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15 ABSTRACT

Motivation: Inferring gene-regulatory networks is very crucial in

decoding various complex mechanisms in biological systems.

Synthesis of a fully functional transcriptional factor/protein from DNA

involves series of reactions, leading to a delay in gene regulation. The

20 complexity increases with the dynamic delay induced by other small

molecules involved in gene regulation, and noisy cellular environment.

The dynamic delay in gene regulation is quite evident in high-temporal

live cell lineage-imaging data. Although a number of gene-network-

inference methods are proposed, most of them ignore the associated

25 dynamic time delay.

Results: Here, we propose DDGni (dynamic delay gene-network

inference), a novel gene-network-inference algorithm based on the

gapped local alignment of gene-expression profiles. The local

alignment can detect short-term gene regulations, that are usually

30 overlooked by traditional correlation and mutual Information based

methods. DDGni uses ‘gaps’ to handle the dynamic delay and

non-uniform sampling frequency in high-temporal data, like live cell

imaging data. Our algorithm is evaluated on synthetic and yeast cell

cycle data, and Caenorhabditis elegans live cell imaging data against

35 other prominent methods. The area under the curve of our method

is significantly higher when compared to other methods on all three

datasets.
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1 INTRODUCTION

Biological systems involve collaborations at various levels, from

the atomic interactions to more complex ecosystems. Network

formulation will enable a better understanding of such complex

systems. In particular, the interplay between genes and the

50 networks they constitute are of great interest to many biologists.

Gene networks can help us to comprehend the cause, prognosis

and to prioritize drug targets of various diseases

(Madhamshettiwar et al., 2012) AQ2. The spatial and temporal

dynamics in gene-expression patterns can reveal regulatory

55pathways (networks) and thereby help us to understand vari-

ous underlying mechanisms (Davidson and Levine, 2005).

Recent advances in live cell imaging techniques have enabled

continuous documentation of cell divisions and quantitative

measurement of gene expressions for each cell throughout

60embryogenesis (Murray et al., 2006). Inferring regulatory net-

works from such data will help to decode various regulatory

mechanisms involved in tissue differentiation and embryonic

development.
Reconstruction of gene-regulatory networks (GRN) accur-

65ately from high-temporal data is fundamental but still remains

a challenge. Gene regulations are not spontaneous (Josic et al.,

2011); various processes are involved in producing fully func-

tional and measurable concentrations of transcriptional factors/

proteins. Each process takes time, leading to the delay in gene

70regulation (Zhu et al., 2007). Furthermore, cellular mRNA

and protein concentrations are substantially influenced by

noisy cellular environment and other small molecules involved

in gene regulation (Bratsun et al., 2005). These fluctuations

(noise) can lead to the dynamic increase or decrease in delay,

75during transcriptional regulation as illustrated in Figure 1a

(Blake et al., 2003). The dynamic delay in gene regulation is

quite evident in high-temporal live cell lineage-imaging data

(Murray et al., 2006).
Quite a number of gene-network-inference methods are pro-

80posed. However, their performance varies on different datasets

with respective limitations. For instance, correlation based meth-

ods perform better in predicting linear relationships whereas,

information theoretic (Mutual Information, MI) based methods

are better for non-linear relationships. Network topology is also

85critical, as some methods are more suitable for Erdos–Renyi

random topology and others for standard small world scale

free networks (Stolovitzky et al., 2009). Most of the methods

perform better on steady state data as compared to temporal

data (Marbach et al., 2010), due to the fluctuations in magnitude

90and the delay in gene expression.
Current GRN-inference methods mainly focus on transcrip-

tional events. However, most of them ignore the associated

dynamic time delay. Cross-correlation-based methods can identify*To whom correspondence should be addressed.
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delayed correlations. Nonetheless, to find the maximal delayed

correlation, one needs to compute correlations for all the N-1

possible delays between a regulator and its target, where N is

the number of time points in the gene-expression data (Rhudy

5 et al., 2010); this makes it computationally expensive for high-

temporal data. Moreover, it cannot be applied for identification

of non-linear relationships. On the other hand, although the time-

delayed MI based methods can predict non-linear relationships,

yet there is a need to compute MI for all the N-1 possible delays.

10 MI assumes long sampling intervals and statistical independence

between time points (Huang et al., 2010). However, this assump-

tion is not germane for continuous live-cell-imaging data (Murray

et al., 2006) as the expression at time t is dependent on its previous

time stamp and it is imperative to consider such dependencies.
15 Time Delay-ARACNE (Zoppoli et al., 2010) is a three-step

information-theoretic-based method. Starting with the gene-

expression change-point analysis, it is followed by network

construction and then pruning. However, being an information

theoretic method, it inherits limitations such as statistical

20independence between time points and long sampling intervals

(Huang et al., 2010).

GeneReg (Huang et al., 2010) is a regression-based method

similar to ODEs AQ3. It uses a linear model with time delay and

regulation coefficient as its parameters. This assumes a constant

25delay between the regulator and its target. In reality however, the

delay is dynamic and is influenced by other small molecules

involved in gene regulation and noisy cell environment

(Bratsun et al., 2005).
Recently, Dynamic Time wrapping (DTW) based similarity

30measures are also used to infer time delay gene networks

(Aach and Church, 2001; Lee et al., 2012; Riccadonna et al.,

2012). DTW measures the similarity between two time series

by allowing one of the series (query) to expanse or compress at

each time point rather than point to point comparison such that

35the similarity is maximized. One of the key limitations of DTW is

that, it is a global measure, i.e. DTW assumes that the two time

series overlap on the edges and expanses one of the series to the

length of other series to compute their similarity. However, in

reality the gene expression is dynamic and the regulations

40are active only for a subset of time (Prelic et al., 2006).

This phenomenon is clearly observed in developmental and

disease-prognosis networks (pathways) (Bar-Joseph, 2004).

Thus in time-series gene-expression analysis, it is very important

to detect local expression similarities to understand the under-

45lying molecular dynamics in biological networks (Androulakis

et al., 2007). All these limitations of current methods advocates

the need of new gene-network-inference methods, that are least

influenced by the dynamic expression delays and the number of

time points.
50Here we present a new network inference method based on the

gapped local alignment of gene-expression profiles. Gapped local

alignment was originally used to align two nucleotide or protein

sequences and to find the best matched subsequences (Smith and

Waterman, 1981). Gaps induced in the alignment signify the

55insertions and deletions, and alignment score reflects the similar-

ity between the two aligned sequences. Here, we employ gapped

local alignment to infer dynamic delay GRN. The rationale

behind the algorithm is that, if a gene X is regulating gene Y,

the expression pattern of the target gene Y is stimulated by the

60expression pattern of its regulator X, i.e. they share similar

expression pattern with varying expression delay. A regulatory

relationship is often a local phenomenon. Figure 1b and c shows

the example local expression correlations (shaded). By identify-

ing such common local patterns between a regulator and its tar-

65get, we can reveal the relationships between them. Figure 1(d)

shows positive regulation between the genes pal-1 and elt-1 in the

C lineage of Caenorhabditis elegans (Murray et al., 2012). AQ12It can

be observed that the delay is not constant throughout the expres-

sion, i.e. D1 6¼D2 (Figure 1d). Insertion of gaps in the alignment

70will incorporate dummy time points that can account for the

variability in delay. Instead of mapping the expression values

one to one, we stretch the expression values of one gene over

other by inserting gaps, such that the similarity between the

two expression patterns (regulator and its target) is maximized.

75A detailed description of the algorithm is given in the Methods

section.

Fig. 1. Illustration ofAQ7 dynamic time delay in gene regulation (a) delay

dynamics between the time transcription factor TF/regulator R binding

to the promoter region of its target geneAQ8 T and the resulting protein is

matured and detectable (measured). Noisy cellular environment and

other small factors add to the transcriptional and translational delay.

(b and c)AQ11 Model gene-expression patterns with local correlations

(shown in grey). (d) Positive regulation between the genes PAL-1-1 and

ELT-1 in the C lineage of C.elegans with varying delay (D1 6¼D2)

2

H.K.Yalamanchili et al.

gene 
high 
time 
Mutual Information (
)
live 
cell 
information 
theoretic 
gene 
change 
regression 
s
) (
disease 
gene 
gene 
network 
,
gene 
gene regulatory networks
(
)
1
(
)
C.
(
)


[2.12.2013–6:55pm] [1–8] Paper: OP-CBIO130712

Copyedited by: AK MANUSCRIPT CATEGORY: ORIGINAL PAPER

2 METHODS

2.1 Gapped local alignment of expression profiles

Here, we employed dynamic programming approach to align two expres-

sion patterns with varying delay and number of time points. Consider the

5 expression patterns of two genes A and B with x and y number of time

points, respectively:

A ¼ a1, a2, a3, � � � , ax
B ¼ b1, b2, b3, � � � , by

:

First, a similarity matrix S of the order x� y is computed. We compute

the similarity s(i, j) as an exponential function of the distance between

10 time points ai and bj.

s i, jð Þ ¼ e���d ai , bjð Þ ð1Þ

where � is the measure of steepness and d(ai,bj) is the distance between

time points ai and bj. A value of �¼ 1.7 is used in this study (discussed in

Supplementary Material). Euclidean distance is the most commonly used

15 distance metric. However, it is heavily influenced by the magnitude of the

difference between the data points. We are more interested in the trend of

expression than the change in magnitude. Thus we capture the expression

trend at ai and bj with respect to their neighboring data points as shown

below (Supplementary Material):

tðaiÞ ¼
�
ðai � ai�1Þ þ ðaiþ1 � ai�1Þ=2

�
=2 ð2Þ

20

tðbiÞ ¼
�
ðbi � bi�1Þ þ ðbiþ1 � bi�1Þ=2

�
=2 ð3Þ

The underlying rationale, i.e. a regulator and its target share a similar

expression trend irrespective of huge variations in the magnitude.

25 Distance between the two expression trends, d(ai, bj) is computed as

shown below:

dðai, bjÞ ¼ tðaiÞ � tðbjÞ
�� ��: ð4Þ

Next, an alignment matrix M of the order (xþ 1)� (yþ 1) is computed.

An extra row and column are added to allow gaps of any length in either

30 of the expression patterns (Figure 2a). Typically, an un-gaped alignment

approximately requires n2 computations, where n is the average length of

the time series. If we consider gap insertions, the computational complex-

ity increases exponentially. Thus, we adopted the dynamic programing

approach to reduce the number of computations to compute the gapped

35 alignment. The value of the (i, j)-th element in the alignment matrix M

is computed from its adjacent cells in three possible ways (positions)

(Figure 2a), a diagonal position (i– 1) and (j – 1) with no gaps, or from

(i – 1) and j with a gap inserted in series A, or from i and (j –1) with a gap

inserted in series B.

Mij ¼ max

Mi�1, j�1 þ s0 i, jð Þ

Mi�1, j � p

Mi, j�1 � p

0

8>>><
>>>:

9>>>=
>>>;

ð5Þ

40

Mi, j is the score for position i in series A and position j in series B, s(i, j )

is the similarity between time positions ai and bj, and p is the gap penalty.

In the current study, a gap penalty of 0.3 is used (discussed in

45Supplementary Material). However, it is recommend that different

gap penalties be used, based on the diversity of gene-expression

patterns. At each step, the direction (path) of the highest score is

recorded. Once the alignment matrix is completely filled, we compute

the alignment by joining all the recorded paths starting from the max-

50imum element in the matrix, as illustrated in Figure 2. Alignment score N

is computed as:

N ¼
Max Mð Þ

L

� �
ð6Þ

where, Max(M) is the maximum element in the alignment matrix M

and L is the alignment length. Multiple alignments are possible if

55there is more than one path from the maximum element in the alignment

matrix M.

2.2 Minimizing the effect of shift and scale

In the current context of gene-network inference, we are more interested

in the expression trend of a gene than the actual change in its magnitude.

60Figure 3a shows the model-expression patterns of two genes with similar

local trend, but high noise with different scale and shift makes it difficult

to understand the trend similarity. Thus, the expression patterns are

normalized prior to the alignment by subtracting the mean and dividing

by the maximum:

T0i ¼
Ti � T

Tmax
ð7Þ

65where, Ti is the i-th element, T is the mean and Tmax is the maximum

value of the time series T. This constrains the expression patterns between

–1 andþ1 with a unit variance and zero mean. The trend is more obvious

after normalization as shown in Figure 3b. In a similarity matrix high

70similarity between any two time points might force the less similar neigh-

boring points to align. To minimize this, we normalize the similarity

matrix as follows:

s0 i, jð Þ ¼
s i, jð Þ � s i, jð Þ

m i, jð Þ
ð8Þ

Fig. 2. (a) Alignment matrix M with an extra row and column to accom-

modate gaps and the three possible paths to compute an element M1,1

and (b) shown in black are the recorded paths used to compute the

alignment

Fig. 3. Normalization and inversion of gene-expression patterns.

(a) Model raw-expression patterns. (b) Normalized expression patterns.

(c) Model inhibitor–target relationship
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where, s(i, j) is the (i, j)-th element in the similarity matrix, sði, jÞ is the

average and m(i, j) is the maximum of the i-th row and j-th column of the

similarity matrix S. By doing so, influence of the high similarity between

5 the time points i and j is restricted to i-th row and j-th column.

2.3 Aligning inhibitors to targets

The expression patterns of inhibitor and its target are inverted on the time

axis with respect to each other as shown in Figure 3c. To comprehend

such relationships we flip the expression pattern of inhibitor by an inverse

10 operation before aligning it to its target (shown in green, Figure 3c).

For every gene pair, we perform both direct and inverted alignments

and the mode of regulation is inferred based on the high-scoring signifi-

cant alignment.

2.4 Inferring regulator–target relationships

15 We infer a regulatory relationship between any two genes, if they share a

common expression trend. As gene regulations are dynamic and vary

with time, the observed correlations can be local with varying delay.

From Figure 1c, we can observe a clear mutual trend between the gene

pal-1 (regulator) and its target elt-1 (whose regulatory relationship is well

20 established). Such common patterns can be identified by high (gapped

local) alignment scores. The direction of regulation is inferred based on

the onset time of gene expressions i.e., the gene with an early onset time is

predicted as regulator and vice versa. In Figure 1c pal-1 is expressed first,

and hence is predicted as the regulator of elt-1.

25 2.5 Significance of the alignment

Simple alignment score is not a clear indicator of a significant alignment

as the expression pattern of a gene can be randomly aligned to the ex-

pression patterns of other genes. Conventionally, a P-value is calculated

from the distribution of alignment scores to access the significance of an

30 alignment (Altschul et al., 1997; Pearson, 1996). The distribution of

gapped-local-alignment scores follows an extreme value distribution

(Bailey and Gribskov, 2002). The probability density function for the

generalized extreme value distribution with location parameter m, scale
parameter � and shape parameterk 6¼ 0 is ofAQ6 the form:

f ðXjk,�, �Þ ¼
1

�

� �
exp � 1þ k

x� �ð Þ

�

� ��1=k !

1þ k
x� �ð Þ

�

� ��1 �1=kð Þ
ð9Þ

35 To calculate the P-value, 100 000 random background alignment scores

are computed by shuffling the normalized expression levels at random

points (Li et al., 2010). The parameters m, � and k are estimated based on

these 100 000 random alignment scores. A P-value for a given alignment

40 score is thus computed based on the estimated parameters. The P-value is

expected to be as small as possible for a significant alignment. The R

package ‘evir’ for extreme value distribution to estimate the parameters

and to compute the P-value is used.

2.6 Multiple regulators

45 We use the window or the interval of regulation to predict collective gene

regulators i.e. multiple regulators regulating their target at the same time.

If a gene is collectively regulated by more than one gene at a time, they

share a common window of regulation (aligned expression patterns)

irrespective of their magnitudes. Figure 4a shows model-expression

50 patterns of genes a and c collectively regulating b, in the same window/

interval (w1¼w2). All the regulators that share a common regulatory

window with respect to a target gene are can be inferred to be its collect-

ive regulators. Alternatively, a gene can also be regulated by multiple

regulators at different time points (windows) as shown in Figure 4b.

55These relationships are relatively easier to infer as they have distinct

regulatory windows (w1 6¼w2). Since DDGni (Dynamic delay gene-

network inference) builds a global network, at this level it is difficult

to distinguish the regulators acting at different time points. However,

DDGni also provides a separate complete alignment file with alignment

60coordinates. The order of multiple regulations can be inferred based on

the order of aligned coordinates i.e. earlier the alignment earlier is its

regulation. This facilitates a better understanding of the underlying

network dynamics.

3 RESULTS

65The merit of the current method DDGni is to infer the dynamic

time delayed GRN. Conventionally, multifactorial DREAM

data is used to evaluate the performance of various GRN-

inference methods. As the DREAM data is a steady-state data

and does not include any time delay in the gene-expression pat-

70terns, it is thus rendered incompatible to illustrate the merits of

DDGni on this dataset. Therefore, it was considered imperative

to simulate data that incorporates time delay in the gene expres-

sions in order to highlight the application of DDGni in handling

dynamic time delay. Furthermore, to draw parallels with the

75already existing methods, TimeDelay-ARACNE (Zoppoli

et al., 2010), an information theoretic method, is also evaluated

on the same simulated data. The results support the potential of

DDGni in inferring time delayed GRNs.
Furthermore to demonstrate the applicability on steady-state

80data, DDGni is also evaluated on multifactorial DREAM 4 data

(with no time delay), against three more prominent network

inference methods: Maximal information coefficient (MIC)

(Reshef et al., 2011), ARACNE (Margolin et al., 2006) and

GENIE3 (Huynh-Thu et al., 2010). GeneNetWeaver (Schaffter

85et al., 2011) is used to generate the DREAM 4 multifactorial

data. The results are shown in Supplementary Table S1.

To assess the practical application of DDGni, we used the cell-

cycle time-course data from Yeast (Spellman et al., 1998) and

real time embryonic gene-expression data from C.elegans

90(Murray et al., 2012). The performance of DDGni is evaluated

against TD-ARACNE and DTW. The AUC (Baldi et al., 2000) AQ4
values show a substantially increased performance of DDGni as

compared to TD-ARACNE and DTW.

3.1 Simulated gene-expression dataset

95We generated synthetic gene networks with different topologies,

sizes and most importantly varying time delay as follows.

Fig. 4. Illustration of multiple regulatory relationships of a target gene.

(a) Genes a and c collectively regulating b, in the same interval/window

(w1¼w2). (b) Genes a and c regulating b at different intervals/windows

(w1 6¼w2)
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� A directed random acyclic graph is generated; each node

here corresponds to a gene.

� If the number of genes with more than one regulator is

520%, we re-generate the network (Zoppoli et al., 2010).

5 � Each gene G is initialized (100 time points) with numbers in

[0, 1] following uniform random distribution.

� For each target gene T, the expression values are computed

as a function of its regulator R:

T½i� ¼ �iR½dþi� þ ei ð10Þ

10 d ¼ din� dd ð11Þ

where T is the target gene, R is the regulator, �i is the uni-

formly distributed regulatory coefficient, ei is the noise, d is

the dynamic delay, din is the initial delay and dd is the dy-

15 namic delay factor responsible for increase or decrease in

the initial delay.

� Dynamic delay (d) is updated at every time point (i) accord-

ing to the dynamic delay factor (dd). The value of dd is based

on a random number n [0, 1], dd¼ –1 if (n5x), 0 if

20 (x� n� y) and –1 if (y5n). To minimize the large fluctu-

ations in delay we used x¼ 0.1 and y¼ 0.9.

DDGni, TD-ARACNE and DTW are evaluated on 100

synthetic networks with dynamic delay (see Supplementary

Material). The current problem boils down to a simple binary

25 classification problem, i.e. to classify a gene pair as interacting

(regulatory relationship) or non-interacting (no regulatory rela-

tionship). Conventionally, area under the receiver-operating

characteristic (ROC) curve is used to evaluate the performance

of binary classifiers with respect to its discrimination threshold

30 (Madhamshettiwar et al., 2012)AQ2 . ROC is a function of true posi-

tive rate (tpr) and false positive rate (fpr) (Baldi et al., 2000).

Alignment score is the discrimination factor here. The advantage

of using AUC is that, we need not optimize a discrimination

threshold. Figure 5 shows the range of AUC values of DDGni,

35 TD-ARACNE and DTW, observed over the 100 simulated

networks. The AUC values of DDGni are higher when com-

pared to the other two. This suggests the ability of DDGni

to handle the dynamic delay embedded in the high-temporal

gene-expression profiles. Performance evaluation at different

40noise levels suggests the robustness of DDGni (discussed in

Supplementary Material).

3.2 Cell cycle time-course data from Yeast

Next, we evaluated our method on a well-established network of

eight transcriptional factors in Yeast. The cell cycle time-course

45gene-expression data is downloaded from GEO (GSE8799).

The dataset consist of two replicates with 15 time points each.

We merged both the replicates to get 30 time points. We selected

eight TFs (YOX1, STB1, HCM1, WHI5, YHP1, ACE2, SWI5

and ASH1) that are extensively studied (Orlando et al., 2008).
50The regulatory relationships among these eight TFs are

obtained from literature, YEASTRACT (Abdulrehman et al.,

2011) and STRING (Szklarczyk et al., 2011). Figure 6 shows

the time delayed regulatory relationship between SWI5:ASH-1

(Figure 6a) and YOX1:YHP1 (Figure 6b). The AUC values

55reported in Table 1 show a substantial increase in the perform-

ance of DDGni when compared to other methods.

3.3 Embryonic gene-expression data from Caenorhabditis

elegans

Recent studies have measured the gene expression in C.elegans

60embryo using live cell imaging techniques (Murray et al., 2006).

Diverse cell lineages and tissue types are the consequence of dif-

ferent cell fates and thus help comprehend underlying molecular

Fig. 5. Performance of DDGni, TD-ARACNE and DTW on the

simulated gene-expression data with dynamic delay Fig. 6. Time delayed regulatory relationships between (a) SWI5:ASH-1,

(b) YOX1:YHP1, (c) HND-1:HLH-1 and (d) PAL-1:ELT-1. Delays are

marked by double-headed arrows

Table 1. Performance (AUCs) of DDGni, TD-ARACNE and DTW on

the three datasets

Methods SIM Yeast C.elegans

TD-ARACNE 0.64 0.61 0.54

DDGni 0.68 0.74 0.60

DTW 0.56 0.63 0.55
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mechanisms. To understand this, Bao et al. (2006) and Murray

et al. (2008)AQ4 have developed methods to quantitatively measure

the gene expressions of every cell with 1-min interval during

embryogenesis. Using these protocols Murray et al. (2012)
5 have measured the expression values of 127 genes, mostly tran-

scription factors with �1min temporal and single cell resolution

in C. elegans embryo. The resulting expression patterns from

these cell lineages are rich in information, including tissue

types, cellular physical positions and cell division and
10 symmetries. Inferring regulatory networks from such data will

help us understand various regulatory mechanisms involved in

tissue differentiation and embryonic development. Figure 6
shows the time delayed regulatory relationship between

HND-1:HLH-1 (Figure 6c) and PAL-1:ELT-1 (Figure 6d) in

15 the C lineage of C.elegans.

3.3.1 Interpolation of gene expression values The expression
values of 127 genes are measured independently (one

reporter gene per embryo) by quantifying the fluorescent

reporter expression driven by their promoter sequences.

20 Ideally, a cell should have the same cell-cycle length across all

experiments. However, due to specific experimental conditions

the cell-cycle lengths might vary across different embryos.
This may be also due to non-uniform and irregular sampling

that are common while tracking embryonic development

25 (White et al., 1999).
Figure 7 shows the differences in the cell division times for two

genes (experiments) end-1 and pha-4 in the E lineage of C.elegans

(cell division events are marked by a solid black line). It can be

observed that pha-4 cell cycle lengths are shorter when compared
30 to that of end-1. These differences should be handled before

proceeding to their alignment. Interpolation technique is used

to fit the pha-4 curve to end-1. B-splines are already used
successfully on similar gene-expression data (Bar-Joseph et al.,

2003). The red dotted regions in Figure 7 are the interpolations

35 of pha-4 expression.

3.3.2 Benchmark data To evaluate our method on real
time embryonic gene-expression data, we manually curated a

benchmark dataset from the available literature for which the

embryonic gene expression data is available (Supplementary

40 Table S5). The AUC values reported in Table 1 suggest

an enhanced performance of DDGni as compared to TD-

ARACNE and DTW.
The AUC of ROC curve can suggest the overall performance

of a program without needing to consider the specific cutoffs.

45However, TD-ARACNE is a binary classifier, i.e. it outputs 1

or 0 corresponding to the presence or absence of a regulatory

edge, respectively. Thus, we also evaluated the performance

in terms of F-score (Powers, 2011) (Supplementary Table S4).

Computational (time) complexity and running time of respective

50methods are reported in Supplementary Table S7. The overall

tradeoff between AUC and runtime of DDGni is quite

acceptable.

3.3.3 Evaluation on a well-established network For a better
illustration of the merits of DDGni, we demonstrate the

55performance of our method in comparison to TD-ARACNE

on a well-established network in C.elegans. Expression of end-

1, end-3, elt-7, pha-4, ges-1 and elt-2 genes are specific to the E

lineage of C.elegans and are important for the gut development.

Figure 8 shows the networks inferred by DDGni (Figure 8a),

60TD-ARACNE (Figure 8b) and DTW (Figure 8c); shown in

red are the true relationships that also predicted by the respective

methods, shown in black are the true relationships that are not

predicted and shown in blue are the predictions that are not

true (not reported in literature). From Figure 8, we observe
65that predictions by DDGni overlap more with the true relation-

ships when compared to TD-ARACNE and DTW.

4 CONCLUSION

Although, several methods are proposed to infer regulatory net-

works from temporal data, their performance is not satisfactory,

70especially with the dynamic delay associated to the gene regula-

tion. High complexity and limitations of the existing methods in

handling varying time delay, advocates the need of effective gene

network inference methods that are least influenced by expres-

sion delays and number of time points. In this study, we

Fig. 7. Splined interpolation of the expression values to ensure equal

cell-cycle lengths

Fig. 8. Networks inferred from (a) DDGni, (b) TD-ARACNE and

(c) DTW. Red arrow, true positives; black arrow, false negatives; blue

arrow, false positives
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proposed a simple and elegant network inference method based
on gapped local alignment of gene expression profiles. By iden-
tifying common local patterns between a regulator and its target,
we can reveal the regulatory relationship between them. In short,

5 we span the expression values (time points) of the target gene
over the expression values of its potential regulator by inserting
gaps such that the similarity between the two expression patterns

is maximized. The novelty of our method is the use of ‘gaps’ to
handle the dynamic delay in gene regulation and uniformly

10 sampled time points which is quite common in long time series

such as cell-lineage data. The order of multiple regulations can be
inferred based on the order of aligned coordinates, i.e. earlier the
alignment earlier is its regulation. The proposed method is com-

putationally less complex and exercise dynamic programming.
15 We evaluated our performance against prominent network infer-

ence methods like TD-ARACNE, DTW, MIC, ARACNE and
GENIE3. The AUC values for both real time and simulated time

series gene-expression data evince an improved performance by
our proposed method in handling the dynamic delay during tran-

20 scriptional regulation and the evaluation on steady state

DERAM4 data suggests the on-par performance of DDGni
with other prominent methods. DDGni is highly suitable for
real temporal data with high sampling frequency where delay

dynamics is obvious. It is also applicable to short time-series
25 data as suggested by its performance on the yeast cell-cycle

data. In addition to the above, its on-par performance on
static data advocates a more general applicability. However, as

any other pure expression driven method it suffers from spurious
relationships, i.e. identified correlations (delayed-similarity) do

30 not represent true causal relationships. This problem can be

solved by using ChIP-Seq binding data (Qin et al., 2011).
However, in this article only expression data is used for network
construction.
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