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Abstract. Metatranscriptomic analysis provides information on how a microbial 

community reacts to environmental changes. Using next-generation sequencing 

(NGS) technology, biologists can study microbe community by sampling short 

reads from a mixture of mRNAs (metatranscriptomic data). As most microbial 

genome sequences are unknown, it would seem that de novo assembly of the 

mRNAs is needed. However, NGS reads are short and mRNAs share many 

similar regions and differ tremendously in abundance levels, making de novo 

assembly challenging. The existing assembler, IDBA-MT, designed specifically 

for the assembly of metatranscriptomic data only performs well on high-

expressed mRNAs.  

This paper introduces IDBA-MTP, which adopts a novel approach to 

metatranscriptomic assembly that makes use of the fact that there is a database 

of millions of known protein sequences associated with mRNAs. How to 

effectively use the protein information is non-trivial given the size of the 

database and given that different mRNAs might lead to proteins with similar 

functions (because different amino acids might have similar characteristics). 

IDBA-MTP employs a similarity measure between mRNAs and protein 

sequences, dynamic programming techniques and seed-and-extend heuristics to 

tackle the problem effectively and efficiently. Experimental results show that 

IDBA-MTP outperforms existing assemblers by reconstructing 14% more 

mRNAs. Availability: www.cs.hku.hk/~alse/hkubrg/ 
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1 Introduction 

The traditional approach for studying microorganisms is to isolate and cultivate each 

single microorganism and then study its behavior, such as gene expression levels, 

under different environments. As different microbes usually live together to form a 

microbial community, isolating a single microbe is usually impossible [4] and, even 

possible, changes the microbe’s living behavior in a microbial community. 

Metatranscriptomic studies in the past have been based on microarrays or cDNA 

clone libraries [2,23,29]. The microarray-based approach [17] requires knowledge of 

target mRNA sequences, which limits its usefulness in relation to novel mRNAs. 



cDNA clone libraries, on the other hand, can be applied to novel mRNAs, but the 

approach is labor-intensive and the estimations of expression levels of mRNAs are 

inaccurate.  

High-throughput next-generation sequencing (NGS) technology [3,7,22,18] 

introduces a new and better approach for studying metatranscriptomic data. By 

sequencing reads from mRNA sequences of a sample, scientists can reconstruct novel 

mRNA sequences by assembling reads and can estimate the expression levels of each 

mRNA by the number of reads aligned to the mRNA sequence. Currently, there are 

two main NGS technologies for metatranscriptomic data: pyrosequencing technology 

and synthesis technology. Pyrosequencing technology [6,8,24,30] produces long reads 

(of length about 400 bp) with relatively higher cost (over 40 times higher for the same 

throughput). Since the read length is long, no or limited assembly is required. 

Pyrosequencing technology has achieved promising results for soil samples [30] and 

marine samples [6,8]. Synthesis technology, on the other hand, produces relatively 

short reads (of length varying from 75 bp to 150 bp) at much lower cost. Since the 

length of reads produced by synthesis technology is much shorter than the length of 

the mRNA sequence (about 1000 bp), the reads need to be assembled into longer 

sequences (contigs) before analysis.  

Compared with assembling genomic, transcriptomic or metagenomic data, 

assembling metatranscriptomic data is much more difficult because of the following 

reasons. 

1. Repeat patterns across different mRNAs. Repeat patterns usually introduce 

ambiguity during assembly and are a common problem in all types of assembling. 

However, the problem is more serious in metatranscriptomes than in other data. 

Many genes exist in multiple species with similar functions and the resultant 

proteins share common protein domains [9]. As a result, in the metatranscriptomic 

data, many different mRNAs have similar patterns. According to analysis of 

genBank [1], based on known gene information, 24.53% of bacteria genes contain 

at least one repeat pattern of length longer than 100 bp (note that, in this analysis, 

different versions of the same genes from the same bacteria were ignored and only 

the repeat patterns in genes from different bacteria were considered). In these 

circumstances, assemblers, not specially designed for metatranscriptome data, 

produce either short contigs or chimeric contigs that merge mRNA sequences from 

more than one gene [15]. This is consistent with our experiments (see Table 2): 

these assemblers can either only recover 31% of mRNAs with average contig 

length of 194bp and 4.14% error rate (Oasis), or recover more mRNAs (59.29%) 

with longer average contig length (395bp) but the error rate is increased to 10.73% 

(IDBA-UD). 

2. Extreme differences in abundances. For the DNA genome assembly problem of a 

single species, this is not a problem because there is one abundance only. On the 

other hand, in transcriptomic data and metagenomic data, since the abundances of 

different mRNAs and the number of genomes vary (can be 100 times and 1,000 

times different, respectively [25]) because of different expression levels and 

abundances of species, erroneous reads cannot be identified easily by sampling 



rates. In metatranscriptomic data, this problem becomes more serious. Since both 

the abundances of species and the expression levels of mRNAs from the same 

species may vary, the abundances of different mRNAs can vary much more 

significantly (over 100,000 times). Thus low-expressed mRNA sequences are very 

difficult to reconstruct as correct reads from these sequences and erroneous reads 

are very difficult to distinguish. As Table 1 shows for our experiments on low-

expressed mRNAs, the performance of existing assemblers suffers. 

Thus, existing assemblers for genomic, transcriptomic and metagenomic data do not 

perform well on metatranscriptomic data especially for the low-expressed 

transcriptomes [15]. To our best knowledge, IDBA-MT [15] is the only assembler 

designed for metatranscriptomic data. IDBA-MT aims at solving the repeat pattern 

problem. By applying information from paired-end reads, IDBA-MT can resolve 

some of the chimeric contigs (See Table 2, IDBA-MT can recover more mRNAs 

while decreasing the error rate from about 10% to 5% when compared to IDBA-UD). 

However, this approach can only work for high-expressed transcriptomes with high 

sequencing depths as it relies on paired-end data and fails when there are insufficient 

sampling reads from the mRNAs (i.e., low-expressed mRNAs). 

Similar to genome assembly, besides de novo assembly, one can apply the 

reference-based approach. Existing work tries to reconstruct mRNAs by aligning 

metatranscriptomic reads to known genomes or gene DNA sequences. However, this 

approach has had only limited success [32] as the genomes of most microbes are still 

unknown [4] and the microbe gene sequences mutate frequently.  

Our observations on the reference-based approach: Although the 

aforementioned reference-based approach has limited success, about 60% to 70% of 

the proteins in bacteria have similar sequences as some known proteins [5, 30], thus 

known reference protein sequences could help in the assembling of novel mRNAs. 

There are two difficulties to resolve in order to make use of the protein sequences. 

First, we need to consider amino acid instead of nucleotides. Even if we consider 

amino acid, it is not trivial due to the following. For proteins with similar 

functionalities, even though their structures are similar and their sequences share 

some conserved regions, the amino acid sequences corresponding to these conserved 

regions might not be exactly the same. Second, to consider amino acid, the 

information contained in a single read becomes much less (3 nucleotides converted to 

1 amino acid). Since one read only corresponds to about 25 amino acids (aa), it is 

difficult to have a confident alignment [32]. Another approach is to align contigs, 

instead of reads, to proteins. However, as the performance of existing assemblers is 

not good, the resultant contigs are short or incorrect and not many confident 

alignments can be obtained. 

Our contributions: To overcome the first problem of amino acid similarity, we 

found that even though the amino acid sequences may not be exactly the same, it is 

known that some amino acids, though different, have similar chemical properties and 

functionality [11]. Consequently, the mRNA can be reconstructed using the approach 

of first decoding the reads into peptide sequences and then aligning these peptide 

sequences to protein sequences based on the similarity of amino acids (e.g. Blosom 



62). Thus, we incorporate the similarity of amino acids into our alignment algorithm. 

To solve the problem of short reads and  low-expressed mRNAs, we make use of the 

paths of the de Bruijn graph with a small k. 

 Our proposed assembler, IDBA-MTP, reconstructs mRNA sequences from 

metatranscriptomic reads, especially for low-expressed mRNAs, using the 

information of known microbial protein sequences to guide the construction of 

contigs as follows. IDBA-MTP first constructs a de Bruijn graph from the input reads 

using a relatively small k (k = 21 bp) to compensate for the missing long k-mers in 

low-expressed mRNAs. Since k is small, the de Bruijn graph, though connected, has 

many branches representing repeat regions in the mRNA sequences (due to problem 1 

and 2) and with each mRNA represented by one of its paths. In order to determine 

whether a path represents an mRNA sequence or not, IDBA-MTP will decode the 

path into a peptide sequence and then align it with known protein sequences. Those 

paths, which can be aligned to known protein sequences, should be potential 

candidates for mRNA sequences depending on their similarity and sequencing depths. 

However, since the number of paths is huge (many paths will not represent any 

mRNA sequences) and the alignment with the protein sequences is not 

straightforward because of the similar chemical properties of amino acids, a dynamic 

programming approach with a seed-and-extend (with the seed derived from the 

known protein sequences) heuristics is employed to reduce the complexity of the 

problem. 

Since the candidate mRNA sequences are constructed by aligning known protein 

sequences, mRNA sequences for novel proteins cannot be reconstructed using this 

approach.  An intuitive idea is to run IDBA-MT for novel mRNAs, then combine the 

results of IDBA-MT and the output from our reference-based approach. However, 

some mRNAs sequences may be reconstructed by both approaches, which results in 

redundant or similar contigs. To prevent having redundant contigs, IDBA-MTP will 

treat those mRNAs sequences reconstructed by alignment of known reference 

proteins as long input reads for IDBA-MT, i.e. the output of the first approach will be 

the input of the second approach. Experiments on simulated data show that even 

though 48% regions of the mRNAs can be aligned to known reference proteins, 

existing assemblers can only reconstruct contigs representing at most 62.9% of these 

regions. IDBA-MTP can reconstruct contigs covering 77.6% of these regions and 

some novel mRNAs using protein reference sequences. As a result, IDBA-MTP can 

reconstruct 14% more mRNAs (in term of the total length of mRNAs) than existing 

assemblers. 

The paper is organized as follows. The IDBA-MTP algorithm is described in 

Section 2. Experimental results for IDBA-MTP and other existing assemblers on both 

simulated and real metatranscriptomic data are presented in Section 3. Conclusions are 

drawn on the performance of IDBA-MTP in Section 4. 



2 Methodology 

Given a set of reads sampled from a set of mRNA sequences (with nucleotides A, C, 

G and U), we can construct a de Bruijn graph where each vertex v represents a length-

k substring (k-mer) of the reads and where an edge connects vertex u to vertex v if and 

only if the corresponding k-mers for vertex u and vertex v overlap at k – 1 positions 

and appear in a read. An mRNA sequence can be represented by a path of k-mers in 

the de Bruijn graph. Since there are many paths in the de Bruijn graph and most of 

them do not represent any mRNA, a correct mRNA sequence R can be reconstructed 

from the de Bruijn graph if some known protein sequence P can be aligned to the 

path. If the alignment similarity between R and P is high, R will likely be an mRNA 

sequence in the sample. 

A protein or peptide sequence is represented by a sequence of amino acids (of 

which there are 20 kinds). Given a length-3m mRNA sequence R, we can decode it 

into a length-m sequence D(R) of amino acids by converting each non-overlapping 

coden (length-3 substring) in R into an amino acid character. Given a protein 

sequence P and an mRNA sequence R, P and D(R) can be aligned by inserting space 

characters in P and D(R) to form P' and D(R)' of equal length respectively, and the 

similarity score based on this alignment is defined as follows:  

��������′, ���� = ∑���′���, ������� + ����� ∙ number	of	gaps (1) 

where P' [i] and D(R)'[i] are the i-th amino acid in P' and D(R)' respectively, δ(x,y) is 

the similarity score between amino acids x and y (which depends on their chemical 

properties and roles in the protein’s functionality), popen is the gap penalty and a gap is 

defined as consecutive space characters in P' or D(R)' (the gap penalty can be refined 

to take the gap size into consideration). Note that the similarity score δ(x,y) can be 

negative and is -∞ whenever a stopping coden in D(R)' is compared to space or any 

amino acid in P'. The optimal global similarity score between P and D(R) is defined 

as the highest similarity score of all alignments of P and D(R). 

�����)��, ��� = *+,all alignment	-.and	/�0. 	1��������′, ����2 (2) 

Since the decoded protein from an mRNA usually does not exist in the protein 

database but some part of the decoded protein sequence might match with some 

regions of some proteins in the database because of their functional similarity, instead 

of aligning the whole sequence of P and D(R), the optimal local alignment between 

all substrings of P and D(R) is considered in IDBA-MTP and this information, in 

terms of contigs, will be needed for mRNA assembly later (see Section 2.3). The 

optimal local similarity score is defined as: 

�����3��, ��� = *+,all substrings	45 and 65 of P and /�0	7�����)��8, 98: (3) 

The Protein-Graph Alignment (PGA) Problem can be defined as follows: given 

a de Bruijn graph G and a protein P, find a path in G (representing a substring in an 

mRNA sequence R) such that scorel (P, D(R)) is maximized. 



2.1 Dynamic Programming 

The PGA problem can be solved by dynamic programming based on the principle of 

optimality. Consider an optimal global alignment Opt of the substring ds (represented 

by a path Q(ds)) of the decoded protein D(R) for an mRNA sequence R with the 

substring ps of protein sequence P. The same alignment Opt for any subpath of Q(ds) 

and the corresponding substring of ps should also be optimal. 

Let S(v, i) define the maximum global similarity score between a substring of P 

ending at P[i] and all decoded sequences D(R) for path R in the de Bruijn graph G 

ending at vertex v. Similarly, we define SM(v, i), SP(v, i) and SR(v, i) to be the 

maximum global similarity score with the following restrictions respectively: (1) P[i] 

is aligned with the last amino acid of the corresponding protein sequence decoded 

from the path ending at vertex v, (2) P[i] is aligned with the space character and (3) 

the last amino acid of the corresponding protein sequence decoded from the path 

ending at vertex v is aligned with the space character. The value of S(v, i) is the 

maximum of 0 (alignment of two null substring), SM(v, i), SP(v, i) and SR(v, i). The 

value of SM(v, i), SP(v, i) and SR(v, i) can be calculated by considering the alignment of 

the last coden, any length-3 path s→v with D(s→v) represent the decoded amino acid 

of path s→v, and the subproblem of alignment ending as vertex s. 

S(v, i), SM(v, i), SP(v, i) and SR(v, i)  can be calculated as follows: 

;�<, � = = 0 	no	path	ending	at	<	can	be	decoded	to	an	amino	acidmax	10, ;E�<, �, ;-�<, �, ;0�<, �2 otherwise  

;E�<, � = G −∞ no	path	ending	at	<	can	be	decoded	to	an	amino	acid;��, � − 1 + δL����, ��� → <N otherwise  

;-�<, � = O −∞ � = 0max	1;-�<, � − 1, ;E�<, � − 1 + �����2 + δ�����, ��+�� otherwise 

;0�<, �
= = −∞ no	path	ending	at	<	can	be	decoded	to	an	amino	acidmax	1;-��, �, ;E��, � + �����2 + δ���+��, ��� → < otherwise  

If D(s→v) represents the stopping coden, δ(D(s→v), x) = -∞. maxv,i{S(v, i)} 

represents the optimal local similarity score and the corresponding aligned mRNA 

sequence can be obtained by backtracking. Note that care should be taken for the 

starting vertex of the path. Since the starting vertex of a path in de Bruijn graph 

represents the length-k prefix of an mRNA and each subsequent vertex represents an 

extra nucleotide of the mRNA, we modify zero in-degree vertices in the de Bruijn 

graph implicitly such that each vertex only represents one single nucleotide (the last 

nucleotide of the k-mer) of an mRNA. Note that since the protein sequence P is fixed, 

the dynamic programming is correct even there is loop in the de Bruijn graph. 



Since there are at most 4
3
 = 64 length-3 paths s→v to a vertex v, each entry S(v, i), 

SM(v, i), SP(v, i) and SR(v, i) can be computed in constant time by preprocessing. The 

time complexity for aligning a length-|P| protein P is O(n|P|) and for a set of protein 

sequences with total length m is O(nm), where n is the total number of vertices in the 

de Bruijn graph. 

2.2 Seed-and-Extend Heuristic 

Although the dynamic programming approach can solve the PGA problem in O(nm) 

time, n and m are usually large for real biological data (in the order of millions and 

thousand millions respectively) and the running time for the above dynamic 

programming approach is too long for practical use. In order to speed up the running 

time, IDBA-MTP applies on seed-and-extend heuristic to speed up the process. 

Assume that the optimal local alignment of an mRNA and a protein has at least one 

aligned region with t consecutive matches of amino acids (with similarity score larger 

than a predefined threshold), the PGA problem can be solved by a seed-and-extend 

heuristic. Given a simple path (a path with all intermediate vertices have exactly one 

incoming and one outgoing edge) or a k-mer in the de Bruijn graph representing a 

length-t peptide (sequence of amino acids), the reference protein sequences containing 

this peptide can be obtained in constant time after O(m) preprocessing, where m is the 

total length of the reference proteins. By considering these positions as the starting 

alignment positions (seeds) and extending the alignment in both forward and 

backward directions using dynamic programming, a small subset of paths containing 

the seed as a subpath will be considered and the running time can be greatly reduced 

in practice. 

2.3 Preventing Redundant mRNAs 

As some reference proteins could have similar sequences, these similar proteins might 

align to overlapping paths in the de Bruijn graph and similar mRNA sequences may 

be obtained. Among these similar mRNA sequences, it is likely that only one of them 

is correct while the others are only artifacts caused by sequencing errors or 

misalignment. However, duplicate genes and genes with similar functions in different 

species may also introduce similar mRNA sequences. IDBA-MTP applies two 

techniques to remove artifacts. The first approach is to prevent aligning multiple 

proteins with seeds on the same simple path in the de Bruijn graph. Simple paths in 

the de Bruijn graph are sorted in decreasing order of lengths and are considered one 

by one. Once a protein is aligned to a path R (with the maximum alignment score 

among all proteins) in the de Bruijn graph, all substrings in R are removed from the 

seed table and will not be considered as starting positions for alignment. Note that 

these simple paths could still be considered when extending the alignment of other 

proteins using dynamic programming. Although the first approach can determine 

some redundant contigs represent the same mRNAs, sequence error could introduce 

error paths in the de Bruijn graph result as alignment of similar proteins to overlapped 

but similar paths in the de Bruijn graph. In our experiment, there can be 50 similar 



paths represented by the correct and erroneous paths corresponding to the same 

mRNA. Thus, we should not output the aligned mRNAs directly. The second 

approach was considering these mRNAs as long reads and treating them as input to 

IDBA-MT for de novo assembly. By using these extra long reads, paired-end reads 

and sequencing depths information, IDBA-MT avoids assembling redundant mRNAs 

and can reconstruct novel mRNAs with no similar reference proteins. 

3 Experiments 

We compared the performances of Oases [26], Trinity [10], IDBA-UD [21], IDBA-

MT[15] and IDBA-MTP on a real dataset from mouse gut [32] and two simulated 

datasets generated from known bacteria gene sequences obtained from genBank [1]. 

Oases and Trinity were designed for assembling transcriptomic data, IDBA-UD for 

assembling metagenomic data, and IDBA-MT for assembling metatranscriptomic 

data. All bacteria gene sequences with known sources in the genBank were 

downloaded. To prevent selecting mRNAs from the same species (either from the 

same or different strains), duplicated sequences were removed and only one version 

was kept. Note that similar mRNAs obtained from different bacteria would be kept. 

Similar to [15], mRNAs sharing at least half of the sequences with other mRNAs 

were selected for generating a difficult dataset (mRNAs which do not share common 

sequence regions with others would be isolated in the de Bruijn graph and can be 

assembled easily). The resultant 658 mRNA sequences were used to generate the 

simulated data. Although the number of mRNA sequences selected is small compared 

with the real experiments, this small subset of mRNAs sequences with long repeats 

represents the most difficult part of assembling metatranscriptomic data. The 

reference bacteria protein sequences for IDBA-MTP was downloaded from NCBI 

database and we used the Blosum-62 scoring matrix, open gap penalty = -10 – (-1) = -

9 and gap extend penalty = -1 for calculating the similarity scores of protein 

sequences. In all experiments on simulated data, all the corresponding protein 

sequences of the 658 mRNA sequences were removed from the reference protein 

sequences for testing the performance of IDBA-MTP. 

For each simulated dataset, we randomly picked length-75 bp paired-end reads 

from the RNA sequence with 1% sequencing error according to the predefined 

abundances. The mean insert distance of each paired-end read was 200 bp with a 

standard deviation of 10 bp. Two sets of simulated data were generated: (1) Low 

abundance - 100 mRNAs were sampled with 3x sequencing depth for evaluating the 

performances of the assemblers for mRNAs with low expression levels. (2) Mixture 

abundance - 658 mRNAs were sampled from 1000x to 3x sequencing depth with the 

number of mRNAs following the power law (number of mRNAs with a certain 

abundance is directly proportional to the negative of abundance ratio) for evaluating 

the performances of the assemblers for mRNAs with different expression levels. 

All assemblers were tested on simulated data using default parameters. Each contig 

produced by the assemblers was aligned to the 658 mRNAs in the samples using Blat 

[13]. A contig was considered correct if and only if at least 95% of the contig region 



could be aligned to the mRNA sequence with 95% similarity. Some short, even correct, 

contigs which could not align confidently to the 658 mRNAs were considered incorrect. 

Regions of mRNAs aligned by correct contigs were considered covered and the 

coverage of an assembler was calculated as the ratio of regions in the mRNAs covered 

by the contigs produced by the assembler. Although Oases, Trinity, IDBA-UD could 

produce scaffolds using paired-end reads, the scaffolds performed worse than the 

contigs in all simulated data because these assemblers connected contigs wrongly and 

produced long but incorrect scaffolds. Thus, we compared the performances of the 

assemblers based on the resultant contigs and the experimental results are shown in 

Table 1 and 2. 

3.1 Low Abundance mRNAs 

When the abundances of mRNAs were low, Oases and Trinity did not perform well in 

assembly because of the low sequencing depths and the similarity of mRNAs. Oases 

tended to produce confident but shorter contigs. As a result, it had a low error rate  

(3.97%) but the lengths of contigs were short (average length = 172 bp) and the 

coverage was not high (25.99%). Since Trinity was designed for assembling 

transcriptomic data for eukaryotic mRNAs and was not suitable for assembling 

prokaryotic mRNAs, the error rate of Trinity was high (42.80%) and the coverage was 

low (9.85%). IDBA-UD, which was designed for assembling metagenomic data, 

performed better than Oases and Trinity because it applied various technologies, e.g. 

multiple k-mers, local assembling and local coverage of contigs for assembling reads 

sampled from low abundance genomes (mRNAs in this case). However, since the 

mRNAs had many similar sequences, IDBA-UD could not determine these chimeric 

contigs and the error rate was high (13.45%) but the coverage was acceptable 

(48.26%). IDBA-UD has such high error rate because it merged two or more mRNA 

sequences incorrectly to produce chimeric contigs. IDBA-MT, which was designed 

Table 1. Experimental Result on simulated data with low abundance ratios 

Softare Coverage Max. Len. 
Avg. 

Len. 

# of wrong contig 

(len.) 

# of correct contig 

(len.) 
Error Rate 

Oases 25.99% 524 bp 172 bp 9 (1,063 bp) 149 (25,690 bp) 3.97% 

Trinity 9.85% 497 bp 287 bp 17 (7,362 bp) 34 (9,837 bp) 42.80% 

IDBA-UD 48.26% 783 bp 342 bp 8 (4,425 bp) 83 (28,480 bp) 13.45% 

IDBA-MT 52.68% 900 bp 279 bp 8 (3,194 bp) 136 (37,993 bp) 7.75% 

IDBA-MTP 66.00% 916 bp 273 bp 5 (1,057 bp) 156 (42,771 bp) 2.40% 

Table 2. Experimental Result on simulated data with mixed abundance ratios. 

Softare 
Coverage Max. 

Len. 

Avg. 

Len. 

# of wrong 

contig (len.) 

# of correct con-

tig (len.) 

Error 

Rate total ≤5x > 5x 

Oases 31.00% 22.46% 8.45% 676 bp 194 bp 63 (8,471 bp) 1009 (196,162 bp) 4.14% 

Trinity 15.10% 11.28% 3.80% 1,270 bp 319 bp 106 (75,713 bp) 310 (99,603 bp) 43.18% 

IDBA-UD 59.29% 42.74% 16.38% 1,430 bp 395 bp 43 (28,837 bp) 606 (239,887 bp) 10.73% 

IDBA-MT 64.07% 46.53% 17.37% 1,511 bp 310 bp 37 (18,023 bp) 1005 (312,500 bp) 5.45% 

IDBA-MTP 69.62% 51.29% 18.33% 1,615 bp 368 bp 41 (23,461 bp) 1127 (415,813 bp) 5.34 % 

 



for assembling metatranscriptomic data, outperformed IDBA-UD because it used 

paired-end reads information to resolve chimeric contigs. It achieved a relatively high 

coverage (52.68%) with low error rate (7.75%). With the information from known 

protein sequences, IDBA-MTP further improved the coverage to 66.00% and had the 

lowest error rate (2.40%).  

3.2 mRNAs with different abundances 

For the simulated data with mixed abundances, the overall performance of the 

assemblers improved because of the mRNAs with high abundances. We have also 

analysed the coverage of low-abundance mRNAs (76% mRNA with sequencing 

depth ≤ 5x) and high-abundance mRNAs (24% mRNA with sequencing depth > 5x). 

As expected, the high-abundance mRNAs had better overall results than the low-

abundance mRNAs. Again, Oases produced short but confident contigs, achieved 

higher coverage (31.00%) than Trinity and had the lowest error rate (4.14%). Trinity, 

which assembled many long and wrong contigs, had the lowest coverage (15.10%) 

and the highest error rate (43.18%). IDBA-UD had higher coverage (59.29%) and 

moderate error rate (10.73%). By resolving some chimeric contigs, IDBA-MT had 

slightly higher coverage (64.07%) and lower error rate (5.45%) than IDBA-UD. 

IDBA-MTP had the highest coverage (69.62%) and a low error rate (5.34%). 

Considering the performance of mRNAs with different abundances, IDBA-MTP 

could reconstruct 5% and 1% more mRNAs with low and high abundances 

respectively than the best existing assembler IDBA-MT. By using protein reference 

information, the performance of IDBA-MTP improved not only for the low-

abundance mRNAs, but also for the high-abundance mRNAs.  

3.3 Real metatranscriptomic data 

Xiong et al. [32] isolated mRNAs from the lumen of the cecum and colon of 4 mice at 

12 weeks old, colonized with an Altered Schaedler flora (ASF) containing eight known 

species without reference genomes. A total of 3.3 million paired-end reads were 

generated using Illumina sequencing technology. The read length was about 75 bp and 

the insert distance was about 300 bp. Similar to [15], we merged the reads sampled 

from the 4 mice into a single dataset as the number of reads in each sample was small. 

The reads were inputted to existing assemblers for comparison. Since there were no 

reference genomes, we evaluated the accuracy of output contigs by aligning them to 

Table 3. Experimental Result on real mouse gut data 

Softare 
Maximum 

Length 

Average 

Length 

Contigs 

number 
Total Length 

# of contig aligned to known proteins 

(length) 

Oases 693 bp 127 bp 99,611 12,655,199 bp 489 (84,044 bp) 

Trinity 15,857 bp 500 bp 19,721 9,862,469 bp 7,188 (2,994,588 bp) 

IDBA-UD 10,741 bp 490 bp 18,951 9,287,101 bp 9,510 (4,178,162 bp) 

IDBA-MT 8,863 bp 490 bp 18,972 9,301,484 bp 9,515 (4,181,949 bp) 

IDBA-MTP 9,070 bp 477 bp 20,062 9,581,626 bp 10,429 (4,712,857 bp) 

 



known protein sequences using Blastx with default parameters. A contig was 

considered “correct” if at least 90% of the contig sequence could be aligned to a single 

protein sequence. We used number of aligned contigs instead of number of aligned 

proteins to evaluating the result because a contigs can be aligned to hundred of similar 

proteins and it is difficult to evaluate the softwares based on the number of discovered 

proteins. Noted that IDBA-UD, IDBA-MT and IDBA-MTP consider each k-mer in the 

de Bruijn should belong to at most one contigs, they should not output redundant 

contigs represents the same protein or protein regions.  

 Similar to simulated data, Oases produced very short contigs. Since it was difficult 

to obtain confident alignment for short contigs, only 489 (out of 99,611) contigs 

produced by Oases could be aligned to known protein sequences. Trinity produced 

longer contigs than other assemblers. However, over half of them (7,188 out of 19,721 

can be aligned) could not be aligned to known protein sequences although the contigs 

were long enough for confident alignment. The performances of IDBA-UD and IDBA-

MT were similar with half of the contigs aligned to known protein sequences. IDBA-

MTP produced a thousand more contigs than IDBA-UD and IDBA-MT. Since the 

extra contigs constructed mainly due to using protein reference sequences, most of 

these extra contigs could be aligned to known protein sequences. 

4 Conclusions 

Existing assemblers do not perform well on metatranscriptomic data, especially on 

low-expressed mRNAs. In this paper, we have proposed IDBA-MTP to assemble 

mRNAs, making use of information from the database of millions of known protein 

sequences. In particular, dynamic programming technique with a seed-and-extend 

heuristics was introduced to reconstruct mRNA sequences from paths in the de Bruijn 

graph with maximum similarity scores when aligned with the known protein sequences. 

Experimental results on both simulated and real biological data showed that IDBA-

MTP outperformed existing assemblers on metatranscriptomic data.  

However, when applying IDBA-MTP on metatranscriptomic data, there is an issue 

of running time when compared with existing assemblers. Since the reference proteins 

databae is big and highly redundant, i.e. many proteins with very similar sequences 

exist, IDBA-MTP takes one or two days for aligning reference proteins to de Bruijn 

graph even using the seed-and-extend heuristic. This is much longer that existing 

assemblers which takes one or two hours to assemble the reads. Although it may not 

be a problem at current state because it takes weeks to generate a metatranscriptomic 

dataset, further research should be performed to increase the speed of IDBA-MTP by 

preprocessing the reference proteins or parallel processing. 

The techinque of assembly based on known protein sequence information is appli-

cable not only on metatranscriptomic data. It can also improve the performance on 

transcriptomic data of single species. We plan to study the usage of protein reference 

sequence information on transcriptomic assembly of single species. 
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