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Abstract: Most motif discovery algorithms from DNA sequences require the 
motif’s length as input. Styczynski et al. introduced the Extended (l,d)-Motif 
Problem (EMP) where the motif’s length is not an input parameter. 
Unfortunately, their algorithm takes an unacceptably long time to run, e.g. over 
3 months to discover a length-14 motif. Since the best motif may not be the 
longest nor have the largest number of binding sites, in this paper we further 
eliminate another input parameter about the minimum number of binding sites 
in order to provide more realistic/robust results. We also develop an efficient 
algorithm to solve EMP and this redefined problem. 
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1 Introduction 

A gene (protein coding gene) is a segment of DNA that is the blueprint for protein. Genes 
seldom work alone. In most cases, genes cooperate to produce different proteins to 
provide particular functions. Understanding how the gene regulatory network works is 
important in molecular biology. 

In order to start the decoding process (gene expression), a molecule called 
transcription factor will bind to a short region (binding site) preceding the gene.  
One kind of transcription factor can bind to the binding sites of several genes to cause 
these genes to co-express. These binding sites have similar patterns called motifs. Finding 
motifs from a set of DNA sequences is a critical step for understanding the gene 
regulatory network. 

In order to discover motifs, we must first have a model to represent a motif. There are 
three common models: matrix representation, regular grammar representation and string 
representation. 

In the matrix representation model, motifs are represented by Position Weight 
Matrices (PWMs) or Position Specific Scoring Matrices (PSSMs). For example, we can 
represent a length-9 motif of the transcription factor MATalpha2 as follows 

A 0 0.8 0 0 0 0.9 0.8 0.4 0
C 0.9 0 0 0 0 0 0.1 0 0
G 0 0.2 0 1 0 0 0 0 0
T 0.1 0 1 0 1 0.1 0.1 0.6 1

 

Both PWMs and PSSMs incorporate probabilities and thus may represent motifs in real 
biological data better than the other representations. However, since the solution space 
for PWMs and PSSMs is infinite in size, algorithms generally either rely on local search 
to produce a sub-optimal motif matrix (e.g., Bailey and Elkan, 1995; Chin et al., 2004; 
Lawrence and Reilly, 1990; Leung et al., 2005), or take too long to run when the motif is 
longer than 10 bp (e.g., Leung and Chin (2005) which relies on partitioning).  

Some algorithms (Ono and Ng, 2005; Rigoutsos and Floratos, 1998) use regular 
grammars to represent motifs. They assume that all binding sites are patterns  
satisfying a set of rules, which cannot be satisfied by sequences in non-binding regions. 
For example, the MATalpha2 motif can be represented by [CT][AC]TGT 
[AT][ACT][AT]T. Typically, these algorithms find the optimal grammar from a 
restricted class of regular grammars by exhaustion and hence the running time of these 
algorithms tends to be long. 

Algorithms using string representation (Brazma et al., 1998; Buhler and Tompa, 
2001; Chin and Leung, 2005; Lawrence et al., 1993; Li et al. 2002; Liang, 2003;  
Pesole et al., 1992; Pevzner and Sze, 2000; Price et al., 2003; Rajasekaran et al., 2005; 
Rigoutsos and Floratos, 1998; Sagot, 1998; Styczynski et al., 2004; Tompa, 1999; 
Wolfertsteeter, 1996) assume all binding sites are variants of the motif. For example, the 
MATalpha2 motif can be represented by CATGTAATT. Pevzner and Sze (2000) give a 
precise definition of motif discovery problem based on string representation. 
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Planted (l, d)-Motif Problem (PMP): Suppose there is a fixed but unknown nucleotide 
sequence M (the motif) of length l. Given t length-n sequences, each of which contains 
exactly one planted variant (binding site) of M, we want to determine M without knowing 
the positions of the planted variants. A variant is a length-l string derivable from M with 
exactly d point substitutions. � 

Many algorithms have been developed to solve PMP. Some (Buhler and Tompa, 2001; 
Chin and Leung, 2005) work efficiently when l is small (≤20). However, PMP is an 
inadequate model for reality. There are three main weaknesses in PMP. First, biologists 
seldom get a set of sequences where each contains exactly one planted variant. Due to 
experimental noise and error, they usually get a set of sequences, some of which contain 
no variants, some exactly one and some more than one. Second, biologists usually do not 
know the motif’s exact length l; at best they only know the range for the length. Third, 
the Hamming distance between each variant and the motif may not be exactly d. 

Consequently, researchers (Chin and Leung, 2005; Rajasekaran et al., 2005) have 
modified the PMP to better model reality. Modifications include allowing each sequence 
to contain any number of variants and allowing the Hamming distance between a variant 
and the motif M to be at most d (instead of exactly d). 

Based on the assumption that it is easier to estimate the ratio d/l than l,  
Styczynski et al. (2004) defined the EMP as follows. 

Extended (l, d)-Motif Problem (EMP): Suppose there is a fixed but unknown 
nucleotide sequence M of length L. Given t length-n input sequences, containing a total of 
at least k planted (l, d)-variants of M where l ≤ L, we want to determine M without 
knowing the positions of the planted (l, d)-variants in the input sequences and length L.  
A (l, d)-variant is a length-L string derivable from M with at most d point substitutions 
over any window of l nucleotides, where l ≤ L. � 

In practice, many motifs are similar in that the positions of the (l, d)-variants for these 
motifs are very close. Therefore, Styczynski et al. (2004) used a ‘maximal motif’ concept 
to represent a set of similar motifs. They also developed an algorithm to find all maximal 
motifs given the input parameters l, d and k. 

Definition of maximal motif: A sequence M is a maximal motif if it satisfies the 
following properties: 

1 The length of M is at least l. 

2 M has at least k (l, d)-variants in the input sequences. 

3 The length of M cannot be increased without producing a motif with fewer 
(l, d)-variants in the input sequences. 

4 The positions of all (l, d)-variants of M cannot start earlier without producing a motif 
with fewer (l, d)-variants in the input sequences. 
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Example of maximal motif: We are given the following sequences: 

1

2

3

0 1 2 3 4 5 6 7 8 9
: TACAGTCGGTGC
: GCCAGTCGGCTG
: CGGAGTCGCGAC

S
S
S

…
…
…

 

Suppose we want to solve EMP with l = 7, d = 1 and k = 2. We may discover four similar 
motifs M1, M2, M3 and M4: 

1

2

3

4

: GAGTCGG
: GAGTCGGG
: GCAGTCGC
: GCAGTCGCC

M
M
M
M

 

M1 has 3 (7, 1)-variants at positions Si[2…8], M2 at Si[2…9] and M3 at Si[1…8], for  
i = 1, 2, 3. M4 has 2 (7, 1)-variants at positions Sj[1…9] (j = 2, 3). However, only M3 and 
M4 are maximal motifs. 

M1 is not a maximal motif because its length can be increased to form motif M2 with 
the same number of (7, 1)-variants (Property 3 is not satisfied). M2 is also not a maximal 
motif because the positions of its (7, 1)-variants Si[2…9] can start earlier at Si[1…8] to 
form motif M3 having the same number of (7, 1)-variants (Property 4 is not satisfied). 
Although M3 can be extended to form motif M4, M3 has 3 (7, 1)-variants while M4 has 
only 2. Thus, both M3 and M4 are maximal motifs. � 

EMP is a better model than PMP. However, it is difficult to guess the minimum number 
of binding sites k in the data set. If the chosen k is too large, we may miss the planted 
motif. If k is too small, there will be a huge number of outputs (random noise) and we 
have no idea which one is the planted motif. 

Moreover, we have no idea how to compare two maximal motifs: given a short motif 
with many (l, d)-variants and a longer motif with fewer (l, d)-variants, we cannot 
determine which one is more likely to be the planted motif. 

Another problem is that although Styczynski et al.’s algorithm for EMP does not miss 
any maximal motifs, the running time of the algorithm is far too long to be useful in 
practice. For example, when t = 20, n = 600, l = 14, d = 4, the running time of their 
algorithm takes more than 3 months. 

In this paper, we make two main contributions. First, we propose a measurement for 
comparing motifs of different lengths and numbers of (l, d)-variants in the input 
sequences by calculating the expected number of random strings having similar 
properties. Based on this measurement, we modify EMP by eliminating k, the minimum 
number of (l, d)-variants, as input thus introducing the Further Extended (l, d)-Motif 
Problem (FEMP). Secondly, we introduce Algorithm exVote, which runs faster than the 
algorithm proposed by Styczynski et al., to solve EMP as well as FEMP. 

This paper is organised as follows. Section 2 describes the measurement for 
comparing motifs and how to determine the optimal k automatically. Algorithm exVote 
is described in Section 3. Experimental results on both simulated data and real data are 
discussed in Section 4, followed by a conclusion in Section 5. 
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2 comparing different motifs 

Given two motifs with different lengths and different numbers of (l, d)-variants, how can 
we determine which one is more likely to be the planted motif? In order to answer this 
question, we calculate the expected number of random sequences with properties similar 
to each of these two motifs. The motif with fewer random sequences having similar 
properties is more likely to be the planted motif. Similar analyses have also been used for 
PMP (Buhler and Tompa, 2001) and the motif problem in matrix representation  
(Chin et al., 2004). 

2.1 Expected number of random sequences  

Assume we are given t length-n random sequences generated according to a particular 
probability distribution of ‘A’, ‘C’, ‘G’ and ‘T’ and σ be an arbitrary length-L substring 
in one of the sequences. Let M be another random length-L sequence with equal 
occurrence probabilities of ‘A’, ‘C’, ‘G’ and ‘T’. The probability that σ is a (l, d)-variant 
of M is 

( , , )( , , )
4L

N L l dp L l d =  

where N(L, l, d) is the number of (l, d)-variants of a length-L sequence. The method for 
calculation of N(L, l, d) is given in the Appendix. Note that N(L, l, d) can be computed 
once and stored in a table for future use by the algorithm. 

Given t length-n input sequences, the probability that a length-L sequence M has 
exactly i (l, d)-variants in the input sequences is 

( ) ( 1)( 1)
( , , ) 1 ( , , ) .i t n L it n L

p L l d p L l d
i

− + −− + 
− 

 
 

By summing up the probability that M has exactly i (l, d)-variants for all i ≥ k, we can get 
the probability that M has at least k (l, d)-variants in the t length-n input sequences. 

( )
( 1)

( 1)( 1)
( , , , ) ( , , ) 1 ( , , ) .

t n L
t n L ii

i k

t n L
P L k l d p L l d p L l d

i

− +
− + −

=

− + 
= − 

 
∑  

Since there are 4L possible length-L sequences, the expected number of length-L 
sequences having at least k (l, d)-variants in t length-n input sequences is approximately 

( , , , ) 4 ( , , , )LE L k l d P L k l d=  

This formula is only an approximation because the probability of a length-L sequence 
having at least k (l, d)-variants is not mutually independent of the probability of another 
length-L sequence having similar properties. However, experiments in Section 4 show 
that the formula is a good approximation. 
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If E(L, k, l, d)  1, there are many random length-L sequences having similar 
properties as the planted motif and it would be difficult to identify this planted motif from 
this set of random sequences. If E(L, k, l, d)  1, any length-L sequence having at least  
k (l, d)-variants in the t length-n sequences is unlikely to be random noise and is probably 
the planted motif. 

2.2 Further Extended (l, d)-Motif Problem (FEMP) 

When we are given two motifs M1 and M2 of length L1 and L2 and t length-n input 
sequences having k1 and k2 (l, d)-variants of M1 and M2 respectively, M1 is more likely to 
be the planted motif if E(L1, k1, l, d) < E(L2, k2, l, d). However, when both E(L1, k1, l, d) 
and E(L2, k2, l, d) are sufficiently small, say 10–5, even when one is larger than the other, 
we can say both M1 and M2 are planted motifs with confidence. 

Instead of discovering the longest motif or the motif with the largest number of  
(l, d)-variants, we should find those motifs with small expected numbers of random 
sequences with similar properties. Based on this idea, we modify EMP as follows: 

Further Extended (l, d)-Motif Problem (FEMP): Suppose there is a fixed but unknown 
nucleotide sequence M of length L. Given t length-n sequences containing an unknown 
but much more than expected number of planted (l, d)-variants of M, we want to 
determine M and the positions of the planted (l, d)-variants with knowledge of l and d 
only. � 

3 Algorithm 

Styczynski et al. (2004) developed an algorithm to discover all maximal motifs for EMP. 
The main idea of their algorithm is based on an observation that if a length-L sequence M 
has at least k (l, d)-variants in the input sequences, each length-l′ substring of M with 
l ≤ l′ < L should have at least k (l, d)-variants in the input sequences too. Their algorithm 
first discovers all length-l motifs with at least k (l, d)-variants in the input sequences 
(initial step) and then merges the length-l (l, d)-variants of these motifs to form the  
length-(l + 1) (l, d)-variants if any two length-l (l, d)-variants overlap at l – 1 consecutive 
positions. A length-(l + 1) motif will be formed if it has at least k length-(l + 1)  
(l, d)-variants. This merging step will be repeated again and again to form longer  
(l, d)-variants and longer motifs.  

Although this algorithm guarantees that no maximal motif is missing, the running 
time is very long. This is especially so when the Hamming distance d is large. Note that 
even when E(L, k, l, d) is very small, E(l′, k, l, d) can be a very large number when l′ is 
slightly larger than l (Figures 1 and 3). As E(l′, k, l, d)2 pairs of length-l′ motifs have to be 
studied to form length-(l′ + 1) motifs, the merging step, which needs to consider 

1
2( , , , )

L

l l

E l k l d
−

′=

′∑  

pairs of length-l′ motifs in total, might take a very long time. 
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Figure 1 Expected number of length-L motifs with at least 10 (l, d)-variants 

 
The values of t and n are 20 and 600 respectively. 

As for the initial step, similar to Pevzner and Sze (2000) and Styczynski et al. (2004) 
reduced the problem of finding all length-l motifs to the clique searching problem. Since 
the Hamming distance between the motif and its (l, d)-variant is at most d, the Hamming 
distance between two (l, d)-variants of a particular length-l motif is at most 2d. Consider 
a graph G where each length-l substring in the input sequences is represented by a vertex 
and there is an edge joining two vertices if and only if the Hamming distance between the 
two corresponding length-l substrings is at most 2d. Since a length-l maximal motif  
(a length-l substring of M) has at least k (l, d)-variants in the input sequences, these  
(l, d)-variants form a maximal clique of size k or more in the graph. By finding all 
maximal cliques of size at least k, they can discover all length-l motifs, and their 
corresponding (l, d)-variants (binding sites) in the input sequences. 

Graph G has O(nt) vertices and the expected degree of each vertex is O(ntp) where p 
is the probability that the Hamming distance between the two arbitrary length-l sequences 
is at most 2d. Assuming each nucleotide is generated independently according to some 
background probability distribution, p has minimum value when all nucleotides are 
equally probable in the sequences. The minimum value of p can be calculated as follows:  

2

0

3 1 .
4 4

i l id

i

l
p

i

−

=

    =     
    

∑  

Although clique searching is NP-hard, when d is small, p tends to 1/4l and the graph is 
sparse. Finding all maximal cliques of size at least k for a sparse graph is still tractable. 
However, when d increases, the number of edges increases and the graph G becomes 
dense. For example, when l = 14 and d = 4, the value of p is 0.11 which means that the 
expected degree of each vertex is 0.11(nt) and the number of edges in G is O((nt)2).  
To our best knowledge, the fastest algorithm (Makino and Uno, 2004) for finding all 
maximal cliques in a dense graph is O((nt)2.376) per output. Since there are O((nt)k) 
maximal cliques in graph G in the worst case, the running time of Styczynski et al.’s 
algorithm can be O((nt)k+2.376), which may be prohibitively long. 
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3.1 Algorithm exVote 

In order to solve EMP (and FEMP), we propose Algorithm exVote, which uses a Voting 
approach to find all length-l or longer motifs directly. The Voting approach was first 
introduced by Chin and Leung (2005) for solving PMP. To our best knowledge, it is the 
fastest algorithm for solving PMP. Here we modify the Voting algorithm to solve EMP. 

The Voting algorithm (Chin and Leung, 2005) is based on a simple idea that if a 
substring σ is a variant of a motif M, M is also a variant of σ. In order to solve PMP, each 
length-l substring in the input sequences gives one vote to its variants (length-l 
sequences). For example, when solving the planted (6, 1)-motif problem, a  
length-6 substring AAAAAA in the input sequences will give one vote to each of the 
following length-6 string:  

AAAAAA, CAAAAA, GAAAAA, TAAAAA, ACAAAA, …, AAAAAT.  

Under the restriction that each length-l sequence gets at most one vote from each 
sequence, the motif should get exactly t votes. 

Since EMP allows any number of (l, d)-variants, Algorithm exVote gives one vote to 
the (l, d)-variants of each length-L substring in the input sequences. Those length-L 
sequences receiving at least k votes are motif candidates. The time complexity of 
Algorithm exVote is O(tnN(L, l, d)) which is no more than O(tn4L), since N(L, l, d) is the 
number of (l, d)-variants of a length-L sequence and is always less than 4L. As k ≈ t which 
is normally much larger than L, the time complexity O(tn4L) is already much smaller than 
O((nt)k+2.376), the time complexity of the initial step of Styczynski et al.’s algorithm.  
The improved time complexity rendered by Algorithm exVote is demonstrated in 
Section 4. 

The space complexity for Algorithm exVote is O(4L + tn) and would not create much 
problem when L is small. As shown in Figure 2, the value of N(L, l, d) increases 
exponentially with the motif length L as do the time and space complexities too. In order 
to handle large L, Section 3.2 describes some simple techniques to reduce the space 
complexity without increasing the time complexity too much. 

Figure 2 Values of N(L, l, d) for different parameters L, l and d 

 
The values of t and n are 20 and 600 respectively. 
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3.2 Reducing the space required  

A straight-forward implementation of Algorithm exVote requires O(4L) space to store 
the number of votes received by the 4L length-L sequences. Under normal circumstances 
where motifs have length L ≤ 18, 4L ≤ 418 = 64 GB memory is still feasible. However, 
O(4L) space may be too large for some applications. However, the amount of required 
space can be reduced by partitioning the 4L length-L sequences into groups and 
processing each group one after another. For example, we may partition the sequences 
into 4m groups according to their length-m prefix. Two sequences s1 and s2 are in the 
same group if and only if their first m nucleotides are the same. 

Instead of scanning the input sequences once, we scan the input sequences 4m times. 
For each scan, one length-m prefix Р is chosen and all length-L substrings give one vote 
to their (l, d)-variants having prefix Р. The space needed to store the votes received by all 
length-L sequences with prefix Р is O(4L–m). At the end of each scan, we will find all 
length-L motifs with prefix Р and the space can be reused again for other scans. The time 
and space complexities of this modified Algorithm exVote will then be 
O(tnN(L, l, d) + tn4m) and O(4L–m + tn) respectively. Note that when m ≤ log4N(L, l, d), 
the time complexity remains O(tnN(L, l, d)). 

3.3 Solving FEMP 

In order to solve FEMP, we first find all motifs of different lengths L, each with k  
(l, d)-variants in the input sequences. We then output only those motifs with E(L, k, l, d) 
values less than some predefined threshold α. We can control the number of output by 
controlling the value of threshold α. The probability of finding the real motif increases 
with a lower value of α and with an increasing of the running time and number of outputs 
(false positive). 

In practice, we discover motifs starting from length l to n. Intuitively, when n, t, l, d, 
and k are fixed, the expected number of length-L motif candidates decreases with L. (This 
will be shown in Section 4.) When L is large, instead of discovering all length-L motifs 
directly by voting as described in Section 3.1. We may discover all length-L motifs after 
knowing the length-(L – 1) motifs and checking whether these length-(L – 1) motifs can 
be extended to length-L motifs. This extension step can be done by matching the length-
(L – 2) prefix of a length-(L – 1) motif with the length-(L – 2) suffix of another and 
checking whether their corresponding sets of (l, d)-variants have similar property. Since 
there are four alphabets in DNA sequences, the expected number of length-L motifs we 
have to check is 4 ⋅ E(L – 1, k, l, d), which is much less than (E(L – 1, k, l, d))2 in 
Styczynski et al.’s algorithm.  

This extension step will be repeated until we cannot find any motifs for a particular 
length. In the worst case, we have to discover all motifs of length l to n. However, since 
E(L, k, l, d) decreases with L exponentially, we rarely need to go much beyond the length 
of the planted motif in practice. Therefore, we can discover the planted motif, whose 
E(L, k, l, d) value is less than the threshold α, in reasonable time. 
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4 Experimental results 

We have implemented Algorithm exVote in C++. Experimental results of this algorithm 
on both simulated data and real biological data will be shown below. Even though our 
experiments were performed on a P3 700 CPU with 4GB memory, our programs used 
less than 70 MB memory in all experiments. 

4.1 Evaluating the formula for the expected number 

In order to check whether the estimation of E(L, k, l, d) in Section 2.1 is correct, we 
generated 20 length-600 sequences with equal occurrence probability for each nucleotide 
and counted the number of length-L sequences having at least k (l, d)-variants. For each 
set of parameters (l, d), we repeated each experiment 100 times. Figures 1 and 3 show the 
values of E(L, 10, l, d) from the formula given in Section 2.1 and from experiments. 

Figure 3 Average number of length-L motifs with at least 10 (l, d)-variants (an experimental 
verification of E(L, 10, l, d) 

 
The values of t and n are 20 and 600 respectively. 

The resemblance of these two figures means that our calculated E(L, 10, l, d) is almost 
the same as the average number of length-L sequences having at least 10 (l, d)-variants. 
However, for those situations with E(L, 10, l, d) less than 1/100 (e.g., E(13, 10, 11, 2) 
when (l, d) = (11, 2) and L = l + 2 = 13), we could not discover any length-L sequences 
having at least 10 (l, d)-variants in the 100 experiments. Therefore we could not plot the 
values of E(L, 10, l, d) in these situations in Figure 3. 

We also performed the same experiments for different values of k. The average 
number of length-L sequences having at least k (l, d)-variants were almost the same as 
those values of E(L, k, l, d) expressed in our formula in Section 2.1. 

4.2 Results on simulated data 

We are interested in comparing the performance of Algorithm exVote against the best 
performing algorithm up to now. Styczynski et al. (2004) compared the performances  
of their algorithm with different motif discovering programs like GibbsDNA  
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(Lawrence et al., 1993), WINNOWER (Pevzner and Sze, 2000), SP-STAR (Pevzner and 
Sze, 2000) and PROJECTION (Buhler and Tompa, 2001). Styczynski et al.’s algorithm 
has the best performance as it can discover the planted motifs in all cases and has the best 
accuracy. 

Thus, we compared Algorithm exVote with Styczynski et al.’s algorithm. We also 
compared against PROJECTION, which discovers motifs by heuristic search.  
The simulated data were generated in the same way as Buhler and Tompa (2001), i.e., a 
total of 20 length-600 sequences (as in Section 4.1) each with a planted variant of a 
randomly generated M. We repeated the experiments 20 times for each set of parameters 
(l, d) on Styczynski et al.’s algorithm, PROJECTION and Algorithm exVote. For each 
data set, each algorithm made 30 predictions of the hidden motif and an algorithm is said 
to have predicted the hidden motif correctly if it is in one of the 30 predictions.  
The accuracy of the algorithms were measured by the average number of times the 
algorithms predicted the hidden motif correctly. 

In all cases, both Styczynski et al.’s algorithm and Algorithm exVote could discover 
the planted motif M, i.e., accuracy = 1. However, Algorithm exVote was faster than 
Styczynski et al.’s algorithm. Although PROJECTION (Buhler and Tompa, 2001) had 
the shortest running time for some input parameters, it could not discover the planted 
motifs in some cases. Table 1 shows the running time of these three algorithms, in 
particular, when comparing the running times of Styczynski et al.’s algorithm and 
Algorithm exVote, the time needed for solving the (14, 4)-problem was reduced from  
3 months to 197.5 seconds and from 3 weeks to 27 minutes on the (17, 5)-problem. 

Table 1 Running times of three algorithms 

PROJECTION  Styczynski et al.’s algorithm  exVote 
l d Accuracy (time) Accuracy (time) Accuracy (time) 
10 2 0.82 (161.1 s) 1.00 (8 minutes) 1.00 (0.1 s) 
11 2 0.95 (12.5 s) 1.00 (<1 minutes) 1.00 (0.7 s) 
12 3 0.71 (8.7 minutes) 1.00 (10.5 hours) 1.00 (9.8 s) 
13 3 0.94 (46.0 s) 1.00 (10 minutes) 1.00 (17.4 s) 
14 4 0.65 (15.4 minutes) 1.00 (>3 months) 1.00 (197.5 s) 
15 4 0.90 (129.0 s) 1.00 (6 hours) 1.00 (206.1 s) 
17 5 0.86 (273.2 s) 1.00 (3 weeks) 1.00 (27 minutes) 

The values of t and n are 20 and 600 respectively. The accuracy is the average value for 
20 experiments. 

4.3 Results on real biological data 

We also tested the performance of Algorithm exVote on real biological data. SCPD  
(Zhu and Zhang, 1999) is a database of different transcription factors for yeast. For each 
transcription factor, the published motif pattern, the positions of the binding sites and the 
set of sequences containing these binding sites are kept. We used MEME (Bailey and 
Elkan, 1995), PROJECTION (Buhler and Tompa, 2001), Voting algorithm  
(Chin and Leung, 2005) (developed for solving the PMP) and Algorithm exVote to 
discover the motif for each data set. Since both PROJECTION and Voting algorithm 
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required the motif length l and Hamming distance d as input parameters, we set l to be the 
length of the published motif and tested all values of d from 0 to l. These two algorithms 
are said to discover the motif if they output the published motif for some d. MEME is a 
popular program for discovering motif in matrix representation. For each data set, we 
inputted the length of the published motif as input of MEME. For Algorithm exVote,  
we let l = 6 and d = 1 for all data set. 

Table 2 shows the results of these algorithms. Even though we did not input the 
lengths of published motifs, Algorithm exVote could discover all the published motifs. 
Besides, since the FEMP is more flexible than the PMP, in some cases (ROX1 and 
UASGABA), Algorithm exVote could discover the correct motifs while PROJECTION 
and Voting algorithm failed. Although MEME is a powerful program for discovering 
motif, as some real motifs cannot be modelled by a matrix well, MEME could not 
discover some motifs. 

Table 2 Experimental results on real biological data 

Name Motif pattern MEME PROJECTION Voting Algorithm exVote (E(L,k,l,d)) 

AP1 TTANTAA – – TTACTAA TTAATAA (2.6) 

BAS1 TGACTC – TGACTC TGACTC TGACTC (0.0577) 

GATA CTTATC CTTATC CTTATC CTTATC CTTATC (6.75 × 10–9) 

GCR1 C[AT]TCC CTTCC CTTCC CTTCC CTTCC (8.98 × 10–4) 

HSE,HTSF TTTCTAGAA TTCTAGAAG TTCTAGAAG TTTCTAGAA TTTCTAGAA (8.35 × 10–5) 

NBF 
ATG[CT]G[AG]A 
[AT][AT] 

– TGTGAAAAG
ATGTGAAAA ATGTGAAAT (88.1) 

ROX1 [CT][CT]NATTGTT[CT] GCCTATTGTT – – ATTGTTC (0.0423) 

UASGABA 
AAAAACCGCC 
GGCGGCAAT 

– – 
– 

AAAAGCCGCC 
GGCGGCAAT 

(0.748) 

5 Discussion 

In this paper, we have introduced the expected number of sequences with similar 
properties in a set of random sequences (i.e., with the same number and length) as a 
measurement for comparing different motifs. Based on this measurement, we define the 
FEMP which does not need to take the motif’s length and the number of planted variants 
as input parameters. 

We have also developed Algorithm exVote to solve the EMP and FEMP. 
Experiments on simulated data and real biological data show that Algorithm exVote 
performs better than the popular motif discovering algorithms in terms of flexibility and 
running time. 

The main purpose of the maximal motif is to reduce the number of motifs to be 
considered by eliminating similar or inferior ones. However, discovering maximal motifs 
may not be the best way for solving motif problems. For example, given the following 
sequences 
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1

2

3

0 1 2 3 4 5 6 7 8 9
: TATTCACTGC
: GCCTCACCTG
: CGGACATGAC

S
S
S

…
…
…

 

We want to solve the Extended (4, 1)-Motif Problem with k = 3. ‘GTCAT’ has  
3 (4, 1)-variants at Si[2…6] and ‘ACACG’ at Si[3…7] for i = 1, 2, 3. ‘ACACG’ is not a 
maximal motif because it is of the same length and has the same number of variants as 
‘GTCAT’ and the positions of its variants are one base pair behind ‘GTCAT’  
(property 4). However, they are treated as the same even though ‘GTCAT’ and 
‘ACACG’ are two motifs with very different patterns. Thus, it is doubtful whether 
property 4 should be included in the definition of maximal motif. Note that Algorithm 
exVote can discover all maximal motifs with the same time and space complexities after 
removing property 4. 
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Appendix 

Calculating N(L, l, d) 

In this section, we will describe how to calculate the number N(L, l, d) of (l, d)-variants 
of a length-L sequence M. Given two length-L sequences σ and M, esuf(σ, M) is a length-l 
bit string defined as follows, 

suf

1 [ ] [ ]
( )[ ]

0 [ ] [ ]
L l i M L l i

e σ,M i
L l i M L l i

σ
σ

− + ≠ − +
=  − + = − +

 

esuf(σ, M) is a binary bit string which represents the positions that the length-l suffix of σ 
and M are different. 
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Let C[L, β] be the number of (l, d)-variants σ of a length-L sequence M satisfying 
esuf(σ, M) = β where β is a binary string of length-l. For example, when l = 5, given two 
length-8 sequences  

1 2 3 4 5 6 7 8
: AGCTAACG
: CCGTTACTM

σ  

esuf(σ, M) = ‘01001’ and C[L, ‘01001’] = 32 if d ≥ 2. 
By considering all possible bit strings β, we can calculate the number of (l, d)-variants 

of a length-L sequence 

: | |
( , , ) [ , ] [ , ]

d

N L l d C L C L
β β β

β β
≤

= =∑ ∑  

where |β| be the number of ‘1’ in the bit string β. 
We applied dynamic programming to calculate C[L, β]. When L = l, we have 

| |3 | |
[ , ] .

0 | |
d

C l
d

β ββ
β

 ≤
= 

>
 

When L > l, we calculate the value of C[L, β] by the following recurrence, 

( )3 [ 1 0 ] [ 1 1 ] [ ] 1
[ , ] [ 1 0 ] [ 1 1 ] [ ] 0

0

C L , ' C L , ' l | ' | d
C L C L , ' C L , ' l | ' | d

| | d

β β β β
β β β β β

β

• •

• •

− + − = ∧ <
= − + − = ∧ ≤
 >

 

where ' [1... 1] lβ β= − and • means concatenate 
Although there are 2l possible length-l bit strings β, we only consider the values of 

those C[L, β] with |β| ≤ d. Therefore the total number of C[L, β] we have to calculate is at 
most  

0
( 1) .

d

j

l
L l

j=

 
− +  

 
∑  

Since it takes constant time to calculate each C[L, β], the total running time for counting 
N(L, l, d) is 

0 0 0
( 1) ( ) .

d d d

j j j

l l l
O L l O L l

j j j= = =

        
− + + = −        

        
∑ ∑ ∑  � 


