1 and o1,3 are removed. The main reason is that the aggregate profit
of caching multiple versions of the same object is not the simple summation of that of each
version. Furthermore, considering all the objects cached makes this problem more complex. ¤

From this example, we can see that the composite profit of caching objects plays an impor-
tant role on deciding the replacement candidates for accommodating a new object due to the
limited cache size. If all the objects are dependent, the composite profit is the simple summa-
tion of the individual profit. This is not true when multimedia objects are included due to the
relationship among different versions of the same multimedia object. Therefore, it is of great
importance to involve the composite profit of caching multiple versions of the same multimedia
object in designing a cache replacement algorithm for multimedia object caching. From this
example, we can also see that the worst case of our method is the same as the method proposed
in [7]. The main contributions of this paper are summarized as follows.

• We present an optimal solution for calculating the minimal access cost of caching any
number of versions of the same multimedia object and its extensive analysis.

• We propose an efficient cache replacement algorithm for multimedia object caching by
utilizing the above optimal solution.

• We evaluate our algorithm on various performance metrics through extensive simulation
experiments. The implementation results show that our algorithm outperforms existing
algorithms.

3



The rest of this paper is organized as follows. Section 2 introduces related work. In Section
3, we present an efficient cache replacement algorithm for multimedia object replacement. The
simulation model and performance evaluation are described in Sections 4 and 5, respectively.
Section 6 summarizes our work and concludes the paper.

2 Related Work

Cache replacement plays a significant role on the functionality of web caching. A number of
cache replacement algorithms have been proposed in the literature with the purpose of attempt-
ing to minimize various cost metrics, such as hit rate, byte hit rate, average access latency, and
total access cost. All these algorithms can be generally classified into such categories as de-
terministic policies [8, 21], greedydual-based policies [2, 10], hybrid policies [9, 14], randomized
policies [13,18]. An overview of web caching algorithms can be found in [3]. However, all these
algorithms consider the case in which web objects are independent. The objects addressed in
this paper are multimedia objects; thus, several different versions of the same multimedia object
are dependent through the technology of transcoding.

There is little work done on finding efficient cache replacement algorithms for multimedia
object caching. In [16, 19], the authors studied several caching strategies or architectures for
transcoding proxies. However, all these strategies or architectures are evolved from the algo-
rithms mentioned above and the authors have not considered the aggregate effect of caching
multiple versions of the same multimedia object at the same time. The algorithm proposed by
Chang et al. in [7] is on the similar line with our algorithm. However, Chang’s algorithm is not
efficient, which has been shown by the example given in the previous section.

3 An Efficient Cache Replacement algorithm for Multimedia

Object Caching

In this section, we first introduce some notations and definitions, and then present an optimal
solution for calculating the minimal access cost of caching any number of a multimedia object.
Finally, we propose an efficient cache replacement algorithm for multimedia object caching.

In this paper, we use oi to denote a multimedia object i, mi to denote the number of versions
owned by oi, oi,j to denote version j of oi, and si,j to denote the size of oi,j . The relationship
among different versions of a multimedia object can be expressed by a weighted transcoding
graph [7]. An example of such a graph is shown in Figure 1, where object o1 has five versions
o1,1, o1,2, o1,3, o1,4, o1,5.

We can see that the original version o1,1 can be transcoded to each of the less detailed
versions o1,2, o1,3, o1,4, and o1,5. It should be noted that not every version can be transcoded
to another version since it is possible that not enough content information is contained for the

4



Figure 1: A Weighted Transcoding Graph

transcoding from one version to another. The transcoding cost for a multimedia object from oi,j1

to oi,j2 is denoted by t(oi,j1 , oi,j2). Obviously, t(oi,j , oi,j) = 0. If a version cannot be transcoded
from another version, we consider the transcoding cost as infinity. For example, in Figure 1,
t(o1,1, o1,2) = 6, t(o1,1, o1,5) = 12, t(o1,2, o1,4) = 4, and t(o1,4, o1,5) = ∞. For cache replacement,
only the node with a cache (denoted by v) and the server (or a cache) that holds a version of a
multimedia object (denoted by u) are considered. Li,j is used to denote the cost of sending a
request for oi,j and the relevant response over the link (u, v) and called transmission cost in this
paper. In this paper, we assume that Li,j = Li, i.e., the transmission cost is the same for each
version on the link (u, v). Let fi,j be the access frequency for oi,j from node v. In this paper,
we assume that the transcoding graph is a linear array and the transcoding cost between any

two adjacent versions is constant, i.e., t(oi,j1 , oi,j2) =
j2−1∑

n=j1

t(oi,n, oi,n+1) = (j2 − j1)+Ti, where

x+ = x if x ≥ 0 else x+ = ∞. Our analysis can be easily extended to the general transcoding
graph. We can see that there should exist some positive integer δ such that (δ− 1)Ti ≤ Li, and
δTi > Li. If there does not exist such a δ, i.e., Li À Ti or Ti À Li, obviously, these are two
trivial cases. If Li À Ti, then we should leave the most detailed versions of different multimedia
objects in the cache so that no transmission cost is necessary to occur. If Ti À Li, then we
can apply the general cache replacement algorithm (e.g. LRU) to solve the problem of cache
replacement for multimedia object caching since all the versions of the same multimedia object
can be viewed as independent objects in this case.

Now we begin to discuss the access cost of caching k versions of multimedia object oi (AC-k
problem for short), where 1 ≤ k ≤ mi and mi is the number of versions owned by oi.

First, we begin by computing the access cost of caching only one version oi,j at node v with
1 ≤ j ≤ mi. Intuitively, all the requests for version oi,j′ with j

′
< j will be handled by server

u, while some of the requests for oi,j
′ with j

′ ≥ j, depending on the transcoding cost and the
transmission cost, will be taken care of by transcoding from version oi,j . Therefore, the total

5



access cost of caching only version oi,j at node v is computed as follows:

C1,mi(oi,j) =
j−1∑

n=1

fi,nLi +
mi∑

n=j

fi,n min{(n− j)Ti, Li} (1)

where C1,mi(oi,j) is the total access cost of caching only version oi,j at node v with 1 ≤ j ≤ mi.
Since version oi,j is cached at node v, we can see that δ is such a parameter that the request

for version oi,n will be served by the local node if 0 < n − j < δ, and the request for version
oi,n will be served by the server if n − j ≥ δ. Thus, based on Equation (1), C1,mi(oi,j) can be
further defined as follows:

C1,mi(oi,j) =





j−1∑

n=1

fi,nLi +
j+δ−1∑

n=j

fi,n(n− j)Ti +
mi∑

n=j+δ

fi,nLi (j + δ ≤ mi)

j−1∑

n=1

fi,nLi +
mi∑

n=j

fi,n(n− j)Ti (j + δ > mi)
(2)

It is easy to see that C1,mi(oi,1) can be calculated in O(mi) time. Thus, C1,mi(oi,2),
C1,mi(oi,3), · · · , C1,mi(oi,mi) can all be done in constant time. Therefore, based on the cost
function as given in Equation (1), the AC-1 problem of caching only one version oi,j can be
solved in O(mi) time.

The second step is to extend the above solution to compute the optimal solution for caching
two versions, oi,j1 and oi,j2 , at the same time at node v.

Suppose that oi,j1 and oi,j2 are the two optimal versions to be cached. The key observation
here is that oi,j1 is also an optimal solution for the problem with 1 ≤ j1 ≤ j2 if j1 < j2,
because the requests for {oi,j2 , oi,j2+1, · · · , oi,mi} can only be served by oi,j2 . Regarding to this
observation, we have the following lemma.

Lemma 1 Assume that oi,bp and oi,bq are the optimal solutions for the problem of caching only
one version from the set of {oi,1, oi,2, · · · , oi,p−1} and {oi,1, oi,2, · · · , oi,q−1} respectively, then we
have bp ≤ bq if p < q.

Proof Without loss of generality, it is sufficient for us to prove that bp ≤ bp+1 where 1 ≤
bp ≤ p − 1 and 1 ≤ bp+1 ≤ p. The proof is by contradiction. Assume that we have bp > bp+1.
As oi,bp is the optimal version to be cached, we have C1,p(oi,bp) < C1,p(oi,bp+1). From the
definition of the access cost function C1,p as given in Equation (1), adding oi,p to the set
{oi,1, oi,2, · · · , oi,p−1} will increase both C1,p(oi,bp) and C1,p(oi,bp+1) by fi,p min{(p − bp)Ti, Li}
and fi,p min{(p − bp+1)Ti, Li} respectively. The increase to C1,p(oi,bp+1) is no less than that
to C1,p(oi,bp) because bp > bp+1. So we have C1,p+1(oi,bp) < C1,p+1(oi,bp+1), which contradicts
the fact that C1,p+1(oi,bp+1) is the minimum access cost of caching oi,bp+1 for the problem with
{oi,1, oi,2, · · · , oi,p−1, oi,p}. Hence the lemma is proven. ¤

6



Based on Lemma 1, we can see that the feasible range of the optimal solution for the
problem with {oi,1, oi,2, · · · , oi,q} can be reduced if the optimal version for the problem with
{oi,1, oi,2, · · · , oi,p} has been obtained. So is the other case when the optimal solution for the
problem with {oi,1, oi,2, · · · , oi,q} is known, the feasible range of the optimal solution for the
problem with {oi,1, oi,2, · · · , oi,p} is also reduced. Therefore, we can find oi,bp and compute
C1,p(oi,p) by divide and conquer.

Let D
(k)
p,q denote the minimum access cost of caching k versions of object oi for the AC-

k problem with q − p versions, i.e., oi,p, oi,p+1, · · · , oi,q−1, where 1 ≤ p < q ≤ mi. Thus,
D

(1)
1,p = C1,p(oi,bp) and D

(1)
1,mi+1 = min

1≤k≤mi

{C1,mi+1(oi,k)}. Based on Lemma 1, we have the

following theorem on the time complexity of computing D
(1)
1,p for 1 < p ≤ mi.

Theorem 1 All the AC-1 problems for {oi,1, oi,2, · · · , oi,p} where 1 ≤ p ≤ mi, i.e., D
(1)
1,p for

1 < p ≤ mi, can be computed in O(mi log mi) time.

Proof Assume that there exists an integer θ such that mi = 2θ, then we can compute D
(1)

1, 1
2
mi

in O(mi) time. Assume that oi,b mi
2

is the optimal solution for the problem of caching only

one version with {oi,1, oi,2, · · · , oi,
mi
2
−1}, then we can find the optimal solution for the problem

of caching only one version for {oi,1, oi,2, · · · , oi,
mi
4
} in O(mi) time. Similarly, D

(1)

1,
3mi
4

can also

be computed by solving the problem of caching only one version with {oi,1, oi,2, · · · , o
i,

3mi
4
−1
}.

As we have already computed C1,
mi
2

(oi,y) where y = min(bmi
2

, mi
2 − 1), we can base on this

result to compute C
1,

3mi
4

(oi,y) for {oi,1, oi,2, · · · , o
i,

3mi
4
−1
} (by adding at most mi

4 terms to
C1,

mi
2

(oi,
mi
2
−1). We then compute C

1,
3mi
4

(oi,y), C1,
3mi
4

(oi,y+1), · · · , C
1,

3mi
4

(o
i,

3mi
4
−1

) in at most

O(3mi
4 − y) time. So it takes at most O(mi) time to compute D

(1)

1,
mi
4

and D
(1)

1,
3mi
4

. According to

the similar decomposition, D
(1)

1,
mi
8

, D
(1)

1,
3mi
8

, D
(1)

1,
5mi
8

, and D
(1)

1,
7mi
8

can all be solved in O(mi) time.

After repeating this process log mi times, we can finish computing D
(1)
1,p for 1 < p ≤ mi. Hence,

the theorem is proven. ¤

Now we can accomplish the problem of caching two versions in the following three steps.

• Step 1: Evaluate D
(1)
1,p for 1 < p ≤ mi, where D

(1)
1,p denotes the minimum access cost of

caching only one version for the AC-1 problem with p−1 versions, i.e., oi,1, oi,2, · · · , oi,p−1.
In particular, D

(1)
1,mi+1 = min

1≤k≤mi

{C1,mi+1(oi,k)}.

• Step 2: Evaluate Dp for 2 ≤ p ≤ mi, where Dp is the access cost for versions oi,p, oi,p+1, · · · , oi,mi

if oi,p is cached at node v. Dp is defined as follows:

Dp =





p+δ−1∑

j=p

fi,j(j − p)Ti +
mi∑

j=p+δ

fi,jLi if p + δ ≤ mi

mi∑

j=p

fi,j(j − p)Ti if p + δ > mi

7



• Step 3: Compute D
(2)
1,mi

, where D
(2)
1,mi

is the minimum access cost of caching two versions

for the problem with {oi,1, oi,2, · · · , oi,mi}. D
(2)
1,mi

is calculated as follows:

D
(2)
1,mi

= min
2≤p≤mi

{D(1)
1,p + Dp)}

It is easy to show that D
(2)
1,mi

is the minimum access cost of caching two versions for the

AC-2 problem and the time complexity of computing D
(2)
1,mi

is O(mi log mi).

After we have calculated D
(1)
1,p for 1 ≤ p ≤ mi in Step 1, we can obtain D

(2)
1,p for all 2 ≤ p ≤ mi

in another O(mi log mi) time by divide and conquer, where D
(2)
1,p is the minimum access cost

of caching only two versions for the problem with p− 1 versions, i.e., oi,1, oi,2, · · · , oi,p−1. The
main idea is similar to Lemma 1 in the finding of D

(1)
1,p. Assume that oi,bp1

and oi,bp2
with

1 ≤ bp1 < bp2 < p are the two optimal versions cached in node v for oi,1, oi,2, · · · , oi,p−1 to
achieve the optimal access cost D

(2)
1,p. Similarly, oi,bq1

and oi,bq2
with 1 ≤ bq1 < bq2 < q are

the two optimal versions cached in node v for oi,1, oi,2, · · · , oi,q−1 to achieve the optimal access
cost D

(2)
1,q . We can show with a similar argument with Lemma 1 that bp2 ≤ bq2 if p < q

and this property limits the range of searching for the optimal solutions. As in Theorem 1,
the two optimal solutions in D

(2)

1,
mi
2

can be found in O(mi) time after knowing the optimal

versions of D
(1)
1,p for 1 < p ≤ mi; then D

(2)

1,
mi
4

and D
(2)

1,
3mi
4

in another O(mi) time; then D
(2)

2,
mi
8

,

D
(2)

1,
3mi
8

,D(2)

1,
5mi
8

, and D
(2)

1,
7mi
8

in another O(mi) time until D
(2)
1,p for 2 < p ≤ mi are found after

log mi times. Therefore, the minimum access cost of caching three versions, denoted by D
(3)
1,mi

,

can be computed similarly, i.e., D
(3)
1,mi

= min
3≤p≤mi

{D(2)
1,p + Dp)}, with at most O(mi log mi) time.

Using the same idea, we can solve the problem of caching k versions in O(kmi log mi) time with
1 ≤ k ≤ mi.

Let D
(k)
1,mi

denote the minimum access cost of caching k versions from mi versions, i.e.,

oi,1, oi,2, · · · , oi,mi , then it is easy to show that D
(k)
1,mi

can be computed in O(kmi log mi) time.
In the following, we propose an efficient cache replacement algorithm for multimedia object

caching based on the above optimal solution. Suppose that there are l different multimedia
objects cached and the size of a new object to be cached is s, then we should find a subset of
objects O∗ ⊆ O that satisfies the following conditions.

(1)
∑

oi,j∈O∗
si,j ≥ s.

(2) (∀O′ ⊆ O that satisfies (1)) CSG(O∗) ≤ CSG(O
′
).

where O∗ = {o1,α1
1
, · · · , o1,α

r1
1

, · · · , ol,α1
l
, · · · , ol,α

rl
l
} is the set of objects to be removed, O =

{o1,β1
1
, · · · , o1,β

c1
1

, · · · , ol,β1
l
, · · · , ol,β

cl
l
} is the set of objects cached, and CSG(O∗) is defined as

8



the generalized access cost loss 1 and calculated as CSG(O∗) =
l∑

i=1

C1,ri(oi,α1
i
, · · · , oi,α

ri
i

)/
∑

oi,j∈O∗
si,j .

CSG(O
′
) can be similarly defined. Obviously, (1) is to make enough room for the new object,

and (2) is to evict those objects whose generalized access cost loss is minimal.
The naive approach to find such O∗ will be in NP hard, same as the packing problem. In

the following, we present an algorithm that computes an approximate answer of the problem
efficiently by decomposing the set of the candidate objects to be removed into smaller sets and
each such set can be decided in polynomial time.

Before we present the algorithm, we introduce some notations. In the following, let R∗(i, k)
denote the minimal generalized access cost of caching k versions of object i and R∗(k) the
minimal generalized access cost loss of the k objects to be removed. We can see that the
k objects to be removed can be k versions of a multimedia object or different versions of
different multimedia objects. Thus, k can be decomposed as k = k1 + k2 + · · · + ka, where
a is the number of different objects to be removed and 0 ≤ ki ≤ k is the number of versions
of an object that are in the set of the k objects to be removed. For example, 1 → {1 + 0},
2 → {2+0, 1+1}, 3 → {3+0, 2+1, 1+1+1}, 4 → {4+0, 3+1, 2+2, 2+1+1, 1+1+1+1},
5 → {4+1, 3+1+1, 3+2, 2+1+1+1, 2+2+1, 1+1+1+1+1}, · · · . For the instance of k = 4, k

can be the combination of 1+1+1+1, 1+1+2, 2+2, 1+3, and 0+4, where 1+1+1+1 means
that the objects to be removed should be the first four objects with minimal generalized access
cost of caching one version, 1+1+2 means that the objects to be removed should be the three
objects, i.e., the first two objects with minimal generalized access cost of caching one version
and the last object with minimal generalized access cost of caching two versions, etc. It can be
easily proved that there are at most k2 different such combinations in all. Therefore, we have
R∗(k) = min{R∗(1, k), R∗(2, k), · · · , R∗(l, k), min

k=k1+k2+···+ka

{R∗(k1) + R∗(k2) + · · ·+ R∗(ka)}}.
We denote the set of all the objects that achieves R∗(k) by O∗(k) and their total size is

S∗(k). Now we give an example to show how to calculate R∗(k). For the case of k = 3, we
have the combination of 3 + 0, 1 + 2, and 1 + 1 + 1, each of which can be computed using
the previous calculation results. For 3 + 0, we just choose three versions from one object with
minimal generalized access cost of caching three versions. For 1 + 2, we choose the version
from an object with minimal generalized access cost of caching one version and two versions
from another object with minimal generalized access cost of caching two versions. When we
calculated R∗(1) and R∗(2), they may be using a same version. In this case, we select another
version with minimal access cost that is not included. We denote the set of versions calculated
by R∗(1) and R∗(2) as O∗(1) and O∗(2), respectively. In this case we will recalculate the set of
versions with minimal number of elements by another set of versions of the same object with the
same number of elements with more generalized access cost loss. For example, if o1,1 ∈ O∗(2)

1The generalized access cost loss and the generalized access cost are used interchangeably in this paper since

they are defined in the same way.

9



and o1,1 ∈ O∗(2), then we will recalculate O∗(1) , i.e., finding o1,j with the minimal generalized
access cost loss except o1,1 to represent o1,1. Although this will be very costly in theory, the fact
that the number of objects we hope to remove in practice is very small makes it feasible. We
shall further study this issue in our future work. Based on the above calculation, we finally find
how the k objects should be selected such that the generalized access cost loss is minimized.
In fact, there may exist a replacement decision by removing more than k objects and the
generalized access cost loss is less. Thus, the minimization here is conditional, i.e., under the
condition that the minimal number of different objects is to be removed.

With the above analysis, we can devise the pseudocode of our algorithm as follows. In
the algorithm, C is used to hold the cached objects, Sc is the cache capacity, Su is the cache
capacity used, o is the object to be cached, and its size is s.

Algorithm MOR (C,Sc, Su, o)
Input: C,Sc, Su, o

Output: O∗(k)
1. INSERT o INTO C

2. k = 0
3. S∗(k) = 0
4. WHILE Sc − Su − S∗(k) < s DO
5. k = k + 1
6. FOR i = 1 TO l DO
7. CALCULATE R∗(i, k)
8. CALCULATE R∗(k)
9. CHECK O∗(k) (make all the k objects different)

From Algorithm MOR, we can see that it has 9 loops. Loops 1 − 3 is the initialization,
where Loop 1 is to insert the new object to the cache, Loop 2 is to set the counter k, i.e.,
the number of the replacement candidates, to be 0, and Loop 3 is to set the initial size of the
replacement candidates to be 0. Loops 4− 8, i.e., the while loop, is executed until the total size
of the replacement candidates is enough to accommodate the new object. Loops 6− 7, the for
loop, is to calculate the minimal generalized access cost of caching k objects. The last loop,
i.e., Loop 9, is to determine the replacement candidates. As we mentioned previously in this
section, it is necessary to check O∗(k) to make all the k objects different. The example shown
in Section 1 can also be viewed as an illustrative example for this algorithm.

Regarding to the time complexity of this algorithm, we have the following theorem.

Theorem 2 The time complexity of Algorithm MOR is O(k2(l + k2) log (l + k2)), where l is
the total number of different objects cached and k is the number of objects to be removed.

Proof Suppose k objects are removed to make room for the new object. The running time
of Algorithm MOR mainly depends on Steps 4, 6, 8, and 9. The running time of Step 6 is

10



determined by computing R∗(i, k) for 1 ≤ i ≤ l. For object i, calculating R∗(i, k) is to find the
minimal generalized access cost of caching k versions of object i. Note that we should compute
the aggregate profit of caching k versions of object i, and then order them according to the calcu-
lated profit. Thus, the running time for calculating R∗(i, k) is O(C(mi; k) log C(mi; k)). There-

fore, The running time of Step 6 is O(
l∑

i=1

C(mi; k) log C(mi; k)) since there are l objects cached

and C(mi; k) = mi!/(k!(mi− k)!). The running time for Step 8 is O((l + k) log (l + k)) because
we should order all l + k items to find the minimal one among them. Thus, the total running

time for Algorithm MOR (Step 4) is O(
k2∑

k=1

[(l + k2) log (l + k2) +
l∑

i=1

C(mi; k) log C(mi; k)]) =

O(k2(l+k2) log (l + k2)) since in general mi ≈ 10 and l is very very large, where k is the number
of objects to be removed, l is the number of different objects, and mi is the number of versions
of object i. Since the running time for Step 9 is O(log l), the total running time for Algorithm
MOR is O(k2(l + k2) log (l + k2)). Hence, the theorem is proven. ¤

From Theorem 2, we know that the time complexity of Algorithm MOR depends on k, i.e.,
the number of objects to be removed. In practical execution, we always stop the execution
of searching the objects to be removed to make room for the new object when k reaches a
certain number. This is based on the fact that it is not beneficial to remove many objects to
accommodate only one object. So the practical time complexity of Algorithm MOR is O(l log l),
which is the same as that of the algorithm proposed in [7]. However, from the algorithm we
know that we have to search the entire cache for the other versions of the object and then
recalculate the generalized access cost for them whenever we insert or evict an object into or
from the cache. Such operations are, in general, very costly. Here, we save calculated results
for later computation, which will save a lot of computations. For example, after we finish
computing R∗(k), we save it using an array. When we hope to compute R∗(k + 1), we do not
need to recalculate R∗(k′) for 1 ≤ k

′ ≤ k again by reading it from the array directly.

4 Simulation Model

In this section, the simulation model used for performance evaluation is described. We have
performed extensive simulation experiments to compare our algorithm with existing algorithms.
The system configuration is outlined in Section 4.1, and existing algorithms used for the purpose
of comparison are introduced in Section 4.2.

4.1 System Configuration

To the best of our knowledge, it is difficult to find true trace data in the open literature to
execute such simulations. Therefore, we generated the simulation model from the empirical
results presented in [1, 4–7].

11



The network topology was randomly generated by the Tier program [6]. Experiments for
many topologies with various parameters were conducted and the relative performance of our
algorithm was found to be insensitive to topology changes. Here, only the experimental results
for one topology are presented due to space limitations. The characteristics of this topology
and the workload model are shown in Table 2, which are chosen from the open literature and
are considered to be reasonable.

Table 2: Parameters Used in Simulation

Parameter Value

Number of WAN Nodes 200

Number of MAN Nodes 200

Delay of WAN Links Exponential Distribution (θ = 1.5Sec)

Delay of MAN Links Exponential Distribution (θ = 0.7Sec)

Number of Servers 100

Number of Web Objects 1000 objects per server

Web Object Size Distribution Pareto Distribution (µ = 6KB)

Web Object Access Frequency Zipf-Like Distribution (α = 0.7)

Relative Cache Size Per Node 4%

Average Request Rate Per Node U(1, 9) requests per second

Transcoding Cost 50KB/Sec

The WAN (Wide Area Network) is viewed as a backbone network to which no servers or
clients are attached. Each MAN (Metropolitan Area Network) node is assumed to connect
to a content server. Each MAN and WAN node is associated with a cache. To generate the
workload of clients’ requests, we assume that the number of total web objects is N and these
N objects are divided into two types: text and multimedia. In the experiments, the object sizes
are assumed to follow a Pareto distribution and the average object size is 6KB. Similar to the
assumption in [7], we also assume that the mobile appliances can be classified into five lasses
whose distribution is modeled as a device vector of {10%, 20%, 30%, 25%, 15%}. Without of
less generality, the sizes of the five versions of each multimedia object are assumed to be 100
percent, 80 percent, 60 percent, 40 percent, and 20 percent of the original object size. The
relationships among the five versions are modeled by the transcoding graph as shown in Fig. 2.
The transcoding delay is determined as the quotient of the object size to the transcoding rate.
In the simulation, we set the transcoding rate to be 50K Bytes per second.

In the experiments, the client at each MAN node randomly generates the requests, and the
average request rate of each node follows the distribution of U(1, 9), where U(x, y) represents a
uniform distribution between x and y. The access frequencies of both the content servers and

12



Figure 2: Transcoding Graph for Simulation

the objects maintained by a given server follow a Zipf-like distribution [5, 12]. Specifically, the
probability of a request for object O in server S is proportional to 1/(iα · jα), where S is the ith
most popular server and O is the jth popular object in S. The delay of both MAN links and
WAN links follows an exponential distribution; the average delay for WAN links is 1.5 seconds
and the average delay for MAN links is 0.7 seconds. Similar to the studies in [5,17], cache size
is described as the total relative size of all objects available in the content server.

The cost for each link is calculated by the access delay. For simplicity, the delay caused by
sending the request and the relevant response for that request is proportional to the size of the
requested object. Here, we consider the average object sizes for calculating all delays, including
the transmission delay and the transcoding delay. We apply a “sliding window” technique,
for estimating access frequency, to make our model less sensitive to transient workload [17].
Specifically, the access frequency is estimated by N/(t− tN ), where N is the number of accesses
recorded, t is the current time, and tN is the Nth most recently referenced time (the time of
the oldest reference in the sliding window). N is set to 2 in the simulation.

4.2 Existing Algorithms

We include the following algorithms for evaluating our replacement algorithm proposed in
Section 3.

• LRU : Least Recently Used (LRU) evicts the web object which was requested the least
recently. The requested object is stored at each node through which the object passes.
The cache purges one or more least recently requested objects to accommodate the new
object if there is not enough room for it.

• LNC − R [15]: Least Normalized Cost Replacement (LNC − R) is an algorithm that
approximates the optimal cache replacement algorithm. It selects for replacement the
least profitable documents. The profit function is defined as profit(Oi) = (ci · fi)/si,
where ci is the average delay to fetch document Oi to the cache, fi is the total number of
references to Oi, and si is the size of document Oi.

13



• AE [7]: Aggregate Effect (AE) is a cache replacement algorithm in transcoding proxies
that explores the aggregate effect of caching multiple versions of the same multimedia
object in the cache. It formulates a generalized profit function to evaluate the aggregate
profit from caching multiple versions of the same multimedia object. When the requested
object passes through each node, the cache will determine which version of that object
should be stored at that node according to the generalized profit.

From the above introduction, we can see that AE is a cache replacement algorithm in
transcoding proxies, which is designed for handling the transcoded data. Our algorithm can be
viewed as an improvement of this algorithm as discussed in previous sections. For the other two
algorithms, i.e., LRU and LNC −R, they are not designed for handling the transcoded dada.
Our purpose to include LRU and LNC−R in the simulation is to show that the general cache
replacement algorithms cannot be directly applied to solve the cache replacement problem for
multimedia object caching in which the transcoded data are included.

5 Performance Evaluation

In this section, we compare the performance results of our algorithm with those algorithms in-
troduced in Section 4.2, in terms of several performance metrics. The performance metrics we
used in our simulation include delay-saving ratio (DSR), defined as the fraction of communica-
tion and server delays which is saved by satisfying the references from the cache instead of the
server; average access latency (AAT ); request response ratio (RRR), defined as the ratio of the
access latency of the target object to its size; and object hit ratio (OHR), defined as the ratio
of the number of requests satisfied by the caches as a whole to the total number of requests. In
the following figures, LRU , LNC−R, and AE denote the results for the algorithms introduced
in Section 4.2, OA denotes the efficient algorithm proposed in Section 3.

5.1 Impact of Cache Size

In this experiment set, we compare the performance results of different algorithms across a wide
range of cache sizes, from 0.04 percent to 15.0 percent.

The first experiment investigates DSR as a function of the relative cache size at each node
and Figure 3 shows the simulation results. As presented in Figure 3, we can see that our
replacement algorithm outperforms the others. The mean reason is that LRU and LNC − R

cannot be applied to handle the transcoded dada and AE removes the candidates from the
cache according to the individual profit. The advantage of our algorithm is contributed by the
aggregate profit of the removed objects, which is not the simple summation of the individual
profit. Specifically, the mean improvements of DSR over LRU , LNC − R, and AE are 23.2
percent, 18.7 percent, and 16.4 percent, respectively.

14



0 5 10 15
0

10

20

30

40

50

60

Cache Capacity (%)

DS
R 

(%
)

OA
AE
LNC−R
LRU

Figure 3: Experiments for DSR

Figure 4 shows the simulation results of AAL as a function of the relative cache size at each
node; we describe the results of RRR as a function of the relative cache size at each node in
Figure 5. Clearly, the lower the AAL or the RRR, the better the performance. As we can
see, all algorithms provide steady performance improvement as the cache size increases. We
can also see that OA improves both AAL and RRR compared to LRU , LNC − R, and AE.
For AAL to achieve the same performance as OV , the other algorithms require 2 to 5 times as
much cache size.

0 5 10 15
0

0.5

1

1.5

2

2.5

3

3.5

4

Cache Capacity (%)

AA
L 

(S
ec

)

OA
AE
LNC−R
LRU

Figure 4: Experiments for AAT

Figure 6 shows the results of OHR as a function of the relative cache size for different
algorithms. By computing the optimal versions to be cached, we can see that our replacement
algorithm produces better results than the others, especially for smaller cache sizes. We can
also see that OHR steadily improves as the relative cache size increases, which conforms to the
fact that more requests will be satisfied by the caches as the cache size becomes larger.

5.2 Impact of Object Access Frequency

This experiment set examines the impact of object access frequency distribution on the perfor-
mance results of the various algorithms. Figures 7, 8, and 9 show the performance results of
DSR, RRR, and OHR respectively for the values of Zipf parameter α from 0.2 to 1.0.

15



0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Cache Capacity (%)

RR
R 

(S
ec

/M
B)

OA
AE
LNC−R
LRU

Figure 5: Experiments for RRR

0 5 10 15
0

10

20

30

40

50

60

70

80

90

100

Cache Capacity (%)

O
HR

 (%
)

OA
AE
LNC−R
LRU

Figure 6: Experiments for OHR

We can see that OA consistently provides the best performance over a wide range of object
access frequency distributions. As the parameter α increases, DSRs of all algorithms increase.
Obviously, the more the object access frequency becomes concentrated, the more the overall hit
ratio increases. This, in turn, leads to the increase of DSR. The advantage of our algorithm is
contributed by taking the object access frequency to different versions of the same multimedia
object into calculating the aggregate profit. Specially, OA reduces or improves DSR by 28.7
percent, 23.3 percent, and 19.6 percent compared to LRU , LNC − R, and AE, respectively;
the default cache size used here (4 percent) is fairly large in the context of web caching, due to
the large network under consideration.

6 Conclusion

In this paper, we addressed the problem of cache replacement for multimedia object caching.
The objective is to minimize the total access cost by combining both transmission cost and
transcoding cost. We also conducted a set of simulation experiments to study the performance
of our algorithm by comparison with existing algorithms.

16



0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

45

50

55

Zipf Parameter

DS
R 

(%
)

OA
AE
LNC−R
LRU

Figure 7: Experiments for DSR

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Zipf Parameter

RR
R 

(S
ec

/M
B)

OA
AE
LNC−R
LRU

Figure 8: Experiments for RRR

References

[1] C. Aggarwal, J. L. Wolf, and P. S. Yu. Caching on the World Wide Web. IEEE Transactions
on Knowledge and Data Engineering, Vol. 11, No. 1, pp. 94-107, 1999.

[2] M. Arlitt and C. Williamson. Trace-Driven Simulation of Document Caching Strategies for
Internet Web Servers. Simulation Journal, Vol. 68, No. 1, pp. 23-33, January 1997.

[3] A. Balamash and M. Krunz. An Overview of Web Caching Replacement Algorithms. IEEE
Communications surveys, Vol. 6, No. 2, pp.44-56, 2004.

[4] P. Barford and M. Crovella. Generating Representive Web Workloads for Network and
Server Performance Evaluation. Proc. ACM SIGMETRICS’98, pp. 151-160, 1998.

[5] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web Caching and Zipf-like Distri-
butions: Evidence and Implications. Proc. IEEE INFOCOM’99, pp. 126-134, 1999.

[6] K. L. Calvert, M. B. Doar, and E. W. Zegura. Modeling Internet Topology. IEEE Commu-
nications Magazine, Vol. 35, No. 6, pp. 160-163, 1997.

17



0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

Zipf Parameter

O
HR

 (%
)

OA
AE
LNC−R
LRU

Figure 9: Experiments for OHR

[7] C. Chang and M. Chen. On Exploring Aggregate Effect for Efficient Cache Replacement in
Transcoding Proxies. IEEE Transactions on Parallel and Distributed Systems, Vol. 14, No.
6, pp. 611-624, June 2003.

[8] P. Cao and S. Irani. Cost-Aware WWW Proxy Caching Algorithms. Proceedings of the 1997
USENIX Symposium on Internet Technology and Systems, pp. 193-206, December 1997.

[9] C. R. Cunha, A. Bestavros, and M. E. Crovella. Characteristics of WWW Client-based
Traces. Technical Report TR-95-010, Boston University, April 1995.

[10] P. Cao and S. Irani. Improving Proxy Cache Performance: Analysis of three Replacement
Policies. IEEE Internet Computing, Vol. 3, No. 6, pp. 44-50, 1999.

[11] R. Han, P. Bhagwat, R. LaMaire, T. Mummert, V. Perret, and J. Rubas. Dynamic Adap-
tation in An Image Transcoding Proxy for Mobile Web Browsing. IEEE Personal Commu-
nications, Vol. 5, No. 6, pp. 8-17, 1998.

[12] V. N. Padmanabhan and L. Qiu. The Content and Access Dynamics of a Busy Site:
Findings and Implications. Proc. ACM SIGCOMM’00, pp.111-123, 2000.

[13] K. Psounis and B. Prabhakar. Efficient Randomized Web-Cache Replacement Schemes
Using Samples from Past Eviction-Times. IEEE/ACM Transactions on Networking, Vol.
10, No. 4, pp. 441-454, August 2002.

[14] L. Rizzo and L. Vicisano. Replacement Policies for a Proxy Cache. IEEE/ACM Transac-
tions on Networking, Vol. 8, No. 2, pp. 158-170, April 2000.

[15] P. Scheuermann, J. Shim, and R. Vingralek. A Case for Delay-Conscious Caching of Web
Documents. Computer Networks and ISDN Systems, Vol. 29, nos. 8-13, pp. 997-1005, 1997.

[16] B. Shen, S.-J. Lee, and S. Basu. Caching Strategies in Transcoding-Enabled Proxy Systems
for Streaming Media Distribution Networks. IEEE Transactions on Multimedia, Vol. 6, No.
2, pp. 375-386, April 2004.

18



[17] J. Shim, P. Scheuermann, and R. Vingralek. Proxy Cache Algorithms: Design, Implemen-
tation, and Performance. IEEE Transactions on Knowledge and Data Engineering, Vol. 11,
No. 4, pp. 549-562, 1999.

[18] D. Starobinski and D. Tse. Probabilistic Methods for Web Caching. Performance Evaluation
, Vol. 46, nos. 2-3, pp. 125-137, October 2001.

[19] X. Tang, F. Zhang, and S. T. Chanson. Streaming Media Caching Architectures for
Transcoding Proxies. Proc. of the 31st International Conference on Parallel Processing
(ICPP), pp. 287-295, August 2002.

[20] A. Vetro, C. Christopoulos, and H. Sun. Video Transcoding Architectures and Techniques:
An Overview. IEEE Signal Processing Magazine, Vol. 20, No. 2, pp. 18-29, 2003.

[21] S. Williams, M. Abrams, C. R. Standridge, G. Abdulla, and F. A. Fox. Removal Policies
in Network Caches for World-Wide Web Documents. Proc. of the ACM SIGCOMM’96
Conference, pp. 293-305, August 1996.

[22] Z. Xu, S. Sohoni, R. Min, and Y. Hu. An Analysis of Cache Performance of Multimedia
Applications. IEEE Transactions on Computer, Vol. 53, No. 1, pp. 20-38, January 2004.

19


