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Abstract. Transcoding proxy caching is an important technology for
improving the services over Internet, especially in the environment of
mobile computing systems. In this paper, we address cooperative deter-
mination on cache replacement candidates for transcoding proxies. An
original model which determines cache replacement candidates on all can-
didate nodes in a coordinated fashion with the objective of minimizing
the total cost loss is proposed. We formulate this problem as an opti-
mization problem and present a low-cost optimal solution for deciding
cache replacement candidates.

1 Introduction

Web caching is an important technology for improving the services over Internet.
Since the majority of web objects are static, caching them at various network
components (e.g., client browser, proxy server) provides a natural way of de-
creasing network traffic. Moreover, web caching can also reduce users’ access
latency and alleviate server load.

A key factor that affects the performance of web caching is the cache replace-
ment policy, which is a decision for evicting an object currently in the cache to
make room for a new object. A number of cache replacement policies, which
attempt to optimize various performance metrics, such as hit ratio, byte hit
ratio, delay saving ratio, etc., have been proposed in the literature. However,
all these polices are local replacement models that determine cache replacement
candidates from the view of only a single node. Furthermore, they become ineffi-
cient in transcoding proxies due to the new emerging factors in the transcoding
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proxy (e.g., the additional delay caused by transcoding, different sizes and refer-
ence rates for different versions of a multimedia object) and the aggregate effect
of caching multiple versions of the same multimedia object. Although the au-
thors have elaborated these issues in [1], they considered the cache replacement
problem at only a single node. Cooperative caching, in which caches cooper-
ate in serving each other’s requests and making storage decisions, is a powerful
paradigm to improve cache effectiveness [3,6]. There are two orthogonal issues
to cooperative caching: object location (i.e., finding nearby copies of objects)
and object management (i.e., coordinating the caches while making storage de-
cisions). The object location problem has been widely studied [2,4,8]. Efficient
coordinated object management algorithms are crucial to the performance of a
cooperative caching system, which can be divided into two type of algorithms:
placement and replacement algorithms. There are a number of research on find-
ing efficient solutions for cooperative object placement [5,7,9]. However, there is
little work done on finding efficient solutions for cooperative object replacement.
Due to the interrelationship among different versions of the same multimedia
object, cooperative caching in transcoding proxies becomes more important and
complicated. We claim that this is very significant for the performance of a coop-
erative caching system since when a updated version is to be cached, an efficient
replacement policy should decide cache replacement candidates by considering
the cooperation of all the nodes on the path from the server to the client. An-
other important point is that the replacement decision on each node should be
beneficial, i.e., the profit gained by caching the new object should be no less
than the profit lost by removing some objects from the cache to make room for
the new object. As the transcoding proxy is attracting an increasing amount of
attention in the environment of mobile computing, it is noted that new efficient
cache replacement policies are required for these transcoding proxies. In this
paper, we address cooperative determination on cache replacement candidates
for transcoding proxies. We first propose an original model which determines
cache replacement candidates among all candidate nodes in a coordinated fash-
ion with the objective of minimizing the total cost loss. Moreover, we formulate
this problem of an optimization problem and present a low-cost optimal solution
for deciding cache replacement candidates.

The rest of this paper is organized as follows: Section 2 introduces some
preliminaries. We formulate the problem and present an optimal solution for
this problem in Section 3. Finally, we conclude this paper in Section 4.

2 Preliminaries

We first introduce multimedia object transcoding in Section 2.1, and then nota-
tions and definitions in Section 2.2.

2.1 Multimedia Object Transcoding

Transcoding is used to transform a multimedia object from one form to another,
frequently trading off object fidelity for size, i.e., the process of converting a
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Fig. 1. An Example of A Weighted Transcoding Graph

media file or object from one format to another. Transcoding is often used to
convert video formats (i.e., Beta to VHS, VHS to QuickTime, QuickTime to
MPEG). But it is also used to fit HTML files and graphics files to the unique
constraints of mobile devices and other Web-enabled products. These devices
usually have smaller screen sizes, lower memory, and slower bandwidth rates. In
this scenario, transcoding is performed by a transcoding proxy server or device,
which receives the requested document or file and uses a specified annotation to
adapt it to the client.

The relationship among different versions of a multimedia object can be
expressed by a weighted transcoding graph. An example of such a graph is shown
in Figure 1, where the original version A1 can be transcoded to each of the less
detailed versions A2, A3, A4, and A5. It should be noted that not every Ai can
be transcoded to Aj since it is possible that Ai does not contain enough content
information for the transcoding from Ai to Aj . In our example, transcoding can
not be executed between A4 and A5 due to insufficient content information. The
transcoding cost of a multimedia object from Ai to Aj is denoted by w(i, j). The
number beside each edge in Figure 1 is the transcoding cost from one version
to another. For example, w(1, 2) = 6, and w(3, 4) = 4. φ(i) is the set of all the
versions that can be transcoded from Ai, including Ai. For example, φ(1) =
{1, 2, 3, 4, 5}, φ(2) = {2, 4, 5}, and φ(4) = {4}. In this paper, we use G to denote
a weighted transcoding graph.

2.2 Notations and Definitions

We model the network as a graph G = (V, E) in this paper, where V =
{v0, v1, · · · , vn} is the set of nodes or vertices, and E is the set of edges or
links. We assume that every node is associated with a cache with the same
size B and there are m multimedia objects, i.e., O1, O2, · · · , Ol, maintained by
server v0. For each multimedia object Oj , we assume that it has mj versions:
Oj,1, Oj,2, · · · , Oj,mj and all versions have the same size. Thus, each node can
hold at most B objects. We denote the set of objects cached at node vi by
Y i =

{
Ai

1, A
i
2, · · · , Ai

m

}
, where Ai

j ⊆ {
Oj,k1 , Oj,k2, · · · , Oj,kj

}
is the set of differ-

ent versions of object Oj cached at node vi. Obviously, Y =
{
Y 1, Y 2, · · · , Y n

}
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is the set of all objects cached. For each version of object Oj , we associate each
link (u, v) ∈ E a nonnegative cost Lj,k(u, v), which is defined as the cost of
sending a request for version Oj,k and the relevant response over the link (u, v).
In particular, Lj,k(u, u) = 0. If a request goes through multiple network links,
the cost is the sum of the cost on all these links. The cost in our analysis is cal-
culated from a general point of view. It can be different performance measures
such as delay, bandwidth requirement, and access latency, or a combination of
these measures. Let ri,j,k denote the request for Oj,k at node vi and fi,j,k be the
frequency of ri,j,k.

For notational tidiness, we omit argument j in all parameters and functions
throughout the following analysis since our analysis is based on a specific object.
For example, Ok denotes version k of object j, Ai is the set of different versions
of object j cached at node vi, Lk(u, v) denotes the cost of sending a request
for version Ok and the relevant response over the link (u, v), ri,k denotes the
request for Ok at node vi, and fi,k denotes the frequency of ri,k. We also make
the following assumptions.

– Assumption 1: Lk(vi1 , vi2 ) = (i1 − i2)L for all 1 ≤ k ≤ m as there are i1 − i2
links on the path between node vi1 and node vi2 , and the cost on each link
for each version of Oj is L.

– Assumption 2: The transcoding graph is a linear array and the transcod-
ing cost between any two adjacent versions is constant, i.e., t(Ok1 , Ok2) =
k2−1∑

k=k1

t(Ok, Ok+1) = (k2 − k1)+T , where x+ = x if x ≥ 0 else x+ = ∞.

– Assumption 3: There exists some positive integer δ such that (δ − 1)T ≤ L,
and δT > L. If there does not exist such a δ, i.e., L � T or T � L.
Obviously, these are two trivial cases.

3 Cooperative Cache Replacement for Transcoding
Proxies

3.1 Problem Formulation

Before formulating the problem, we give some explanation on how the requests
are served. As shown in Figure 2, a request goes along a routing path from the
client (node vn) to the server (node v0). Note that any request ri,k could find the
service from S(ri,k), where S(ri,k) denotes the serving object for ri,k. Assume
that S(ri,k) = Ok1 ∈ Ai1 with k1 ≤ k and i1 ≤ i, then there may be the following
ways of serving ri,k by Ok1 ∈ Ai1 .

– Ok1 is first sent from node vi1 to node vi and then transcoded to Ok at node
vi.

– Ok1 is first transcoded to Ok at node vi1 and then Ok is sent from node vi1

to node vi.
– Ok1 is first sent from node vi1 to node vi2 , transcoded to Ok at node vi2 ,

and then then Ok is sent from node vi2 to node vi.
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– Ok1 is first sent from node vi1 to node vi2 and transcoded to Ok2 at node
vi2 , and then Ok2 is sent from node vi2 to node vi3 and transcoded to Ok3

at node vi3 , then Ok3 is sent from node vi3 to node vi and transcoded to Ok

at node vi.

–
...

Fig. 2. System Model for Multimedia Object Caching

All these cases would cost the same under our cost model even though in
practice. However, when a new or updated version of a multimedia object to
be cache, denoted by Oi0 , is passing through each node between nodes vi′ and
vi, it should be decided where Oi0 should be cached and which version should
removed from the relevant cache to make room for it depending on how ri,k is

served. Given X (i.e., the set of cached objects) and Ok′ ∈ Ai
′

(i
′ ≤ i). Let

d(ri,k, Ok′ ) denote the cost of serving ri,k by Ok′ at node vi′ . Then d(ri,k, Ok′ )
is defined as follows:

d(ri,k, Ok′ ) = (i − i
′
)L + (k − k

′
)+T (1)

where (x − y)+ =

{
x − y if x − y ≥ 0
0 if x − y < 0

Now we begin to formulate the problem addressed in this paper, i.e., de-
termining where a new or updated version Oi0 should be cached among nodes
{v1, v2, · · · , vn} and which version of object j should be removed at that node
to make room for Oi0 such that the total cost loss is minimized. Suppose that
P ⊆ V is the set of nodes at each of which Xi,ki ∈ Ai should be removed to
make room for Oi0 , then this problem can be formally defined as follows:

L(P ∗) = min
P⊆V

{L(P )} =
∑

vi∈P

(l(Xi,ki) − gi(Oi0)) (2)

where L(P ) is the total relative cost loss, l(Xi,ki) is the cost loss of removing
Xi,ki from node vi, and gi(Oi0 ) is the cost saving of caching Oi0 at node vi.

3.2 Dynamic Programming-Based Solution

Before presenting the solution, we evaluate the two items, i.e., l(Xi,ki) and
gi(Oi0 ), shown in Equation (2) in detail .

First, we begin with presenting a solution for finding the best way of serving
ri,k, i.e., finding S(ri,k). Based on Equation (1), the cost of serving ri,k, denoted
by c(ri,k), is defined as follows:
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c(ri,k) = min

{

min
O

k
′ ∈Ai

′
, 1≤i′≤i

d(ri,k, Ok′ ), iL

}

(3)

Therefore, the object for serving ri,k, denoted by S(ri,k), is determined as
follows:

S(ri,k) =

{
Ok′ ∈ Ai

′
if c(ri,k) ≥ d(ri,k, Ok′ )

v0 if c(ri,k) = iL (4)

The following property will help us simplify the problem of finding the best
way of serving ri,k.

Theorem 1. If both Ok1 and Ok2 are cached at node vi′ , then we have
d(ri,k, Ok1) < d(ri,k, Ok2 ) for k > k1 > k2.

Proof. Based on the definition of d(ri,k, Ok), we have d(ri,k, Ok1) = (i − i
′
)L +

(k−k1)+T and d(ri,k, Ok2) = (i− i
′
)L+(k−k2)+T . Since (k−k1)+ < (k−k2)+,

we have d(ri,k, Ok1) < d(ri,k, Ok2). Hence, the theorem is proven.

From Theorem 1, we can see that for request ri,k, we can consider only the
least detailed version that can be transcoded to version k. Thus, Equation (3)
can be simplified as follows:

c(ri,k) = min
{

min
1≤i′≤i

d(ri,k, Ok∗), iL
}

(5)

where Ok∗ is the least detailed version of object j cached at node vi′ that can
be transcoded to version k.

It is easy to see that the time complexity for computing S(ri,k) is O(log n),
where n is the number of nodes in the network. So the total complexity for
computing all S(ri,k) (1 ≤ i ≤ n and 1 ≤ k ≤ m) is O(mn log n) since there are
n nodes and object j has m different versions.

For each object x ∈ X , the set of requests served by x is expressed as R(x) =
{ri,k|S(ri,k) = x} and the total cost for the requests served by x is C(x) =∑

ri,k∈R(x)

fi,kd(ri,k, x). In this paper, we use Rs to denote the set of requests

served by the server.
Regarding to R(x), we have the following property.

Property 1. If ri,k ∈ R(x), then ri′ ,k′ ∈ R(x
′
) ∀ i

′ ≤ i and k
′ ≤ k.

Proof. Suppose that x ∈ Ai1 = Ok1 , x
′ ∈ Ai2 = Ok2 and there exists i

′ ≤ i
and k

′ ≤ k such that ri′ ,k′ ∈ R(Oi2). Since S(ri′ ,k′ ) = x
′
, we have d(ri′ ,k′ , x

′
) ≤

d(ri′ ,k′ , x). Therefore we have (i
′−i2)L+(k

′−k2)T ≤ (i
′−i1)L+(k

′−k1)T , i.e.,
(i2− i1)L+(k2−k1)T ≤ 0. Therefore we have d(ri,k, x) = (i− i1)L+(k−k1)T =
(i−i2)L+(k−k2)T +(i2−i1)L+(k2−k1)T = d(ri,k, x

′
)+(i2−i1)L+(k2−k1)T ≤

d(ri,k, x
′
). So we have S(ri,k) = x

′
, which contradicts ri,k ∈ R(x). Hence, the

property is proven.
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Fig. 3. Example for Calculating l(x)

From Property 1, we can see that R(x) should be a region that can be divided
into several rectangular regions. This can be seen from Figure 3. For example,
R(x4) can be divided into two regions by the vertical broken line from x2.

Regarding to calculating l(Xi,ki), we first give the following theorem.

Theorem 2. Suppose that only Xi,ki is cached at node vi, then we have l(Xi,ki)

=
∑

ri,k∈B0

fi,k[i · L − d(ri,k, Xi,ki)] +
n∑

i=1

∑

ri,k∈Bi

fi,k[d(ri,k, X i
ki

) − d(ri,k, Xi,ki)],

where B0 = {(α, β)|α = i0, β ∈ R0

⋂
R(Xi,ki)}

⋂
R(Xi,ki) and Bi = {(α, β)|α =

i0, β ∈ R(X i
ki

)
⋂

R(Xi,ki)}
⋂

R(Xi,ki).

Proof. It is obvious that Bi

⋂
Bj = φ for i �= j. This guarantees that each

request’s access cost is only calculated one time. Now we prove the correctness
of the calculation of l(Xi,ki), i.e., the requests in Bi should be served by X i

ki
.

Suppose that there exists a request ri′ ,k′ ∈ bi which is not served by X i
ki

. Based
on Property 1, we have all the requests in the region B

′
i = {(α, β)|i ≤ α ≤

i0, ki ≤ β ≤ k0 will be not served by X i
ki

. It is easy to see that R(X i
ki

)
⋂

B
′
i �= φ,

i.e., there exist some requests in region R(X i
ki

) that are not served by X i
ki

. This
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obviously contradicts the fact that all the requests in region R(X i
ki

) are served
by X i

ki
. Hence, the theorem is proven.

For example, in Figure 3, if x1 is removed, R(x1) can be divided into
three regions (i.e., A, B, and C), which will be served by x4, x3, and the
server, respectively. Thus, we have l(x1) =

∑

ri,k∈A

fi,k[d(ri,k, x4) − d(ri,k, x1)] +

∑

ri,k∈B

fi,k[d(ri,k , x3) − d(ri,k, x1)] +
∑

ri,k∈B

fi,k[i · L − d(ri,k, x1)].

In practice, the general case is that several versions of the same multimedia
object are cached at node vi at the same time (see Figure 4). In this case,
calculating l(x) should also consider the mutual effect of the least more detailed
cached version on the removed version since the requests served by the removed
version could be satisfied by this detailed version. For example, when calculating
l(x2), R(x2) might be divided into four parts A, B, C, and D which will be served
by x4, x5, x3, and x1, respectively.

Taking into consideration the caching dependence along the path, calculat-
ing l(Xi,ki) becomes more complex and it is so obvious to obtain an optimal
solution.

Fig. 4. Example for Calculating l(x)
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Similarly, we can calculate the cost saving of caching Oi0 at node vi. For
example in Figure 4, if i0 = y1, then R(x6 can be divided in to two parts: E and
F ; if i0 = y2, then R(x6 can also be divided in to two parts. So we have g(y1) =∑

ri,k∈G

fi,k[d(ri,k, y1) − d(ri,k, x6)] and g(y2) =
∑

ri,k∈E

fi,k[d(ri,k, x6) − d(ri,k, y1)]

+
∑

ri,k∈F

fi,k[i · L − d(ri,k, y1)].

Now we begin to present an optimal solution for the problem as defined in
Equation 2. In the following, we call the problem a k-optimization problem if
we determine cache replacement candidates from nodes {v1, v2, · · · , vk}. Thus,
the original problem (Equation (2)) is an n-optimization problem. Theorem 3
shows an important property that the optimal solution for the whole problem
must contain optimal solutions for some subproblems.

Theorem 3. Suppose that X =
{
Xi1,ki1

, Xi2,ki2
, · · · , Xiα,kiα

}
is an optimal so-

lution for the α-optimization problem and X
′
=

{

Xi
′
1,k

i
′
1

, Xi
′
2,k

i
′
2

, · · · , Xi
′
β ,k

i
′
β

}

is an optimal solution for the kiα − 1-optimization problem. Then X∗ ={

Xi
′
1,k

i
′
1

, Xi
′
2,k

i
′
2

, · · · , Xi
′
β ,k

i
′
β

, Xiα,kiα

}

is also an optimal solution for the α-

optimization problem.

Proof. By definition, we first have L(X∗) = l(Xi
′
1,k

i
′
1

) + l(Xi
′
2,k

i
′
2

) + · · · +

l(Xi
′
β ,k

i
′
β

) + l(Xiα,kiα
) = L(X

′
) + l(Xiα,kiα

) ≥ l(Xi1,ki1
) + l(Xi2,ki2

) + · · · +

l(Xiβ ,kiβ
) + l(Xiα,kiα

) = L(X). On the other hand, since X is an optimal solu-
tion for the α-optimization problem, we have L(X) ≥ L(X∗). Therefore,we have
L(X) = L(X∗). Hence, the theorem is proven.

Based on Theorem 3, an optimal solution for the n-optimization can be
obtained by checking all possible removed candidates from node v1 to node vn

in order. Therefore, it is east to get that the time complexity of this solution is
O(n2+mn logn) based on our previous result that the complexity for computing
all S(ri,k) is O(mn log n), where n is the number of nodes in the network and m
is the number of versions of object j.

4 Conclusion

The transcoding proxy is attracting more and more attention since it plays an
important role in the functionality of web caching. In this paper, we presented a
coordinated cache replacement model in transcoding proxies where multimedia
object placement and replacement policies are managed in a coordinated way.
Our model is formulated as an optimization problem and the optimal solution
is obtained using a low-cost dynamic programming-based solution.
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