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Abstract

Wireless Communication Networks based on Frequency Division Multiplexing (FDM in

short) play an important role in the field of communications, in which each request can be

satisfied by assigning a frequency. To avoid interference, each assigned frequency must be

different from the neighboring assigned frequencies. Since frequencies are scarce resources,

the main problem in wireless networks is how to fully utilize the given bandwidth of frequen-

cies. In this paper, we consider the online call control problem. Given a fixed bandwidth

of frequencies and a sequence of communication requests arriving over time, each request

must be either satisfied immediately after its arrival by assigning an available frequency, or

rejected. The objective of the call control problem is to maximize the number of accepted

requests. We study the asymptotic performance of this problem, i.e., the number of requests

in the sequence and the bandwidth of frequencies are very large. In this paper, we give

a 7/3-competitive algorithm, say CACO, for the call control problem in cellular networks,

improving the previous 2.5-competitive result, and show that CACO is best possible among

a class of HYBRID algorithms.
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1 Introduction

Frequency Division Multiplexing (FDM in short) is commonly used in wireless communications.

To implement FDM, the wireless network is partitioned into small regions (cells) and each cell

is equipped with a base station. When a call request arrives at a cell, the base station in this

cell will assign a frequency to this request, and the call is established via this frequency. Since

frequencies are scare resources, to satisfy the requests from many users, a straightforward idea
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is reusing the same frequency for different call requests. But if two calls which are close to each

other are using the same frequency, interference will happen and that will violate the quality

of communications. Thus, to avoid interference, the same frequency cannot be assigned to two

different calls with close distance to each other. In general, the same frequency cannot be

assigned to two calls in the same cell or neighboring cells.

There are two research directions on the fully utilization of the frequencies. One is the fre-

quency assignment problem, and the other is call control problem. In the frequency assignment

problem, each call request must be accepted, and the objective is to minimize the number of

frequencies to satisfy all requests. In call control problem, the bandwidth of frequencies is fixed,

thus, when the number of call requests in a cell or in some neighboring cells is larger than the

total bandwidth, the request sequence cannot be totally accepted, i.e., some requests would be

rejected. The objective of the call control problem is to accept as many requests as possible.

Problem Statement:

In this paper, we consider the online version of the call control problem. There are ω

frequencies available in the wireless network. A sequence σ of call requests arrives over time,

where σ = {r1, r2, ..., rt, ...}, rt denotes the t-th call request and also represents the cell where

the t-th request arrives. When a request arrives at a cell, the system must either choose a

frequency to satisfy this request without interference with other assigned frequencies in this cell

and its neighboring cells, or reject this request. When handling a request, the system does not

know any information about future call requests. We assume that when a frequency is assigned

to a call, this call will never terminate and the frequency cannot be changed. This assumption

does not reflect the world exactly, however, it is a basic case for the call control problem. The

objective of this problem is to maximize the number of accepted requests.

We focus on the call control problem in cellular networks, in which each cell is a hexagonal

region and has six neighbors, as shown in Figure 1. The cellular network is widely used in

wireless communication networks.

A cell

Figure 1: An example of a cellular network

Performance Measure:

To measure the performance of online algorithms, we use the competitive ratio [1] to compare

the performance between the online algorithm and the optimal offline algorithm which knows

the whole request sequence in advance. In the call control problem, the output is the set of

accepted requests. For a request sequence σ, let A(σ) and O(σ) denote the number of accepted
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request of an online algorithm A and the optimal offline algorithm O, respectively. We focus on

the asymptotic performance for the call control problem, i.e., the number of requests and the

number of frequencies are very large positive integers. The asymptotic competitive ratio for an

online algorithm A is

R∞
A = lim sup

n→∞
max
σ

{O(σ)

A(σ)
|O(σ) = n}.

Related Work:

How to fully utilize the frequencies to satisfy the communication requests is a very fundamen-

tal problem in theoretical computer science and wireless communications. Both the frequency

assignment problem and the call control problem are well studied during these years.

The offline version of the frequency assignment problem in cellular networks was proved to

be NP-hard by McDiarmid and Reed [7], and two 4/3-approximation algorithms were given

in [7, 8]. In the online frequency assignment problem, when a call request arrives, the network

must immediately assign a frequency to this call without any interference. There are mainly

three strategies: Fixed Allocation [6], Greedy Assignment [2], and Hybrid Assignment [4]. If

the duration of each call is infinity and the assigned frequency cannot be changed, the hy-

brid algorithm gave the best result for the online frequency assignment, i.e., a 2-competitive

algorithm for the absolute performance and a 1.9126-competitive algorithm for the asymptotic

performance.

For the call control problem, the offline version is NP-hard too [7]. To handle such problem,

greedy strategy is always the first try, when a call request arrives, the network chooses the mini-

mal available frequency to serve this request, if any frequency is interfere with some neighboring

assigned frequency, the request will be rejected. Pantziou et al. [9] analyzed the performance

of the greedy strategy, proved that the asymptotic competitive ratio of the greedy strategy is

equal to the maximal degree of the network. Caragiannis et al. [2] gave a randomized algorithm

for the call control problem in cellular networks, the asymptotic competitive ratio of their al-

gorithm is 2.651. Later, the performance of the randomized algorithms was improved to 16/7

by the same authors [3], they also proved the lower bound of the asymptotic competitive ratio

for the randomized algorithm is at least 2. Recently, a deterministic algorithm with asymptotic

competitive ratio 2.5 was given in [10], and the lower bound of the asymptotic competitive ratio

for the deterministic algorithm was proved to be 2.

Our Contributions:

In this paper, we consider the deterministic algorithms for the online call control problem in

cellular networks, and give a 7/3-competitive algorithm, improving the previous 2.5-competitive

result. Moreover, we define a class of algorithms, say HYBRID. Both the algorithm in [10] and

ours are two special algorithms in HYBRID, and our algorithm is best possible among HYBRID.

2 Call Control in Cellular Networks

The idea of our algorithm for call control problem in cellular networks is similar to the algorithm

in [10]. Cellular networks are 3 colorable, each cell can be associated with a color from {R,G,B}
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and any two neighboring cells are with different colors. Partition the frequencies into four sets,

FR, FG, FB, and FS , where FX (X ∈ {R,G,B}) can be only used in cells with color X and

FS can be used in any cell. We define a class of algorithm, say HYBRID, for the online

call control problem. In the HYBRID algorithms, when a request arrives at a cell with color

X ∈ {R,G,B}, first choose the frequency from the set FX , then from FS if no interference

appear. The performance are different w.r.t. the ratio between |FR| (|FG|, |FB|) and |FS |.
Note that from symmetry, the size of FR, FG and FB should be same. Thus, the algorithm

in [10] and ours are two special algorithms in HYBRID. By using a totally different analysis,

the performance of our algorithm is better. Moreover, our algorithm is best possible among

HYBRID.

Since we consider the asymptotic performance of the call control problem, we may regard

the number ω of frequencies in the system is a multiple of 7. Divide the frequencies into four

disjoint sets as follows:

FR = {1, ..., 2ω/7},
FG = {2ω/7 + 1, ..., 4ω/7},
FB = {4ω/7 + 1, ..., 6ω/7}, and
FS = {6ω/7 + 1, ..., ω}

Obviously, the ratio between the number of frequencies in FR, FG, FB, and FS is 2 : 2 : 2 : 1.

Now we describe our algorithm CACO as follows:

Algorithm 1 CACO: When a request arrives at a cell C with color X ∈ {R,G,B}
1: if FX is not totally used up then

2: assign the minimal available frequency from FX to satisfy this request.

3: else if FS is not totally used up in cell C and its neighboring cells then

4: assign the minimal available frequency from FS to satisfy this request.

5: else

6: reject this request.

7: end if

The idea to show the performance of our algorithm CACO is to prove that the ratio between

the total number of accepted requests by CACO and the total number of satisfied requests by

the optimal offline algorithm is at least 3/7. To prove this, we analyze the number of satisfied

requests in each cell and its neighboring cells, then compare the number with the optimum

value.

Let Ri be the number of requests arrived in cell Ci. Let Oi be the number of requests

accepted by the optimal offline algorithm in cell Ci.
∑

iOi is the total number of accepted

request by the optimal offline algorithm. Let Ai be the number of requests accepted by our

online algorithm CACO in cell Ci.
∑

iAi is the total number of accepted request by CACO. Let

AX(Ci) be the the number of requests accepted by CACO in cell Ci by assigning frequencies

from frequency set FX . It can be seen that Ai = AR(Ci) +AG(Ci) +AB(Ci) +AS(Ci). If Ci is
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colored with X ∈ {R,G,B}, then Ai = AX(Ci) +AS(Ci).

Fact 1. If Ri ≥ 2ω/7 for cell Ci, we have Oi ≤ Ri, Ai ≤ Ri, and Ai ≥ 2ω/7.

According to the number of satisfied requests by the optimal offline algorithm, we classify

the cells into two types: cell Ci is safe if Oi ≤ 2ω/3, and dangerous otherwise.

Lemma 2. If cell Ci is safe, then Ai ≥ 3Oi/7.

Proof. Consider the following two cases.

• Ri ≤ 2ω/7

According to CACO, all requests in this cell must be satisfied when Ri ≤ 2ω/7, thus,

Ai = Ri. Since Ri ≥ Oi, we have Ai ≥ 3Oi/7.

• Ri > 2ω/7

In this case, CACO will accept at least 2ω/7 requests by assigning frequencies from FX ,

thus, Ai ≥ 2ω/7. Since Ci is safe, Oi ≤ 2ω/3, therefore, we have Ai ≥ 3Oi/7.

Combining the above two cases, this lemma is true.

Lemma 3. No two dangerous cells are adjacent to each other, and a safe cell has at most 3

dangerous neighboring cells. All neighboring cells around a dangerous cell are safe.

Proof. This fact can be proved by contradiction.

If a safe cell C has more than 3 dangerous neighboring cells, since C has 6 neighboring cells,

there must exist two dangerous cells which are neighbors. From the definition of dangerous cell,

the total number of accepted request in these two dangerous neighboring cells is strictly more

than ω.

Similarly, if a dangerous cell C ′ is a neighboring cell of another dangerous cell C, the total

number of accepted requests in C and C ′ is strictly more than ω.

In this way, we obtain a contradiction since in any adjacent cells, the total number of

accepted requests is no more than ω.

According to the algorithm CACO, when a request cannot be satisfied in a cell C with color

X, all frequencies in FX must be used in C, and all frequencies in FS must be used in C and

its six neighbors. Thus, we have the following fact:

Fact 4. If cell C cannot satisfy a request according to the algorithm CACO, then AS(C) +∑
all k AS(Ck) ≥ ω/7, such that Ck is a neighboring cell of C.

To compare the number of satisfied requests by CACO in each cell with the optimal offline

solution, we define Bi as follows, where Ck represents a neighboring cell of Ci.

Bi =

{
3Oi/7 if Ci is safe

Ai +
∑

all k(Ak − 3Ok/7)/3 if Ci is dangerous.

Lemma 5.
∑

iBi ≤
∑

iAi.
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Proof. Suppose Ck is a safe cell. According to Lemma 2, we have Ak ≥ 3Ok/7. From Lemma 3,

we know that there are at most three dangerous neighbors around Ck, thus, after counting Bk =

3Ok/7 frequencies in Ck, the remaining Ak − 3Ok/7 frequencies can compensate the frequencies

in its dangerous neighbors, and each dangerous cell receives (Ak − 3Ok/7)/3 frequencies. From

the definition of Bi, we can see that
∑

iBi ≤
∑

iAi.

Theorem 6. The asymptotic competitive ratio of algorithm CACO is at most 7/3.

Proof. From the definition of Oi and Bi, we can say that Oi/Bi ≤ 7/3 for any cell Ci leads to

the correctness of this theorem. That is because∑
iOi∑
iAi

≤
∑

iOi∑
iBi

≤ max
i

Oi

Bi
.

If cell Ci is safe, i.e., Oi ≤ 2ω/3, we have Oi/Bi = 7/3.

If cell Ci is dangerous, i.e., Oi > 2ω/3, since Ri ≥ Oi > 2ω/3 > 3ω/7 and Ai ≤ 2ω/7+ω/7 =

3ω/7, the number of requests Ri in this cell is larger than Ai. Thus, some requests are rejected,

and this cell cannot accept any further requests.

• If the number of accepted requests in any neighbor of Ci is no more than 2ω/7, that means

all frequencies in FS are assigned to requests in cell Ci. Thus, Ai = 3ω/7. In this case,

we have

Oi/Bi = Oi/(Ai + (
∑
k

(Ak − 3Ok/7))/3) ≤ Oi/Ai ≤ ω/Ai = 7/3.

Note that cell Ck is safe since cell Ci is dangerous.

• Otherwise, suppose there are m neighbors of Ci in which the number of accepted requests

are more than 2ω/7. Let Ôi denote the average number of the optimum value of accepted

requests in these m neighboring cells around Ci.
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Bi = Ai + (
∑
k

(Ak − 3Ok/7))/3

= 2ω/7 +AS(Ci) + (
∑
k

(Ak − 3Ok/7))/3

≥ 2ω/7 +AS(Ci) +

m× 2ω/7 +
∑

for the neighbors
with Ak > 2ω/7

AS(Ck)−m× 3Ôi/7

 /3

≥ 2ω/7 +

m× 2ω/7 +
∑

for the neighbors
with Ak > 2ω/7

AS(Ck) +AS(Ci)−m× 3Ôi/7

 /3

≥ 2ω/7 + (m× 2ω/7 + ω/7−m× 3Ôi/7)/3

≥ 2ω/7 + (2ω/7 + ω/7− 3Ôi/7)/3

(that is because for any neighbor with Ak > 2w/7, Ok ≤ (ω −Oi) ≤ ω/3

since cell Ci is dangerous, thus, Ôi ≤ ω/3 and 2ω/7− 3Ôi/7 ≥ 0.)

≥ 2ω/7 + (3ω/7− 3(ω −Oi)/7)/3

(since Ok ≤ ω −Oi, we have Ôi ≤ ω −Oi)

= 2ω/7 +Oi/7

Thus, Oi/Bi ≤ Oi/(2w/7 +Oi/7) ≤ 7/3.

From the above analysis, we can say that the asymptotic competitive ratio of the algorithm

CACO is at most 7/3.

C

C1

C2C3

Figure 2: Algorithm CACO is best possible among HYBRID.

Theorem 7. CACO is best possible among HYBRID.

Proof. Suppose in a HYBRID algorithm, |FR| : |FG| : |FB| : |FS | = x : x : x : y. Consider the

configuration shown in Figure 2.

In the first step, ω requests arrive at the center cell C with color X, the algorithm will use

up all frequencies in FX and FS . In this case, the online algorithm accepts (x + y)ω/(3x + y)

requests while the optimal offline algorithm may accept all ω requests. Thus, the ratio between

the optimal offline algorithm and the online algorithm is at least (3x + y)/(x + y) since the

optimal algorithm will accept all these requests.
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In the second step, ω requests arrive at each C1, C2 and C3 with the same color. The online

algorithm can only accept xω/(3x + y) requests in each Ci (1 ≤ i ≤ 3) since the frequencies

in FS are all used in C. The online algorithm accepts (x + y)ω/(3x + y) + 3xω/(3x + y) =

(4x+y)ω/(3x+y) requests in these two steps while the optimal offline algorithm will accept all

3ω requests in Ci (1 ≤ i ≤ 3) and reject all requests in C. Thus, the ratio between the optimal

offline algorithm and the online algorithm is at least 3(3x+ y)/(4x+ y).

Balancing these two ratios, we have x : y = 2 : 1. From the description of the above two

steps, the lower bound of competitive ratio of HYBRID is 7/3.
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