

 Int. J. Data Mining and Bioinformatics, Vol. x, No. x, xxxx 1

 Copyright © 200x Inderscience Enterprises Ltd.

An efficient motif discovery algorithm with unknown
motif length and number of binding sites

Henry C.M. Leung*
Department of Computer Science,
The University of Hong Kong, Hong Kong, China
E-mail: cmleung2@cs.hku.hk
*Corresponding author

Francis Y.L. Chin
Department of Computer Science,
The University of Hong Kong, Hong Kong, China
E-mail: chin@cs.hku.hk

Abstract: Most motif discovery algorithms from DNA sequences require the
motif’s length as input. Styczynski et al. introduced the Extended (l,d)-Motif
Problem (EMP) where the motif’s length is not an input parameter.
Unfortunately, their algorithm takes an unacceptably long time to run, e.g. over
3 months to discover a length-14 motif. Since the best motif may not be the
longest nor have the largest number of binding sites, in this paper we further
eliminate another input parameter about the minimum number of binding sites
in order to provide more realistic/robust results. We also develop an efficient
algorithm to solve EMP and this redefined problem.

Keywords: motif discovering; transcription factor; binding sites; consensus
pattern; DNA sequences; gene regulatory.

Reference to this paper should be made as follows: Leung, H.C.M. and
Chin, F.Y.L. (xxxx) ‘An efficient motif discovery algorithm with unknown
motif length and number of binding sites’, Int. J. Data Mining and
Bioinformatics, Vol. x, No. x, pp.xxx–xxx.

Biographical notes: Henry C.M. Leung is a PhD student in bioinformatics at
the Department of Computer Science, the University of Hong Kong. His
research interest is in motif discovery in DNA sequences.

Francis Y.L. Chin is the Chair of Computer Science, Taikoo Professor of
Engineering and Associate Dean of the Graduate School at The University of
Hong Kong. He was the Head of the Computer Science Department for nearly
15 years until 2000. He received his BSc from the University of Toronto in
1972 and PhD from Princeton University in 1976. He became an IEEE Fellow
in 1996. Before joining HKU, he taught at the University of Maryland,
Baltimore County; University of California, San Diego; University of Alberta;
the Chinese University of Hong Kong; and the University of Texas at Dallas.

 2 H.C.M. Leung and F.Y.L. Chin

1 Introduction

A gene (protein coding gene) is a segment of DNA that is the blueprint for protein. Genes
seldom work alone. In most cases, genes cooperate to produce different proteins to
provide particular functions. Understanding how the gene regulatory network works is
important in molecular biology.

In order to start the decoding process (gene expression), a molecule called
transcription factor will bind to a short region (binding site) preceding the gene.
One kind of transcription factor can bind to the binding sites of several genes to cause
these genes to co-express. These binding sites have similar patterns called motifs. Finding
motifs from a set of DNA sequences is a critical step for understanding the gene
regulatory network.

In order to discover motifs, we must first have a model to represent a motif. There are
three common models: matrix representation, regular grammar representation and string
representation.

In the matrix representation model, motifs are represented by Position Weight
Matrices (PWMs) or Position Specific Scoring Matrices (PSSMs). For example, we can
represent a length-9 motif of the transcription factor MATalpha2 as follows

A 0 0.8 0 0 0 0.9 0.8 0.4 0
C 0.9 0 0 0 0 0 0.1 0 0
G 0 0.2 0 1 0 0 0 0 0
T 0.1 0 1 0 1 0.1 0.1 0.6 1

Both PWMs and PSSMs incorporate probabilities and thus may represent motifs in real
biological data better than the other representations. However, since the solution space
for PWMs and PSSMs is infinite in size, algorithms generally either rely on local search
to produce a sub-optimal motif matrix (e.g., Bailey and Elkan, 1995; Chin et al., 2004;
Lawrence and Reilly, 1990; Leung et al., 2005), or take too long to run when the motif is
longer than 10 bp (e.g., Leung and Chin (2005) which relies on partitioning).

Some algorithms (Ono and Ng, 2005; Rigoutsos and Floratos, 1998) use regular
grammars to represent motifs. They assume that all binding sites are patterns
satisfying a set of rules, which cannot be satisfied by sequences in non-binding regions.
For example, the MATalpha2 motif can be represented by [CT][AC]TGT
[AT][ACT][AT]T. Typically, these algorithms find the optimal grammar from a
restricted class of regular grammars by exhaustion and hence the running time of these
algorithms tends to be long.

Algorithms using string representation (Brazma et al., 1998; Buhler and Tompa,
2001; Chin and Leung, 2005; Lawrence et al., 1993; Li et al. 2002; Liang, 2003;
Pesole et al., 1992; Pevzner and Sze, 2000; Price et al., 2003; Rajasekaran et al., 2005;
Rigoutsos and Floratos, 1998; Sagot, 1998; Styczynski et al., 2004; Tompa, 1999;
Wolfertsteeter, 1996) assume all binding sites are variants of the motif. For example, the
MATalpha2 motif can be represented by CATGTAATT. Pevzner and Sze (2000) give a
precise definition of motif discovery problem based on string representation.

 An efficient motif discovery algorithm 3

Planted (l, d)-Motif Problem (PMP): Suppose there is a fixed but unknown nucleotide
sequence M (the motif) of length l. Given t length-n sequences, each of which contains
exactly one planted variant (binding site) of M, we want to determine M without knowing
the positions of the planted variants. A variant is a length-l string derivable from M with
exactly d point substitutions. �

Many algorithms have been developed to solve PMP. Some (Buhler and Tompa, 2001;
Chin and Leung, 2005) work efficiently when l is small (≤20). However, PMP is an
inadequate model for reality. There are three main weaknesses in PMP. First, biologists
seldom get a set of sequences where each contains exactly one planted variant. Due to
experimental noise and error, they usually get a set of sequences, some of which contain
no variants, some exactly one and some more than one. Second, biologists usually do not
know the motif’s exact length l; at best they only know the range for the length. Third,
the Hamming distance between each variant and the motif may not be exactly d.

Consequently, researchers (Chin and Leung, 2005; Rajasekaran et al., 2005) have
modified the PMP to better model reality. Modifications include allowing each sequence
to contain any number of variants and allowing the Hamming distance between a variant
and the motif M to be at most d (instead of exactly d).

Based on the assumption that it is easier to estimate the ratio d/l than l,
Styczynski et al. (2004) defined the EMP as follows.

Extended (l, d)-Motif Problem (EMP): Suppose there is a fixed but unknown
nucleotide sequence M of length L. Given t length-n input sequences, containing a total of
at least k planted (l, d)-variants of M where l ≤ L, we want to determine M without
knowing the positions of the planted (l, d)-variants in the input sequences and length L.
A (l, d)-variant is a length-L string derivable from M with at most d point substitutions
over any window of l nucleotides, where l ≤ L. �

In practice, many motifs are similar in that the positions of the (l, d)-variants for these
motifs are very close. Therefore, Styczynski et al. (2004) used a ‘maximal motif’ concept
to represent a set of similar motifs. They also developed an algorithm to find all maximal
motifs given the input parameters l, d and k.

Definition of maximal motif: A sequence M is a maximal motif if it satisfies the
following properties:

1 The length of M is at least l.

2 M has at least k (l, d)-variants in the input sequences.

3 The length of M cannot be increased without producing a motif with fewer
(l, d)-variants in the input sequences.

4 The positions of all (l, d)-variants of M cannot start earlier without producing a motif
with fewer (l, d)-variants in the input sequences.

 4 H.C.M. Leung and F.Y.L. Chin

Example of maximal motif: We are given the following sequences:

1

2

3

0 1 2 3 4 5 6 7 8 9
: TACAGTCGGTGC
: GCCAGTCGGCTG
: CGGAGTCGCGAC

S
S
S

…
…
…

Suppose we want to solve EMP with l = 7, d = 1 and k = 2. We may discover four similar
motifs M1, M2, M3 and M4:

1

2

3

4

: GAGTCGG
: GAGTCGGG
: GCAGTCGC
: GCAGTCGCC

M
M
M
M

M1 has 3 (7, 1)-variants at positions Si[2…8], M2 at Si[2…9] and M3 at Si[1…8], for
i = 1, 2, 3. M4 has 2 (7, 1)-variants at positions Sj[1…9] (j = 2, 3). However, only M3 and
M4 are maximal motifs.

M1 is not a maximal motif because its length can be increased to form motif M2 with
the same number of (7, 1)-variants (Property 3 is not satisfied). M2 is also not a maximal
motif because the positions of its (7, 1)-variants Si[2…9] can start earlier at Si[1…8] to
form motif M3 having the same number of (7, 1)-variants (Property 4 is not satisfied).
Although M3 can be extended to form motif M4, M3 has 3 (7, 1)-variants while M4 has
only 2. Thus, both M3 and M4 are maximal motifs. �

EMP is a better model than PMP. However, it is difficult to guess the minimum number
of binding sites k in the data set. If the chosen k is too large, we may miss the planted
motif. If k is too small, there will be a huge number of outputs (random noise) and we
have no idea which one is the planted motif.

Moreover, we have no idea how to compare two maximal motifs: given a short motif
with many (l, d)-variants and a longer motif with fewer (l, d)-variants, we cannot
determine which one is more likely to be the planted motif.

Another problem is that although Styczynski et al.’s algorithm for EMP does not miss
any maximal motifs, the running time of the algorithm is far too long to be useful in
practice. For example, when t = 20, n = 600, l = 14, d = 4, the running time of their
algorithm takes more than 3 months.

In this paper, we make two main contributions. First, we propose a measurement for
comparing motifs of different lengths and numbers of (l, d)-variants in the input
sequences by calculating the expected number of random strings having similar
properties. Based on this measurement, we modify EMP by eliminating k, the minimum
number of (l, d)-variants, as input thus introducing the Further Extended (l, d)-Motif
Problem (FEMP). Secondly, we introduce Algorithm exVote, which runs faster than the
algorithm proposed by Styczynski et al., to solve EMP as well as FEMP.

This paper is organised as follows. Section 2 describes the measurement for
comparing motifs and how to determine the optimal k automatically. Algorithm exVote
is described in Section 3. Experimental results on both simulated data and real data are
discussed in Section 4, followed by a conclusion in Section 5.

 An efficient motif discovery algorithm 5

2 comparing different motifs

Given two motifs with different lengths and different numbers of (l, d)-variants, how can
we determine which one is more likely to be the planted motif? In order to answer this
question, we calculate the expected number of random sequences with properties similar
to each of these two motifs. The motif with fewer random sequences having similar
properties is more likely to be the planted motif. Similar analyses have also been used for
PMP (Buhler and Tompa, 2001) and the motif problem in matrix representation
(Chin et al., 2004).

2.1 Expected number of random sequences

Assume we are given t length-n random sequences generated according to a particular
probability distribution of ‘A’, ‘C’, ‘G’ and ‘T’ and σ be an arbitrary length-L substring
in one of the sequences. Let M be another random length-L sequence with equal
occurrence probabilities of ‘A’, ‘C’, ‘G’ and ‘T’. The probability that σ is a (l, d)-variant
of M is

(, ,)(, ,)
4L

N L l dp L l d =

where N(L, l, d) is the number of (l, d)-variants of a length-L sequence. The method for
calculation of N(L, l, d) is given in the Appendix. Note that N(L, l, d) can be computed
once and stored in a table for future use by the algorithm.

Given t length-n input sequences, the probability that a length-L sequence M has
exactly i (l, d)-variants in the input sequences is

() (1)(1)
(, ,) 1 (, ,) .i t n L it n L

p L l d p L l d
i

− + −− + 
− 

 

By summing up the probability that M has exactly i (l, d)-variants for all i ≥ k, we can get
the probability that M has at least k (l, d)-variants in the t length-n input sequences.

()
(1)

(1)(1)
(, , ,) (, ,) 1 (, ,) .

t n L
t n L ii

i k

t n L
P L k l d p L l d p L l d

i

− +
− + −

=

− + 
= − 

 
∑

Since there are 4L possible length-L sequences, the expected number of length-L
sequences having at least k (l, d)-variants in t length-n input sequences is approximately

(, , ,) 4 (, , ,)LE L k l d P L k l d=

This formula is only an approximation because the probability of a length-L sequence
having at least k (l, d)-variants is not mutually independent of the probability of another
length-L sequence having similar properties. However, experiments in Section 4 show
that the formula is a good approximation.

 6 H.C.M. Leung and F.Y.L. Chin

If E(L, k, l, d) 1, there are many random length-L sequences having similar
properties as the planted motif and it would be difficult to identify this planted motif from
this set of random sequences. If E(L, k, l, d) 1, any length-L sequence having at least
k (l, d)-variants in the t length-n sequences is unlikely to be random noise and is probably
the planted motif.

2.2 Further Extended (l, d)-Motif Problem (FEMP)

When we are given two motifs M1 and M2 of length L1 and L2 and t length-n input
sequences having k1 and k2 (l, d)-variants of M1 and M2 respectively, M1 is more likely to
be the planted motif if E(L1, k1, l, d) < E(L2, k2, l, d). However, when both E(L1, k1, l, d)
and E(L2, k2, l, d) are sufficiently small, say 10–5, even when one is larger than the other,
we can say both M1 and M2 are planted motifs with confidence.

Instead of discovering the longest motif or the motif with the largest number of
(l, d)-variants, we should find those motifs with small expected numbers of random
sequences with similar properties. Based on this idea, we modify EMP as follows:

Further Extended (l, d)-Motif Problem (FEMP): Suppose there is a fixed but unknown
nucleotide sequence M of length L. Given t length-n sequences containing an unknown
but much more than expected number of planted (l, d)-variants of M, we want to
determine M and the positions of the planted (l, d)-variants with knowledge of l and d
only. �

3 Algorithm

Styczynski et al. (2004) developed an algorithm to discover all maximal motifs for EMP.
The main idea of their algorithm is based on an observation that if a length-L sequence M
has at least k (l, d)-variants in the input sequences, each length-l′ substring of M with
l ≤ l′ < L should have at least k (l, d)-variants in the input sequences too. Their algorithm
first discovers all length-l motifs with at least k (l, d)-variants in the input sequences
(initial step) and then merges the length-l (l, d)-variants of these motifs to form the
length-(l + 1) (l, d)-variants if any two length-l (l, d)-variants overlap at l – 1 consecutive
positions. A length-(l + 1) motif will be formed if it has at least k length-(l + 1)
(l, d)-variants. This merging step will be repeated again and again to form longer
(l, d)-variants and longer motifs.

Although this algorithm guarantees that no maximal motif is missing, the running
time is very long. This is especially so when the Hamming distance d is large. Note that
even when E(L, k, l, d) is very small, E(l′, k, l, d) can be a very large number when l′ is
slightly larger than l (Figures 1 and 3). As E(l′, k, l, d)2 pairs of length-l′ motifs have to be
studied to form length-(l′ + 1) motifs, the merging step, which needs to consider

1
2(, , ,)

L

l l

E l k l d
−

′=

′∑

pairs of length-l′ motifs in total, might take a very long time.

 An efficient motif discovery algorithm 7

Figure 1 Expected number of length-L motifs with at least 10 (l, d)-variants

The values of t and n are 20 and 600 respectively.

As for the initial step, similar to Pevzner and Sze (2000) and Styczynski et al. (2004)
reduced the problem of finding all length-l motifs to the clique searching problem. Since
the Hamming distance between the motif and its (l, d)-variant is at most d, the Hamming
distance between two (l, d)-variants of a particular length-l motif is at most 2d. Consider
a graph G where each length-l substring in the input sequences is represented by a vertex
and there is an edge joining two vertices if and only if the Hamming distance between the
two corresponding length-l substrings is at most 2d. Since a length-l maximal motif
(a length-l substring of M) has at least k (l, d)-variants in the input sequences, these
(l, d)-variants form a maximal clique of size k or more in the graph. By finding all
maximal cliques of size at least k, they can discover all length-l motifs, and their
corresponding (l, d)-variants (binding sites) in the input sequences.

Graph G has O(nt) vertices and the expected degree of each vertex is O(ntp) where p
is the probability that the Hamming distance between the two arbitrary length-l sequences
is at most 2d. Assuming each nucleotide is generated independently according to some
background probability distribution, p has minimum value when all nucleotides are
equally probable in the sequences. The minimum value of p can be calculated as follows:

2

0

3 1 .
4 4

i l id

i

l
p

i

−

=

    =     
    

∑

Although clique searching is NP-hard, when d is small, p tends to 1/4l and the graph is
sparse. Finding all maximal cliques of size at least k for a sparse graph is still tractable.
However, when d increases, the number of edges increases and the graph G becomes
dense. For example, when l = 14 and d = 4, the value of p is 0.11 which means that the
expected degree of each vertex is 0.11(nt) and the number of edges in G is O((nt)2).
To our best knowledge, the fastest algorithm (Makino and Uno, 2004) for finding all
maximal cliques in a dense graph is O((nt)2.376) per output. Since there are O((nt)k)
maximal cliques in graph G in the worst case, the running time of Styczynski et al.’s
algorithm can be O((nt)k+2.376), which may be prohibitively long.

 8 H.C.M. Leung and F.Y.L. Chin

3.1 Algorithm exVote

In order to solve EMP (and FEMP), we propose Algorithm exVote, which uses a Voting
approach to find all length-l or longer motifs directly. The Voting approach was first
introduced by Chin and Leung (2005) for solving PMP. To our best knowledge, it is the
fastest algorithm for solving PMP. Here we modify the Voting algorithm to solve EMP.

The Voting algorithm (Chin and Leung, 2005) is based on a simple idea that if a
substring σ is a variant of a motif M, M is also a variant of σ. In order to solve PMP, each
length-l substring in the input sequences gives one vote to its variants (length-l
sequences). For example, when solving the planted (6, 1)-motif problem, a
length-6 substring AAAAAA in the input sequences will give one vote to each of the
following length-6 string:

AAAAAA, CAAAAA, GAAAAA, TAAAAA, ACAAAA, …, AAAAAT.

Under the restriction that each length-l sequence gets at most one vote from each
sequence, the motif should get exactly t votes.

Since EMP allows any number of (l, d)-variants, Algorithm exVote gives one vote to
the (l, d)-variants of each length-L substring in the input sequences. Those length-L
sequences receiving at least k votes are motif candidates. The time complexity of
Algorithm exVote is O(tnN(L, l, d)) which is no more than O(tn4L), since N(L, l, d) is the
number of (l, d)-variants of a length-L sequence and is always less than 4L. As k ≈ t which
is normally much larger than L, the time complexity O(tn4L) is already much smaller than
O((nt)k+2.376), the time complexity of the initial step of Styczynski et al.’s algorithm.
The improved time complexity rendered by Algorithm exVote is demonstrated in
Section 4.

The space complexity for Algorithm exVote is O(4L + tn) and would not create much
problem when L is small. As shown in Figure 2, the value of N(L, l, d) increases
exponentially with the motif length L as do the time and space complexities too. In order
to handle large L, Section 3.2 describes some simple techniques to reduce the space
complexity without increasing the time complexity too much.

Figure 2 Values of N(L, l, d) for different parameters L, l and d

The values of t and n are 20 and 600 respectively.

 An efficient motif discovery algorithm 9

3.2 Reducing the space required

A straight-forward implementation of Algorithm exVote requires O(4L) space to store
the number of votes received by the 4L length-L sequences. Under normal circumstances
where motifs have length L ≤ 18, 4L ≤ 418 = 64 GB memory is still feasible. However,
O(4L) space may be too large for some applications. However, the amount of required
space can be reduced by partitioning the 4L length-L sequences into groups and
processing each group one after another. For example, we may partition the sequences
into 4m groups according to their length-m prefix. Two sequences s1 and s2 are in the
same group if and only if their first m nucleotides are the same.

Instead of scanning the input sequences once, we scan the input sequences 4m times.
For each scan, one length-m prefix Р is chosen and all length-L substrings give one vote
to their (l, d)-variants having prefix Р. The space needed to store the votes received by all
length-L sequences with prefix Р is O(4L–m). At the end of each scan, we will find all
length-L motifs with prefix Р and the space can be reused again for other scans. The time
and space complexities of this modified Algorithm exVote will then be
O(tnN(L, l, d) + tn4m) and O(4L–m + tn) respectively. Note that when m ≤ log4N(L, l, d),
the time complexity remains O(tnN(L, l, d)).

3.3 Solving FEMP

In order to solve FEMP, we first find all motifs of different lengths L, each with k
(l, d)-variants in the input sequences. We then output only those motifs with E(L, k, l, d)
values less than some predefined threshold α. We can control the number of output by
controlling the value of threshold α. The probability of finding the real motif increases
with a lower value of α and with an increasing of the running time and number of outputs
(false positive).

In practice, we discover motifs starting from length l to n. Intuitively, when n, t, l, d,
and k are fixed, the expected number of length-L motif candidates decreases with L. (This
will be shown in Section 4.) When L is large, instead of discovering all length-L motifs
directly by voting as described in Section 3.1. We may discover all length-L motifs after
knowing the length-(L – 1) motifs and checking whether these length-(L – 1) motifs can
be extended to length-L motifs. This extension step can be done by matching the length-
(L – 2) prefix of a length-(L – 1) motif with the length-(L – 2) suffix of another and
checking whether their corresponding sets of (l, d)-variants have similar property. Since
there are four alphabets in DNA sequences, the expected number of length-L motifs we
have to check is 4 ⋅ E(L – 1, k, l, d), which is much less than (E(L – 1, k, l, d))2 in
Styczynski et al.’s algorithm.

This extension step will be repeated until we cannot find any motifs for a particular
length. In the worst case, we have to discover all motifs of length l to n. However, since
E(L, k, l, d) decreases with L exponentially, we rarely need to go much beyond the length
of the planted motif in practice. Therefore, we can discover the planted motif, whose
E(L, k, l, d) value is less than the threshold α, in reasonable time.

 10 H.C.M. Leung and F.Y.L. Chin

4 Experimental results

We have implemented Algorithm exVote in C++. Experimental results of this algorithm
on both simulated data and real biological data will be shown below. Even though our
experiments were performed on a P3 700 CPU with 4GB memory, our programs used
less than 70 MB memory in all experiments.

4.1 Evaluating the formula for the expected number

In order to check whether the estimation of E(L, k, l, d) in Section 2.1 is correct, we
generated 20 length-600 sequences with equal occurrence probability for each nucleotide
and counted the number of length-L sequences having at least k (l, d)-variants. For each
set of parameters (l, d), we repeated each experiment 100 times. Figures 1 and 3 show the
values of E(L, 10, l, d) from the formula given in Section 2.1 and from experiments.

Figure 3 Average number of length-L motifs with at least 10 (l, d)-variants (an experimental
verification of E(L, 10, l, d)

The values of t and n are 20 and 600 respectively.

The resemblance of these two figures means that our calculated E(L, 10, l, d) is almost
the same as the average number of length-L sequences having at least 10 (l, d)-variants.
However, for those situations with E(L, 10, l, d) less than 1/100 (e.g., E(13, 10, 11, 2)
when (l, d) = (11, 2) and L = l + 2 = 13), we could not discover any length-L sequences
having at least 10 (l, d)-variants in the 100 experiments. Therefore we could not plot the
values of E(L, 10, l, d) in these situations in Figure 3.

We also performed the same experiments for different values of k. The average
number of length-L sequences having at least k (l, d)-variants were almost the same as
those values of E(L, k, l, d) expressed in our formula in Section 2.1.

4.2 Results on simulated data

We are interested in comparing the performance of Algorithm exVote against the best
performing algorithm up to now. Styczynski et al. (2004) compared the performances
of their algorithm with different motif discovering programs like GibbsDNA

 An efficient motif discovery algorithm 11

(Lawrence et al., 1993), WINNOWER (Pevzner and Sze, 2000), SP-STAR (Pevzner and
Sze, 2000) and PROJECTION (Buhler and Tompa, 2001). Styczynski et al.’s algorithm
has the best performance as it can discover the planted motifs in all cases and has the best
accuracy.

Thus, we compared Algorithm exVote with Styczynski et al.’s algorithm. We also
compared against PROJECTION, which discovers motifs by heuristic search.
The simulated data were generated in the same way as Buhler and Tompa (2001), i.e., a
total of 20 length-600 sequences (as in Section 4.1) each with a planted variant of a
randomly generated M. We repeated the experiments 20 times for each set of parameters
(l, d) on Styczynski et al.’s algorithm, PROJECTION and Algorithm exVote. For each
data set, each algorithm made 30 predictions of the hidden motif and an algorithm is said
to have predicted the hidden motif correctly if it is in one of the 30 predictions.
The accuracy of the algorithms were measured by the average number of times the
algorithms predicted the hidden motif correctly.

In all cases, both Styczynski et al.’s algorithm and Algorithm exVote could discover
the planted motif M, i.e., accuracy = 1. However, Algorithm exVote was faster than
Styczynski et al.’s algorithm. Although PROJECTION (Buhler and Tompa, 2001) had
the shortest running time for some input parameters, it could not discover the planted
motifs in some cases. Table 1 shows the running time of these three algorithms, in
particular, when comparing the running times of Styczynski et al.’s algorithm and
Algorithm exVote, the time needed for solving the (14, 4)-problem was reduced from
3 months to 197.5 seconds and from 3 weeks to 27 minutes on the (17, 5)-problem.

Table 1 Running times of three algorithms

PROJECTION Styczynski et al.’s algorithm exVote
l d Accuracy (time) Accuracy (time) Accuracy (time)
10 2 0.82 (161.1 s) 1.00 (8 minutes) 1.00 (0.1 s)
11 2 0.95 (12.5 s) 1.00 (<1 minutes) 1.00 (0.7 s)
12 3 0.71 (8.7 minutes) 1.00 (10.5 hours) 1.00 (9.8 s)
13 3 0.94 (46.0 s) 1.00 (10 minutes) 1.00 (17.4 s)
14 4 0.65 (15.4 minutes) 1.00 (>3 months) 1.00 (197.5 s)
15 4 0.90 (129.0 s) 1.00 (6 hours) 1.00 (206.1 s)
17 5 0.86 (273.2 s) 1.00 (3 weeks) 1.00 (27 minutes)

The values of t and n are 20 and 600 respectively. The accuracy is the average value for
20 experiments.

4.3 Results on real biological data

We also tested the performance of Algorithm exVote on real biological data. SCPD
(Zhu and Zhang, 1999) is a database of different transcription factors for yeast. For each
transcription factor, the published motif pattern, the positions of the binding sites and the
set of sequences containing these binding sites are kept. We used MEME (Bailey and
Elkan, 1995), PROJECTION (Buhler and Tompa, 2001), Voting algorithm
(Chin and Leung, 2005) (developed for solving the PMP) and Algorithm exVote to
discover the motif for each data set. Since both PROJECTION and Voting algorithm

 12 H.C.M. Leung and F.Y.L. Chin

required the motif length l and Hamming distance d as input parameters, we set l to be the
length of the published motif and tested all values of d from 0 to l. These two algorithms
are said to discover the motif if they output the published motif for some d. MEME is a
popular program for discovering motif in matrix representation. For each data set, we
inputted the length of the published motif as input of MEME. For Algorithm exVote,
we let l = 6 and d = 1 for all data set.

Table 2 shows the results of these algorithms. Even though we did not input the
lengths of published motifs, Algorithm exVote could discover all the published motifs.
Besides, since the FEMP is more flexible than the PMP, in some cases (ROX1 and
UASGABA), Algorithm exVote could discover the correct motifs while PROJECTION
and Voting algorithm failed. Although MEME is a powerful program for discovering
motif, as some real motifs cannot be modelled by a matrix well, MEME could not
discover some motifs.

Table 2 Experimental results on real biological data

Name Motif pattern MEME PROJECTION Voting Algorithm exVote (E(L,k,l,d))

AP1 TTANTAA – – TTACTAA TTAATAA (2.6)

BAS1 TGACTC – TGACTC TGACTC TGACTC (0.0577)

GATA CTTATC CTTATC CTTATC CTTATC CTTATC (6.75 × 10–9)

GCR1 C[AT]TCC CTTCC CTTCC CTTCC CTTCC (8.98 × 10–4)

HSE,HTSF TTTCTAGAA TTCTAGAAG TTCTAGAAG TTTCTAGAA TTTCTAGAA (8.35 × 10–5)

NBF
ATG[CT]G[AG]A
[AT][AT]

– TGTGAAAAG
ATGTGAAAA ATGTGAAAT (88.1)

ROX1 [CT][CT]NATTGTT[CT] GCCTATTGTT – – ATTGTTC (0.0423)

UASGABA
AAAAACCGCC
GGCGGCAAT

– –
–

AAAAGCCGCC
GGCGGCAAT

(0.748)

5 Discussion

In this paper, we have introduced the expected number of sequences with similar
properties in a set of random sequences (i.e., with the same number and length) as a
measurement for comparing different motifs. Based on this measurement, we define the
FEMP which does not need to take the motif’s length and the number of planted variants
as input parameters.

We have also developed Algorithm exVote to solve the EMP and FEMP.
Experiments on simulated data and real biological data show that Algorithm exVote
performs better than the popular motif discovering algorithms in terms of flexibility and
running time.

The main purpose of the maximal motif is to reduce the number of motifs to be
considered by eliminating similar or inferior ones. However, discovering maximal motifs
may not be the best way for solving motif problems. For example, given the following
sequences

 An efficient motif discovery algorithm 13

1

2

3

0 1 2 3 4 5 6 7 8 9
: TATTCACTGC
: GCCTCACCTG
: CGGACATGAC

S
S
S

…
…
…

We want to solve the Extended (4, 1)-Motif Problem with k = 3. ‘GTCAT’ has
3 (4, 1)-variants at Si[2…6] and ‘ACACG’ at Si[3…7] for i = 1, 2, 3. ‘ACACG’ is not a
maximal motif because it is of the same length and has the same number of variants as
‘GTCAT’ and the positions of its variants are one base pair behind ‘GTCAT’
(property 4). However, they are treated as the same even though ‘GTCAT’ and
‘ACACG’ are two motifs with very different patterns. Thus, it is doubtful whether
property 4 should be included in the definition of maximal motif. Note that Algorithm
exVote can discover all maximal motifs with the same time and space complexities after
removing property 4.

Acknowledgement

The research was supported in parts by the RGC grant HKU 7135/04E.

References
Bailey, T. and Elkan, C. (1995) ‘Unsupervised learning of multiple motifs in biopolymers using

expectation maximization’, Machine Learning, Vol. 21, pp.51–80.
Brazma, A., Jonassen, I., Eidhammer I. and Gilbert, D. (1998) ‘Approaches to the automatic

discovery of patterns in biosequences’, Journal of Computational Biology, Vol. 5,
pp.279–305.

Buhler, J. and Tompa, M. (2001) ‘Finding motifs using random projections’, Proceedings of
RECOMB01, pp.69–76.

Chin, F. and Leung, H. (2005) ‘Voting algorithm for discovering long motifs’, Proceedings of
Asia-Pacific Bioinformatics Conference, pp.261–272.

Chin, F., Leung, H., Yiu, S.M., Lam, T.W., Rosenfeld, R., Tsang, W.W., Smith, D. and Jiang, T.
(2004) ‘Finding motifs for insufficient number of sequences with strong binding to
transcription factor’, Proceedings of RECOMB04, pp.125–132.

Lawrence, C. and Reilly, A. (1990) ‘An expectation maximization (em) algorithm for the
identification and characterization of common sites in unaligned biopolymer sequences’,
Proteins: Structure, Function and Genetics, Vol. 7, pp.41–51.

Lawrence, C., Altschul, S., Boguski, M., Liu, J., Neuwald, A. and Wootton, J. (1993) ‘Detecting
subtule sequence signals: a Gibbs sampling strategy for multiple alignment’, Science,
Vol. 262, pp.208–214.

Leung, H. and Chin, F. (2005) ‘Finding exact optimal motif in matrix representation by
partitioning’, Bioinformatics, Vol. 22, Supp. 2, pp.ii86–ii92.

Leung, H., Chin, F., Yiu, S.M., Rosenfeld, R. and Tsang, W.W. (2005) ‘Finding motifs with
insufficient number of strong binding sites’, Journal of Computational Biology, Vol. 12,
No. 6, pp.686–701.

Li, M., Ma, B. and Wang, L. (2002) ‘Finding similar regions in many strings’, Journal of Computer
and System Sciences, Vol. 65, pp.73–96.

 14 H.C.M. Leung and F.Y.L. Chin

Liang, S. (2003) ‘cWINNOWER algorithm for finding fuzzy DNA motifs’, Proc. of Computer
Society Bioinformatics Conference 2003, pp.260–265.

Makino, K. and Uno, T. (2004) ‘New algorithms for enumerating all maximal cliques’,
Proceedings of Scandinavian Workshop on Algorithm Theory, pp.260–272.

Ono, H. and Ng, Y.K. (2005) ‘Best fitting-length substring patterns for a set of strings’,
Proceedings of Computing and Combinatorics, 11th Annual International Conference
(COCOON), pp.240–250.

Pesole, G., Prunella, N., Liuni, S., Attimonelli, M. and Saccone, C. (1992) ‘Wordup: an efficient
algorithm for discovering statistically significant patterns in DNA sequences’,
Nucl. Acids Res., Vol. 20, No. 11, pp.2871–2875.

Pevzner, P. and Sze, S.H. (2000) ‘Combinatorial approaches to finding subtle signals in DNA
sequences’, Proceedings of the Eighth International Conference on Intelligent Systems for
Molecular Biology, pp.269–278.

Price, A., Ramabhadran, S. and Pevzner, P. (2003) ‘Finding subtle motifs by branching from
sample strings’, Bioinformatics, Vol. 1, pp.1–7.

Rajasekaran, S., Balla, S. and Huang, C.H. (2005) ‘Exact algorithm for planted motif challenge
problems’, Proceedings of Asia-Pacific Bioinformatics Conference, pp.249–259.

Rigoutsos, I. and Floratos, A. (1998) ‘Combinatorial pattern discovery in biological sequences: the
TEIRESIAS algorithm’, Bioinformatics, Vol. 14, pp.55–67.

Sagot, M.F. (1998) ‘Spelling approximate repeated or common motifs using a suffix tree’, in
Lucchesi, C.L. and Moura, A.V. (Eds.): Latin’98: Theoretical informatics, volume 1380 of
Lecture Notes in Computer Science, pp.111–127.

Styczynski, M.P., Jensen, K.L., Rigoutsos, I. and Stephanopoulos, G.N. (2004) ‘An extension and
novel solution to the (l,d)-motif challenge problem’, Genome Informatics, Vol. 15, pp.63–71.

Tompa, M. (1999) ‘An exact method for finding short motifs in sequences with application to the
ribosome binding site problem’, Proceedings of the 7th International Conference on
Intelligent Systems for Molecular Biology, pp.262–271.

Wolfertsteeter, F., Frech, K., Herrmann, G., and Wernet, T. (1996) ‘Identification of functional
elements in unaligned nucleic acid sequences by a novel tuple search algorithm’, Computer
Applications in Bio-sciences, Vol. 12, No. 1, pp.71–80.

Zhu, J. and Zhang, M. (1999) ‘SCPD: a promoter database of the yeast Saccha-romyces cerevisiae’,
Bioinformatics, Vol. 15, pp.563–577, http://cgsigma.cshl.org/jian/.

Appendix

Calculating N(L, l, d)

In this section, we will describe how to calculate the number N(L, l, d) of (l, d)-variants
of a length-L sequence M. Given two length-L sequences σ and M, esuf(σ, M) is a length-l
bit string defined as follows,

suf

1 [] []
()[]

0 [] []
L l i M L l i

e σ,M i
L l i M L l i

σ
σ

− + ≠ − +
=  − + = − +

esuf(σ, M) is a binary bit string which represents the positions that the length-l suffix of σ
and M are different.

 An efficient motif discovery algorithm 15

Let C[L, β] be the number of (l, d)-variants σ of a length-L sequence M satisfying
esuf(σ, M) = β where β is a binary string of length-l. For example, when l = 5, given two
length-8 sequences

1 2 3 4 5 6 7 8
: AGCTAACG
: CCGTTACTM

σ

esuf(σ, M) = ‘01001’ and C[L, ‘01001’] = 32 if d ≥ 2.
By considering all possible bit strings β, we can calculate the number of (l, d)-variants

of a length-L sequence

: | |
(, ,) [,] [,]

d

N L l d C L C L
β β β

β β
≤

= =∑ ∑

where |β| be the number of ‘1’ in the bit string β.
We applied dynamic programming to calculate C[L, β]. When L = l, we have

| |3 | |
[,] .

0 | |
d

C l
d

β ββ
β

 ≤
= 

>

When L > l, we calculate the value of C[L, β] by the following recurrence,

()3 [1 0] [1 1] [] 1
[,] [1 0] [1 1] [] 0

0

C L , ' C L , ' l | ' | d
C L C L , ' C L , ' l | ' | d

| | d

β β β β
β β β β β

β

• •

• •

− + − = ∧ <
= − + − = ∧ ≤
 >

where ' [1... 1] lβ β= − and • means concatenate
Although there are 2l possible length-l bit strings β, we only consider the values of

those C[L, β] with |β| ≤ d. Therefore the total number of C[L, β] we have to calculate is at
most

0
(1) .

d

j

l
L l

j=

 
− +  

 
∑

Since it takes constant time to calculate each C[L, β], the total running time for counting
N(L, l, d) is

0 0 0
(1) () .

d d d

j j j

l l l
O L l O L l

j j j= = =

        
− + + = −        

        
∑ ∑ ∑ �

