
Learning Sparse Gaussian Bayesian Network Structure by Variable
Grouping

Jie Yang†, Henry C.M. Leung†, S.M. Yiu†, Yunpeng Cai‡, Francis Y.L. Chin†*
† Department of Computer Science, The University of Hong Kong, Hong Kong

Email: chin@cs.hku.hk
‡ Shenzhen Institutes of Advance Technology & Key Lab for Health Informatics

Chinese Academy of Sciences, China

Abstract—Bayesian networks (BNs) are popular for modeling
conditional distributions of variables and causal relationships,
especially in biological settings such as protein interactions,
gene regulatory networks and microbial interactions. Previous
BN structure learning algorithms treat variables with similar
tendency separately. In this paper, we propose a grouped sparse
Gaussian BN (GSGBN) structure learning algorithm which
creates BN based on three assumptions: (i) variables follow a
multivariate Gaussian distribution, (ii) the network only contains
a few edges (sparse), (iii) similar variables have less-divergent
sets of parents, while not-so-similar ones should have divergent
sets of parents (variable grouping). We use L1 regularization
to make the learned network sparse, and another term to
incorporate shared information among variables. For similar
variables, GSGBN tends to penalize the differences of similar
variables’ parent sets more, compared to those not-so-similar
variables’ parent sets. The similarity of variables is learned
from the data by alternating optimization, without prior domain
knowledge. Based on this new definition of the optimal BN, a
coordinate descent algorithm and a projected gradient descent
algorithm are developed to obtain edges of the network and also
similarity of variables. Experimental results on both simulated
and real datasets show that GSGBN has substantially superior
prediction performance for structure learning when compared to
several existing algorithms.

I. INTRODUCTION

A Bayesian network (BN) can be used to represent the
probabilistic relationship of variables [14]. It is a graphi-
cal model for a set of dependent variables defined over a
directed acyclic graph (DAG). Each node in the network
represents a random variable, whose probability distribution
can be calculated from the variables represented by its parent
nodes in the DAG. Thus, a BN represents a joint probability
distribution over all variables and the joint distribution can be
decomposed into the products of the probability distribution of
each variable conditioned on its parents. We focus on BNs for
bioinformatics related applications. Learning the structure of a
BN is important for many tasks in bioinformatics involving, for
example, protein interactions, gene regulatory networks and
microbial interactions. There are two kinds of algorithms for
learning a BN’s structure: constraints-based and score-based
approaches [13]. In constraints-based approaches, BNs are
learned independently by testing conditional independencies
of subsets of variables. For example, the GS [16] algorithm,
which is constraints-based, identifies the potential parents of
each variable by testing conditional relationships (e.g. testing

Markov blankets) and then heuristically modifies the DAG
based on the potential parents detected (e.g. removing edges
or changing edge directions). Other constraints-based methods
such as TC-bw [17], IAMB [21] and HITON [1] follow a
similar approach. Unfortunately, constraints-based approaches
are usually prone to errors when the number of samples is
small compared with the number of variables because some
edges might be missing in the first stage.

Because the amount of biological data is usually limited,
we shall focus on score-based structure learning algorithms to
obtain the best BN for modeling a set of variables. Score-
based algorithms have two main components: (1) a global
scoring function to evaluate the goodness of a network and
(2) a search procedure to find the optimal network. Many
score functions have been proposed to evaluate the goodness
of a BN. BDe [11] and BGe [10] scores were proposed
with the assumption of multinomial and Gaussian distribution
for discrete and continuous variables, respectively. However,
searching for the optimal BN with good BDe and BGe scores
is NP-hard [3] even if we restrict each node to having at most
two parents [4]. Biological data is usually limited (hundreds of
samples only), but the number of estimated parameters in the
BN is large even when the number of variables is small (e.g.
approximately 2500 parameters for only 50 variables). In these
circumstances, the BN will usually overfit the biological data.
To avoid over-fitting and to reduce the size of searching space,
we should further restrict the BN. One common approach is to
assume that the optimal BN is simple. The sparse candidate
algorithm [9] restricts the size of the BN by bounding the
number of parents for each node. However, this restriction
makes the algorithm not useful for many applications where
some nodes in the network may have more parents.

Lasso (L1 regularization) [20] is the most popular approach
to enforce sparsity for linear regression. Each variable in
BN follows a multivariable Gaussian distribution conditioned
on its parents, and finding the relationship with its parents
is equivalent to fitting a linear regression over its parents.
The Lasso method can be applied for learning sparse BN (a
network with a few edges). Unlike the sparse candidate algo-
rithm which needs to specify the number of parents, L1MB
[18] penalizes the regression matrix with L1 regularization
for determining parents automatically and later heuristically
finds the optimal DAG. SBN [12] is similar to L1MB with

L1 regularization, but uses another penalty term in the score
function that ensures the learned BN is a DAG. A∗ SBN [22]
improves the heuristic search method of L1MB by A∗ Lasso.

For biological data, variables are usually related to each
other, for example, for microbial interactions, different mi-
crobes from same phylum/class may have similar behaviour. It
is natural to assume these variables should have similar parents
in the hidden BN and this information should be able to learn
from data. Unfortunately, all existing methods consider these
variables independently without considering the shared infor-
mation. We define similar variables as variables having less-
divergent sets of parents and with similar behaviour (note that
variables with opposite values in all samples are also consid-
ered as similar variables), while the not-so-similar variables
should have divergent sets of parents. Let Pa(X) be the set of
X’s parent variables. The similarity S(X ,Y) between two vari-
ables X and Y is defined as the difference of their sets of parent
nodes, i.e. Pa(X)⊕Pa(Y) where ⊕ is the symmetric difference.
This measure is equivalent to the Hamming distance between
two binary vectors which represent the set of elements. Thus,
the two variables X and Y are similar if S(X ,Y) = 0 and their
difference is measured according to the value of S(X ,Y). E.g.,
in Fig. 1, variables X6 with Pa(X6) = {X2,X3,X4} and X7 with
Pa(X7) = {X3,X4} are similar, as they have only one different
parent Pa(X6)⊕Pa(X7) = {X2}. Variables X7 and X8 are not
similar as they do not share any parents in the BN and have
five different parents Pa(X7)⊕ Pa(X8) = {X1,X3,X4,X5,X6}.
With this measure of similarity, we can formulate the variable
grouping idea as a minimization problem. With the observation
that S(X ,Y) ≥ 0 and its probability distribution decreases
exponentially with its increased value, we propose a score
function which approximates the distribution of node similarity
S(X ,Y) by different and independent Laplacian distributions.
Based on this score function which includes S(X ,Y), the
similar variables can be grouped together by sharing many
common parents, while those not-so-similar variables might
not share any common parents. Thus the searching space for
the hidden BN can be reduced. In this paper, we propose
a sparse Gaussian BN structure learning algorithm GSGBN
based on L1 regularization and variable grouping. GSGBN
contains two stages: firstly, we learn the pairs of similar nodes
from the data by alternating optimization; secondly, we find
the DAG heuristically by an ordering-based search as in [19].

Our contributions are: a). GSGBN is the first sparse BN
structure learning algorithm that considers the shared infor-
mation among variables through their similarity; b). GSGBN
is capable of learning the similarity of the variables (by
constructing a grouping matrix) from the data automatically
without any prior domain knowledge; c). GSGBN uses an
efficient and effective algorithm to learn the similarity of the
variables and the BN through regression and regularization
by alternating optimization. Two algorithms have been devel-
oped: the coordinate descent algorithm (for finding regression
matrix) and the projected gradient descent algorithm [5] (for
finding grouping matrix), which guarantee finding the optimal
regression matrix when the grouping matrix is fixed and find-

ing the optimal grouping matrix when the regression matrix
is fixed. When compared with other learning algorithms on
eight benchmark datasets, GSGBN, which considers shared
information (variable grouping), has the best performances
in terms of both sensitivity and specificity for predicting
the structure of BNs. For example, in the experiment on
the ”Water” benchmark dataset (Table I), GSGBN increased
sensitively from 0.409 (second best result) to 0.833 with slight
increase in specificity (from 0.980 to 0.986). Application of
these eight algorithms on real biological data for studying
microbial interactions also shows that GSGBN performs better
for predicting the observed values of the variables (decreasing
the error in prediction by about 10%).

X1

X2 X3

X5

X8

X9

X7

X6

X4

Fig. 1. An example for variable grouping

II. BACKGROUND AND NOTATIONS

BN is a probabilistic graphical model, representing a joint
probability distribution of a set of variables [14], and defined
over a directed acyclic graph (DAG) denoted by G = (V,E)
where |V |= n. Each node Vj in G is associated with a
random continuous variable X j. The probability distribution
p(X1, ...,Xn) associated with G can be decomposed into prod-
ucts of the distribution of each variable conditioned on its
parents, e.g. variable X j conditioned on its parents Pa(X j):
X j|Pa(X j). Thus

p(X1, ...,Xn) =
n

∏
j=1

p(X j|Pa(X j)).

In this paper we only consider Gaussian BN, in which vari-
ables X1,...,n follow a multivariable Gaussian distribution, i.e.
each variable X j conditioned on its parents Pa(X j) follows a
Gaussian distribution with mean (linear combinations of its
parents Xk in Pa(X j)) and variance (σ2

j):

X j|Pa(X j)∼N (∑
Xk∈Pa(X j)

XkBk j,σ
2
j);

where B is the n× n regression coefficient matrix which
encodes the edges of G, e.g. if Bk j is nonzero, there exists
an edge from node Vk to Vj; otherwise, there is no edge. After

calculating the log likelihood of p(X j|Pa(X j)), it is equivalent
to fitting a linear regression model from Pa(X j) to X j:

X j = ∑
Xk∈Pa(X j)

XkBk j + ε j,ε j ∼N (0,σ2
j).

where ε j is the noise which follows a Gaussian distribution.
Suppose we have m samples each with n variables, and we
want to learn a Gaussian BN that can best explain these
samples. Formally, given a matrix Xm×n with m samples and
n variables, where ith row Xi∗ is the variable vector for the
ith sample, and jth column X∗ j is the sample vector for the
jth variable, we want to find the optimal DAG Ĝ encoded by
the regression matrix B̂ with minimum { f (B)+g(B)} (error
term f (B) represents the error in predicting X j from its parents
Pa(X j) and regularization term g(B) represent the penalty for
some special network topologies):

B̂ = argmin
B

{ f (B)+g(B)}, s.t. G (B) ∈ DAG (1)

where

f (B) =
n

∑
j=1

(X∗ j−XB∗ j)
T · (X∗ j−XB∗ j),

G (B) represents the DAG with edges defined by nonzero
elements of B. Different algorithms have different definitions
for g(B). For L1MB, L1 penalty [18], [20] is used on each
column of B for sparsity in Ĝ, i.e. g(B)= λ ∑

n
j=1||B∗ j||1 where

||B∗ j||1= ∑
n
i=1|Bi j|. The positive regularization parameter λ is

for restricting the number of parents of each node, which in
practice can be learned from data (e.g by cross validation).
Without the DAG constraint, Eq. (1) is equivalent to Lasso
[20]. Without loss of generality, each column X∗ j is normal-
ized with zero mean and unit variance.

III. METHOD

A. Motivation

Since finding the optimal BN is NP-hard [3], it is unlikely to
find the optimal BN other than exhaustion. In addition, existing
algorithms do not employ the information of similar variables
to reduce the size of searching space. Our GSGBN algorithm
mainly takes advantages of the following three assumptions:
a). Gaussian Distribution Each variable X j follows a multi-
variate Gaussian distribution conditioned on its parents, which
is equivalent to fitting a linear regression model from parent
variables Pa(X j) to X j; b). Sparse Network The optimal BN
should be sparse (with only small number of edges), which
significantly reduces the size of parent set for each variable; c).
Variable Grouping To incorporate shared information among
variables (similar variables with less-divergent sets of parents,
while not-so-similar ones with divergent sets of parents).
The first two assumptions can be modelled by enforcing L1
penalty on each column of matrix B when performing linear
regression. The technique for modeling Variable Grouping
will be presented in next section.

B. Grouping

To making similar variables have less-divergent
set of parents, it is intuitive to assign the penalty:
Wi j ∑

n
k=1||Bki|0−|Bk j|0| such that Wi j (Wi j > 0) and

the grouping matrix W represents the similarity of two
variables Xi and X j. The summation is for differences of
parents. Mathematically, |a|0 is the L0 regularization with
|a|0= 1 if a 6= 0 otherwise |a|0= 0. Intuitively, if variables
Xi and X j are similar, Wi j should be large, which forces
the corresponding parent sets to be similar; however, if two
variables Xi and X j are not-so-similar, Wi j should have small
value and parent sets of Xi and X j can be more different.
However solving the L0 regularization problem is NP-hard,
we consider L1 regularization Wi j ∑

n
k=1||Bki|−|Bk j|| which is

an approximation to L0 (Wi j ∑
n
k=1||Bki|0−|Bk j|0|).

C. Problem Modeling

Given a known dataset X, the probability P(B|X) is propor-
tional to P(X|B) ·P(B). The conditional probability P(X|B)
follows a Gaussian distribution. Therefore, finding B that
maximizes likelihood P(X|B) is equivalent to finding B that
minimizes f (B) in Eq. (1). Considering the assumptions of
Sparse Network and Variable Grouping, we model the
prior probability distribution of B as the product of L(B) (for
sparsity) and F(B) (for variable grouping).

P(B) =
1
C

L(B) ·F(B); (2)

where C is the normalization constant,

L(B) =∏
i6= j

Lap(Bi j), F(B) = ∏
i6= j

Grp(B, i, j);

Lap(Bi j) =
λ1

2
e−λ1|Bi j |,Grp(B, i, j) =

λ2Wi j

2
e−λ2Wi j ∑k||Bki|−|Bk j ||;

(3)

∑
i, j

Wi j = 1 and Wii = 0, ∀i;

Wi j = W ji,0 < Wi j < 1,∀i 6= j.
(4)

In (2), L(B) is used for modeling Sparse Network and Bi j
follows an independent Laplacian distribution Lap(Bi j), i.e.
Bi j ∼ Laplace(0,λ−1

1). The Laplacian distribution assumption
of B is to impose L1 penalty on B to make B sparse [20]. The
probability distribution function for a variable x that follows
a Laplace(0,λ−1) is p(x) = λ

2 e−λ |x|.
Variable Grouping: We have analyzed the known DAG

structures for benchmark datasets by studying the distribution
of frequencies, i.e. number of pairs of variables X , Y with
t = S(X ,Y) different parents. Unfortunately, we have not
found any single distribution (Gaussian, Poisson etc.) can fit
the distribution well. Thus we want to learn the distribu-
tion from the data. As we found that the number of pairs
with parent differences of t decrease exponentially, we use
Laplacian distributions to approximate the hidden distribution
of differences of parents. To formulate Variable Grouping
assumption, we define the grouping matrix W where Wi j is
the parameter for the Laplacian distribution of S(Xi, ,X j), i.e.

∑k||Bki|−|Bk j|| ∼ Laplace(0,(λ2Wi j)
−1). If Wi j is large, the

S(Xi,X j) is small which we say Xi and X j are similar. However,
small Wi j indicates S(Xi,X j) is large, in this case, Xi and X j
are very different. λ1 and λ2 (λ1,λ2 > 0) are regularization
parameters that can be selected by cross-validation in practice.
By calculating the negative log-likelihood of P(X|B) ·P(B), we
get the following equation:

B̂,Ŵ = argmin
B,W

{ f (B)+g(B,W)}, s.t. G (B) ∈ DAG. (5)

where

f (B) =
n

∑
j=1

(X∗ j−XB∗ j)
T · (X∗ j−XB∗ j);

g(B,W) =λ1

n

∑
j=1
||B∗ j||1+λ2 ∑

i 6= j
Wi j ∑

k
||Bki|−|Bk j||−∑

i6= j
logWi j;

and W is constrained by (4). Instead of knowing the prior
knowledge of the grouping matrix W, we learn W from the
data.

D. Parameter Estimation

We use a two-stage approach to solve (5). At the first stage,
we learn grouping matrix Ŵ without the DAG constraint; at
the second stage, we heuristically search the DAG and B that
optimize (5) with learned Ŵ at the first stage.

1) Similarity Estimation: At this stage we only consider
solving (5) without DAG constraint. We propose to use
alternating optimization [15] to solve (5), that is to say: with
fixed W, find and update the optimal B; with fixed B, find
and update optimal W. Repeat the above procedure until
convergence or reaching the maximum number of iterations.

Theorem 1. Eq. (5) is convex with respect to W if B is fixed.

However, (5) may not be convex with fixed W. To make
(5) convex, we further restrict W by the following equation:

λ2

n

∑
j 6=i, j=1

Wi j ≤ λ1,∀i = 1, ...,n. (6)

Even though Eq. (5) is non-convex, it is convex if either B or
W is fixed and Eq.(5) satisfies the constraints given by (6).
We can apply alternating optimization by alternatively solving
two subproblems until f (B)+g(B,W) converges.

Theorem 2. Eq. (5) is convex with respect to B if W is fixed
and satisfies the constrains as given by (4) and (6).

Theorem 3. The alternating optimization approach to solve
Eq. (5) by fixing W and B alternatively as discussed above
can always converge.

Thus, we can apply alternating optimization by alternatively
solving two subproblems until f (B)+g(B,W) converges. The
proofs for theorems are omitted. The detailed procedure is:
• With fixed W, we find the optimal B by coordinate

descent algorithm [8]. Since we cannot separate the reg-
ularization term g(B), i.e. g(B) = ∑i j gi j(Bi j), coordinate
descent algorithm may not guarantee to find the global

optimal B [7]. However it works well in practice with
many advantages (accurate, easy for implementation and
fast). We also implemented ADMM (alternating direction
method of multipliers) algorithm [2], which guarantees
finding the global optimal B. Coordinate descent always
reports the same results as ADMM by comparison. At
each step of coordinate descent, obtaining

B̂i j = argmin
Bi j

{ f (B)+g(B,W)}

is equivalent to getting the optimal t̂ of the following
function:

t̂ =argmin
t

a0(t−b0)
2 +

l

∑
i=1

ai|t−bi|

s.t. ai > 0, bi ≥ 0, ∀i = 0,1, ..., l−1, l.

(7)

Solving (7) can be done in O(n logn) time.
• With fixed B, we find the optimal W by Algorithm 1

(projected gradient descent algorithm) [5].
Since repeating the above procedure always decreases the
value of f (B)+g(B,W), it alway stops.

Algorithm 1: Find optimal W with fixed B
Input:

B, λ1andλ2;
γ: learning rate for gradient descent algorithm;
ε: convergence threshold.

Output:
W: an n×n variable grouping matrix.

1 Set W(0)
i j = 1

n·(n−1) , ∀i 6= j and W(0)
ii =0, ∀i;

2 t = 0;
3 repeat
4 W*=W(t)− γ∇g(B,W(t)) (∇g(B,W(t)) = [∂g(B,W(t))

∂W(t)
i j

]);

5 W(t+1)= Project W* to the hyperplane of (4) ∩ (6);
6 t = t +1;
7 until |W(t)−W(t−1)|< ε;
8 W = Wt ;

2) DAG Search: We heuristically search the DAG by
ordering-based search [18], [19]. We start with an arbitrary
order of variables and calculate the optimal DAG. At each
step time we only consider swapping adjacent variables:

(...,Xi j ,Xi j+1 , ...)→ (...,Xi j+1 ,Xi j , ...).

We calculate the scores of all n−1 successor moves (swapping
adjacent variables) and only greedily choose the one with
minimum negative log likelihood. Repeat this strategy until
convergence. Since the algorithm may not converge to global
optimal solution, we try different starting orderings.

IV. EMPIRICAL STUDIES

We compared the performance of GSGBN (Availability:
https://github.com/ch11y/GSGBN.git) to another seven Gaus-
sian BN structure learning algorithms: L1MB [18], SBN [12],

SC [9], GS [16], TC-bw [17], IAMB [21] and HITON [1].
Experiments show that GSGBN performs best on both simu-
lation benchmark datasets and real-world microbial dataset.

A. Similarity Learning

We used eight benchmark datasets in BN Repository
(http://www.bnlearn.com/bnrepository/). The number of nodes
and edges for 8 benchmark datasets are Factor (27, 68), Alarm
(37, 46), Mildew (35, 46), Insurance (27, 52), Barley (48,
84), Carpo (61,74), Hailfinder (56, 66), Water (32,66), i.e.
”Factor” dataset has 27 nodes and 68 edges. To confirm the
similarity estimation method, we generated 50 samples for
each dataset as follows: for each node X j with no parents,
X∗ j ∼N (0,0.3); for other node X j with at least one parent,
X∗ j = ∑Xk∈Pa(X j) X∗k ·Bk j + ε , where ε ∼ N (0,0.3), Bk j is
1 or -1 randomly; order of variables was shuffled. We got
the estimated grouping matrix Ŵ after running the similarity
estimation algorithm. We fixed the parameters λ1 = 1.0,λ2 =
0.3×n. The plot between S(Xi,X j) and Ŵi j for ”Water” dataset
is shown in Fig. 2. In Fig. 2, there is a nearly linear relationship
between S(Xi,X j) and the value of Ŵi j. Thus GSGBN can
learn the parameter Ŵi j well and tends to penalize pairs of
similar variables with larger value of Ŵi j and pairs of not-so-
similar variables with smaller value of Ŵi j. This behaviour can
explain the reason why GSGBN outperforms other algorithms.

−1 1 3 5 7 9 11

2

4

6

8

10

12

14

16

x 10
−4

Differences of Parent Set (Pa(X
i
) & Pa(X

j
))

Le
ar

ne
d

w
ij

Fig. 2. The distributions between S(Xi,X j) and Ŵi j for Water dataset

B. Benchmark Datasets

We followed similar way as [18], [19] to generate X and
B: if there exists edge Xi→ X j, Bi j ∼N (±1, 1

16), otherwise
Bi j = 0; for node X j with no parents, X∗ j ∼N (0,0.3); for
node X j with at least one parent,

X∗ j = ∑
Xk∈Pa(X j)

X∗k ·Bk j + ε, ε ∼N (0,0.3);

50 samples for each dataset were generated; order of variables
was shuffled. We tuned the parameters of other algorithms
as suggested parameters in their papers and codes. We also
tried several different parameters and compared with those
with best performance. Parameters λ1 and λ2 in GSGBN
were tuned by cross-validation. We compared the performance
of GSGBN to L1MB and SBN in terms of the following
measures: Sensitivity(TP

TP+FP), Specificity(TN
FP+TN), where TP,

TN, FP, FN represent the numbers of True Positive, True
Negative, False Positive, False Negative edges respectively.
The results for benchmark datasets are shown in Table I. Note
that at last we fit a simple linear regression model to remove
the bias caused by the penalty term g(B,W). To remove edges
with relatively small Bi j values, a threshold of 0.3 was used to
filter out those weak strength edges after the linear regression
step.

For ”Water” dataset, GSGBN greatly improves the perfor-
mance (Sensitivity: 0.409 → 0.833, with comparable speci-
ficity) since there are many local structures similar to Fig.
1. GSGBN has much improvement in performance when
there are many local structures with similar parents. Good
performances with sensitivity above 0.80 in other datasets
(”Factors”, ”Alarm”, ”Carpo”) also confirm this observation.
For all eight datasets GSGBN reports much higher sensitivity
than others, also it achieves slightly better specificity for most
datasets. It is because GSGBN learns a nearly linear relation-
ship between the value of Wi j and S(Xi,X j). This behaviour
demonstrates that regularization on S(Xi,X j) can help improve
the structure learning. Note that even though in some datasets
(”Alarm”, ”Barley” and ”Carpo”) the specificity of GSGBN is
slightly worse than others (with less than 1% difference), the
sensitivity is much higher than other algorithms(e.g. in Alarm
dataset, GSGBN and IAMB have similar specificity (0.994
and 0.996), while the sensitivities are 0.804 and 0.717). TC-
bw does not report any edges for datasets Carpo and Hailfinder
no matter how we tuned the parameter.

C. Results on Microbial Datasets

1) ICoMM dataset: We compared GSGBN with other al-
gorithms on the ICoMM (http://icomm.mbl.edu) dataset. The
dataset consists of 8,570,814 sequences, which are sequenced
from the V6 region of the prokaryote 16S rRNA, from 487
bacteria communities (in 246 sites). Finally we extracted the
OTU ((operational taxonomy unit) abundance matrix with
those 271 samples. Since the value range of OTU counts varies
a lot, we rescaled all values by log(1+x) where x is the OTU
count. The detailed procedure for preprocessing the data can
be find in [23].

2) Experimental Results: Since microbes’ abundance was
shown to be very important for studying the diversity of
microbial communities [6], instead of using all 18620 OTUs,
we only compared with other algorithms by building BNs for
top 50, 100, 200 abundant OTUs and 199 OTUs selected by
LapMOR [23]. The abundances for top 50, 100, 200 and
the selected 199 OTUs are 70.4165%, 79.6556%, 88.187%
and 73.0885% respectively. We used 5-fold cross-validation to

TABLE I
RESULTS ON EIGHT BENCHMARK DATASETS

Dataset Measures GSGBN L1MB SBN SC GS TC-bw IAMB HITON
Factors Sen./Spe. 0.897/0.991 0.338/0.944 0.294/0.950 0.397/0.977 0.735/0.988 0.706/0.977 0.779/0.985 0.338/ 0.938
Alarm Sen./Spe. 0.804/0.994 0.304/0.986 0.152/0.995 0.435/0.991 0.609/0.990 0.261/0.989 0.717/0.996 0.152/0.978

Mildew Sen./Spe. 0.609/0.981 0.544/0.977 0.217/0.979 0.217/0.868 0.544/0.969 0.370/0.970 0.500/0.967 0.109/0.953
Insurance Sen./Spe. 0.716/0.984 0.423/0.971 0.212/0.978 0.346/0.960 0.442/0.971 0.289/0.972 0.615/0.978 0.197/0.908

Barley Sen./Spe. 0.655/0.988 0.310/0.979 0.167/0.986 0.345/0.985 0.595/0.987 0.083/0.993 0.488/0.982 0.119/0.958
Carpo Sen./Spe. 0.824/0.996 0.338/0.989 0.230/0.997 0.595/0.996 0.703/0.994 -/- 0.716/0.995 0.176/0.992

HailFinder Sen./Spe. 0.667/0.992 0.318/0.981 0.258/0.989 0.439/0.989 0.591/0.987 -/- 0.561/0.985 0.061/0.975
Water Sen./Spe. 0.833/0.986 0.288/0.950 0.152/0.980 0.409/0.981 0.379/0.952 0.273/0.980 0.349/0.949 0.197/0.908

tune our parameters (randomly select 200 samples for training
and validation and the rest 71 samples for prediction). At last
we used the parameter λ1 = 20,λ2 = 5× 50,5× 100,5× 200
for the first three datasets, and λ1 = 30,λ2 = 5× 199 for
the last dataset. The RMSEs (root-mean-square errors) for
the remaining 71 samples are shown in Table II. GSGBN
consistently outperforms other algorithms.

TABLE II
RMSE RESULTS ON TOP 50, 100, 200 ABUNDANT OTUS AND SELECTED

199 OTUS

Method Top 50 Top 100 Top 200 Selected 199
GSGBN 1.2382 1.0715 0.9331 0.8897
L1MB 1.3753 1.2044 1.0770 0.9791
SBN 1.4348 1.2959 1.2068 1.0097
SC 1.4251 1.2538 1.1007 1.0019
GS 1.3417 1.1701 1.0237 0.9515

TC-bw 1.3924 1.2480 1.5282 1.2497
IAMB 1.3431 1.1749 1.0257 0.9415
HITON 1.3569 1.1820 1.0414 0.9744

V. CONCLUSIONS

In this paper, we have proposed GSGBN algorithm which
is the first study on the shared information among variables
for learning BNs. As a future work for microbial data, since
there is some prior knowledge on the microbes, we should
study how to integrate this information to model our grouping
matrix W in GSGBN for better performance.

VI. ACKNOWLEDGMENTS

This work was supported by Hong Kong GRF HKU
7111/12E, HKU 719709E and 719611E, HKU Outstanding
Researcher Award 2010-11, Shenzhen basic research project
(NO.JCYJ20120618143038947) and NSFC(11171086).

REFERENCES

[1] C. F. Aliferis, I. Tsamardinos, and A. Statnikov. Hiton: a novel markov
blanket algorithm for optimal variable selection. In AMIA Annual
Symposium Proceedings, volume 2003, page 21. American Medical
Informatics Association, 2003.

[2] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed
optimization and statistical learning via the alternating direction method
of multipliers. Foundations and Trends in Machine Learning, 3(1):1–
122, 2011.

[3] D. M. Chickering. Learning bayesian networks is NP-Complete. In
Learning From Data, pages 121–130. Springer, 1996.

[4] D. M. Chickering, D. Heckerman, and C. Meek. Large-sample learning
of bayesian networks is NP-Hard. JMLR, 5:1287–1330, 2004.

[5] J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra. Efficient pro-
jections onto the l1-ball for learning in high dimensions. In Proceedings
of the 25th International Conference on Machine Learning, pages 272–
279. ACM, 2008.

[6] N. Fierer and R. B. Jackson. The diversity and biogeography of soil
bacterial communities. PNAS, 103(3):626–631, 2006.

[7] J. Friedman, T. Hastie, H. Höfling, R. Tibshirani, et al. Pathwise
coordinate optimization. The Annals of Applied Statistics, 1(2):302–332,
2007.

[8] J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for
generalized linear models via coordinate descent. Journal of Statistical
Software, 33(1):1, 2010.

[9] N. Friedman, I. Nachman, and D. Peér. Learning bayesian network
structure from massive datasets: the sparse candidate algorithm. In
Proceedings of the Fifteenth Conference on Uncertainty in Artificial
Intelligence, pages 206–215. Morgan Kaufmann Publishers Inc., 1999.

[10] D. Geiger and D. Heckerman. Learning gaussian networks. In
Proceedings of the Tenth International Conference on Uncertainty in
Artificial Intelligence, pages 235–243. Morgan Kaufmann Publishers
Inc., 1994.

[11] D. Heckerman. A tutorial on learning with Bayesian networks. Springer,
1998.

[12] S. Huang, A. Fleisher, K. Chen, J. Li, J. Ye, T. Wu, E. Reiman, et al.
A sparse structure learning algorithm for gaussian bayesian network
identification from high-dimensional data. PAMI, 35(6):1328–1342,
2013.

[13] M. Kalisch and P. Bühlmann. Estimating high-dimensional directed
acyclic graphs with the pc-algorithm. The Journal of Machine Learning
Research, 8:613–636, 2007.

[14] D. Kollar and N. Friedman. Probabilistic graphical models: principles
and techniques. The MIT Press, 2009.

[15] H. Lee, A. Battle, R. Raina, and A. Ng. Efficient sparse coding
algorithms. In Advances in Neural Information Processing Systems,
pages 801–808, 2006.

[16] D. Margaritis and S. Thrun. Bayesian network induction via local
neighborhoods. In S. Solla, T. Leen, and K.-R. Müller, editors,
Proceedings of Conference on Neural Information Processing Systems.
MIT Press, 1999.

[17] J.-P. Pellet and A. Elisseeff. Using markov blankets for causal structure
learning. JMLR, 9:1295–1342, 2008.

[18] M. Schmidt, A. Niculescu-Mizil, and K. Murphy. Learning graphical
model structure using l1-regularization paths. In AAAI, volume 7, pages
1278–1283, 2007.

[19] M. Teyssier. Ordering-based search: A simple and effective algorithm
for learning bayesian networks. In In UAI, 2005.

[20] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society. Series B (Methodological), pages 267–
288, 1996.

[21] I. Tsamardinos and C. F. Aliferis. Towards principled feature selection:
Relevancy, filters and wrappers. In Proceedings of the ninth international
workshop on Artificial Intelligence and Statistics. Morgan Kaufmann
Publishers: Key West, FL, USA, 2003.

[22] J. Xiang and S. Kim. A∗ lasso for learning a sparse bayesian network
structure for continuous variables. In Advances in Neural Information
Processing Systems, pages 2418–2426, 2013.

[23] J. Yang, H. Leung, S. Yiu, Y. Cai, and F. Y. Chin. Intra- and inter-sparse
multiple output regression with application on environmental microbial
community study. In BIBM 2013, pages 404–409. IEEE, 2013.

