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Abstract. When reconstructing a phylogenetic tree, one common 
representation for a species is a binary string indicating the existence of some 
selected genes/proteins. Up until now, all existing methods have assumed the 
existence of these genes/proteins to be independent. However, in most cases, 
this assumption is not valid. In this paper, we consider the reconstruction 
problem by taking into account the dependency of proteins, i.e. protein linkage. 
We assume that the tree structure and leaf sequences are given, so we need only 
to find an optimal assignment to the ancestral nodes. We prove that the 
Phylogenetic Tree Reconstruction with Protein Linkage (PTRPL) problem for 
three different versions of linkage distance is NP-complete. We provide an 
efficient dynamic programming algorithm to solve the general problem in 4  and 4   time (compared to the straight-forward 4    and 4    time algorithm), depending on the 
versions of linkage distance used, where  stands for the number of species 
and  for the number of proteins, i.e. length of binary string. We also argue, 
by experiments, that trees with higher accuracy can be constructed by using 
linkage information than by using only hamming distance to measure the 
differences between the binary strings, thus validating the significance of 
linkage information.  
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1 Introduction 

Discovering evolutionary relationships among species is an important problem in 
bioinformatics. Given a set of species, the phylogenetic tree reconstruction problem is 
to reconstruct an evolutionary tree where each leaf of the tree represents an input 
species and each internal node  represents a hypothetical ancestor of the species 
represented by all leaf nodes in the subtree rooted at . There are two common 
representations of the species in this problem: a DNA (or protein) sequence [1] of 
some selected genes (or proteins) which are believed to be relevant to the evolution 
process, or a binary string [2] that indicates the existence/absence of those selected 
genes (or proteins) in the species. Based on these representations, there are three 
general approaches for the reconstruction of a phylogenetic tree: (1) distance 
methods, (2) parsimony methods, and (3) likelihood methods. 
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Distance methods first define an evolutionary distance measure between two DNA 
sequences (or two binary strings) that represent the two species being compared. A 
distance matrix that captures the evolutionary distance between each pair of species is 
used as an input to the phylogentic tree construction problem. The distance method 
then infers a phylogenetic tree from the distance matrix by grouping closer species 
together in a subtree. The most well-known distance method is the Neighbor-joining 
(NJ) algorithm [3], which was later improved in terms of time complexity by the Fast 
Neighbor Joining (FNJ) algorithm [4]. Other distance methods such as ProfDists [5], 
Profile Neighbor Joining [6], and Weighbor [7], are efficient algorithms with 
polynomial time complexities, but they lack robustness. Moreover, the effectiveness 
of these methods relies very much on the evolutionary distance measure being used. 

Maximum parsimony methods aim to find a phylogenetic tree which can explain 
the given sequences with a minimum number of substitutions. This problem is known 
to be NP-hard [8]. Heuristic methods, such as the genetic algorithm [9], tabu search 
[10], simulated annealing [11], and hill climbing [12] were introduced to find near 
optimal results. If the tree structure is known (usually referred to as the “small 
parsimony problem”), the problem can be solved in polynomial time using the Fitch-
Hartigan algorithm [13] or Sankoff algorithm [14]. 

Likelihood methods (sometimes called probabilistic methods) are based on 
evolutionary models, such as the gene evolution model [15], Jukes-Cantor’s one-
parameter model, or Kimura’s two-parameters model [16]. Maximum likelihood 
methods [17-18] and Bayesian methods [19] are examples of probabilistic methods 
that find phylogenetic trees by maximizing the likelihood (or posterior probability) of 
generating the observed sequences. Probabilistic methods and parsimony methods are 
usually more robust but are more expensive computationally. 

There are other methods for which the input is a set of small subtrees, each of 
which captures the evolutionary relationship of three (called triplets) or four (called 
quartets) species among the given set of species. The problem is to combine these 
subtrees into a single phylogenetic tree such that the evolutionary relationship of the 
species is consistent with the small subtrees. However, this problem has been shown 
to be difficult. Even when all given quartets are consistent and can be combined to 
form a phylogenetic tree, finding such a tree is still NP-complete [20]. There are 
heuristic methods [21-22] and PTAS [23-24] algorithms for the case when all  
quartets are given. Another issue for this approach is that the availability of the 
triplets and quartets is usually limited. In this paper, we do not consider this type of 
input but focus on the representation of using a binary string to indicate the existence 
of selected genes/proteins.  

In distance methods and maximum parsimony methods where binary strings are 
input, a common assumption is that each bit of the binary string is independent, i.e. 
the existence of a particular gene/protein in a species is independent of the existence 
of another gene/protein in the same species. This assumption is obviously an 
oversimplification because genes/proteins in real life usually work together with other 
genes/proteins in various ways, e.g. in metabolic pathways [25], protein complexes 
[26], and signal transduction pathways [27]. Thus, the existence of different genes in 
a species may be dependent [28], and when reconstructing a phylogenetic tree, this 
kind of dependence should be considered. 
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There is strong evidence [28] that some proteins/genes should co-exist, which is 
referred to as protein linkage. From an evolutionary point of view, these functionally 
dependent proteins should usually be present (or absent if the function is no longer 
needed) in the same generation. Based on the principle of parsimony, in addition to 
finding a phylogenetic tree with the minimum number of insertions/deletions 
(hamming distance), it is not desirable to have some proteins present and others 
absent if they belong to the same functional group. To capture this biological 
property, we introduce a new model for calculating the cost of a phylogenetic tree by 
incorporating protein linkage information using the parsimony approach. Given a tree 
topology, we define the phylogenetic tree reconstruction with protein linkage problem 
(the PTRPL problem) as finding an assignment of internal nodes which minimize the 
total number of protein insertions/deletions (hamming distance) and different versions 
of linkage cost. We show that the PTRPL problem under three different versions of 
linkage costs resolve to be NP-complete. 

Although the versions of the problem we consider are NP-complete, we believe 
that linkage information is important for evolutionary studies. To further this area of 
research, we provide an efficient dynamic programming algorithm to find an optimal 
assignment in 4  or 4   time when the tree topology is given 
(compared to the straight-forward brute-force 4  or 4    time 
algorithms), where  is the number of species and  is the length of the binary 
string for each species. We demonstrate the effectiveness of our algorithm on real 
biological data that contain protein and protein linkage information. We incorporate 
our algorithm into the Nearest Neighbor Interchange algorithm [33]. For every step of 
the Nearest Neighbor Interchange, based on the current topology, we compute the 
minimum cost using our approach. The results show that we are able to reconstruct 
more accurate phylogenetic trees (with 11% higher in accuracy) than other existing 
approaches that ignore linkage information. The running time of our algorithm is 
acceptable for some practical sizes of  and is about 5 – 35 times faster than the 
brute-force algorithm according to our experimental results. 

2 Different Versions of Linkage Distance 

The cost of each evolution step depends on the number of protein insertions/deletions 
(hamming distance) and the degree of protein association (protein linkage). Given two 
length  binary strings,  and , that represent the existence of  proteins in two 
species, the cost between  and  is the sum of the hamming distance and the 
protein linkage distance (described in the following subsections) between  and . 
Given a tree T with  leaf nodes, each labeled with a binary string of length , and 
the protein linkage information of these  proteins, the PTRPL problem is to assign 
length-  binary strings to the internal nodes of  that minimize the total cost of the 
tree , i.e. the sum of the cost of all edges in . We define different versions of 
linkage distance according to various assumptions about evolution and show that the 
PTRPL problem is NP-complete under each of the versions of linkage distance we 
define.  
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2.1 Whole Block Linkage Distance 

Whole block linkage distance assumes that all proteins should be present or absent in 
the species as a block (consistent state) during evolution. From this presence or 
absence assumption, blocks are usually disjoint, i.e. each protein normally belongs to 
at most one block. The linkage cost will be  if the species evolves from a consistent 
state to an inconsistent one and zero otherwise. For all ,  0,1 , and 0, ,        0 , 1  and 0 , 10                                                            
The NP-complete proof is by reduction from the NP-complete NOT-ALL-EQUAL 
3SAT problem [32], defined as: given a Boolean formula 

 over  clauses and  
variables, the problem is to find a truth assignment for the variables such that each 
clause  of  has at least one true literal and one false literal, 1 . 

The NP-complete proof is to transform  into an instance of the PTRPL problem 
such that  is satisfiable if and only if the PTRPL instance has an internal node 
assignment that makes total distance of the tree at most 2 15 2 2 .  

 

Fig. 1. PTRPL instance from the reduction of NOT-ALL-EQUAL 3SAT problem 

The PTRPL instance consists of a 3-level tree  (Figure 1) with each node 
represented by a length-2  binary string, one bit for each variable or its negation, 
where all 2  bits are considered to be one block. Root   has 2 2  children 
with  and corresponding to clause  in , 1    (satisfaction testing), 
and  and  corresponding to variable , 1    (truth setting). Node 

 (together with  representing ) has 6 children (leaf nodes) whose binary 
strings represent 6 different satisfiable assignments (100, 010, 001, 110, 101, 011) on 
its 3 literals , ,  at the corresponding bit positions of the 2k-binary string, 
and 0 at all the other 2 3  bits. The binary strings for the children of  are 
similar to that of , except that all the other 2 3  bits are 1s (Figure 2). Thus, 
in order to have the total minimum hamming distance 2 3  and 18 from  and   to r and their leaf nodes respectively, ( ) would have 0’s (1’s) at these 2 3  bit positions and the same bit assignments as root r at the remaining three bit 
positions (for clause satisfaction). Similarly, both  and  each have 2 children 
that encode the truth assignment for  and ¬  by having (10, 01) at the 
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corresponding two bit positions of the 2k-binary string, with all other (2k−2) bits 
assigned 0 or 1 for the children of  or  respectively. Again,  or  would 
have 0 or 1 at the (2k−2) bit positions and the same bit assignments as root  at the 
two bit positions for the truth assignments of  and ¬ . When the internal nodes 
are assigned in this way, the total hamming distance is minimum, i.e. 2 15   2 2 . In order to have zero linkage distance, none of the internal nodes can be 0  or 1 , i.e. both  and  ensure that either  or ¬  (but not both) is 
assigned 1, and  (resp. ) ensure that not all the literals in clause  are 
assigned 0’s (resp. 1’s) (the NOT-ALL-EQUAL 3SAT problem). The binary string of 
root r would contain an encoding of the truth assignment of each variable, and each 
internal node (with the exception of ) would have the same binary string as one of 
its children, i.e. the clause  is satisfiable iff  is satisfiable. 

 

Fig. 2. The binary string for leaf nodes 

2.2 Partial Block Linkage Distance 

The only difference between the whole block and partial block linkage distance is the 
addition of a cost when a binary string evolves from an inconsistent state to another 
inconsistent state (as a state transition of this kind does not make any progress in 
evolution). For all , 0,1 , 0 and 0 : 
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, 0                                                   , 0 , 1               , 0 , 1    and 0 , 1                0 , 1        and  0 , 1   
The PTRPL problem is also NP-complete under partial block linkage distance.  
However, the construction of the problem instance from  as shown in the NP-
complete proof for the whole block linkage distance might not work for partial block 
linkage distance, because some decreases in linkage distance might compensate for 
increases in hamming distance and the resulting assignment might not have to achieve 
a minimum hamming distance. For example, it is possible that the binary string at  
adopts one of its children’s binary strings, so as to reduce one linkage distance at the 
expense of its hamming distances with other children. In order to prevent such 
scenario, one can extend each binary string by 2  bits with a different section 
of  1-bits, corresponding to each child of  : , ,  and , 1  and 1  (and all other bits 0’s). We determine the value of  such that hamming 
distance will dominate the linkage distance by having 14 6  where the 
total number of tree edges is14 6 . For example, the last 2  bits of s 
children are 1 0 0 ; the last 2  bits of schildren are 0 1 0 0 ; 0 0 1 0 0  for s  children, etc. In this case, the root would have an 
assignment of 0’s as its last 2  bits in order to minimize the total hamming 
distance to all its 2  children. With this assignment of the internal nodes, the 
total cost (hamming distance plus linkage distance) will be minimum iff  is 
satisfiable. Formally, the hamming distance would be 2 15 2 22 2 , and the linkage distance would be 2 10 2 . 

Note that after the extension of the 2  bits, the minimum hamming 
distance can still be achieved if the first 2 -bits of some internal nodes are assigned 
0’s or 1’s (i.e. some clauses are not satisfiable with the same true/false assignment for 
all 3 literals or some literals have the same truth assignment as their negations). 
However, assignments of this kind are avoided because the linkage distance between 
internal nodes to their children would be increased by at least . 

2.3 Pairwise Linkage Distance 

Pairwise linkage distance is defined through a set  of protein pairs, where two 
proteins in a protein pair are expected to be present/absent at the same time. In 
contrast to block linkage, we assume that each protein can belong to more than one 
pairwise linkage. Note that the whole block and partial block linkage distance can be 
partially modeled by pairwise linkage distance by having all proteins in a block paired 
to each other. 

Let  be a set of protein pairs , , where  and  represent two bit positions 
in the binary string, the linkage distance=∑ ,,  where  ( ) = 
the two bits at positions  and  of binary string ( ), with 0, and 0 , 
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, 0                                  , 00, 11        ,  01, 10 , 10, 01      00, 11  and 01, 10  

The NP-complete proof is by reduction from the NP-complete (3, 4)-SAT problem 
[29-30], which is a special case of the 3SAT problem, in which each variable appears 
exactly four times in . 

 

       Fig. 3. 3-level tree for reduction           Fig. 4. Binary string of a leaf node 

Given a formula  with  clauses, we construct a 3-level tree T (Figure 3) for the 
PTRPL instance where root  has  children  , corresponding to clause    
in  ,  1 , and   has three children , , , corresponding to literals , ,  in the clause . 

Each leaf node is represented by a length-15  binary string that consists of  
length-15  sections with the -th section denoted by  , corresponding  to clause , 1  (Figure 4). Note that we determine the value of  such that the linkage 
distance dominates the hamming distance; formally, 5 3  / 4 . The 
first 3  bits in  are a dummy section denoted by , used to balance 
linkage distance to guarantee strings assigned to  same as those of one of its three 
leaf children when  is satisfiable. The other 6 length-2  literal sections represent 
the literals or their negations in clause ; they are denoted by , , ,  ¬ ,  ¬ ,  ¬ . For leaf node   resp.  and ,  only the 
length-3   section and length-2   (resp.  and  ) are 
assigned 1’s; the remaining 15 3 2  bits are assigned 0’s.  is defined in 
such a way so as to enforce satisfaction testing of each clause and consistent truth 
testing for variables. Set P contains three types of protein pairs: T-1, T-2, and T-3: 

1) T-1 protein linkage: between each bit of  to each bit 
of , , , ¬ , ¬ ,  ¬ ; 1 . 

2) T-2 protein linkage: between each pair of bit for sections  and , 
 and ,  and ; 1 . 

3) T-3 protein linkage: between each bit in section  and each bit in section 
¬  where literals  or ¬  occur in clause , ; 1 , , . 
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Since each variable appears exactly four times, there are an equal number of T-1 and 
T-2 linkages. When the strings for section  of   and  are the same and the 
remaining sections of   are all 0’s, no T-1 or T-2 linkage costs occur between  
and . The subsections that represent variable  and its negation ¬  in the two 
sections of  that correspond to the two different clauses cannot be assigned 1’s at the 
same time; otherwise, the T-3 linkage distance between  to its children would 
increase by at least 4 . Thus, when formula  is satisfiable,  will have the same 
assignment as one of its leaf children and no T-1, T-2 and T-3 linkage costs will exist 
between  and  . When formula  is not satisfiable, either some clause  cannot 
be satisfied, or some variable and its negation are both assigned 1s at the same time. 
In either case, the total linkage distance will increase by at least 4 . Therefore, we 
can prove that the total cost of the resulting tree of the PTRPL instance is at most  5 3  4 11 2  if and only if the formula in the (3, 4)-SAT problem 
is satisfiable, where  is the number of clauses in the (3, 4)-SAT problem, 5 3 / 4 , 0 and 0 .  

3 General Algorithm for the PTRPL Problem 

In this section, we introduce an algorithm for solving the PTRPL problem through the 
use of dynamic programming.  

Similar to Sankoff algorithm [14] which considers each protein independently, we 
define ,  to be the minimum total cost (including  protein linkage distance) of 
the subtree rooted at node  when node  is assigned string , 0,1 ,  is 
the maximum number of proteins being considered, i.e. the length of the binary 
strings. The value of ,  , , where r is the root of the known leaf-
labeled phylogenetic tree T, gives the minimum cost of tree T. There are two basic 
cases for a leaf node : , 0 if  is represented by binary string , and , ∞ if  is not represented by . The value of ,  for all internal 
nodes can be calculated by the following recursion:  , ,   , ′ , ′ , 
where ,  is sum of hamming distance and linkage distance between  and . 
Since there are at most 2  2 4  combinations of  and  to consider, and 
each ,  takes  time to calculate the hamming distance plus 
whole/partial block linkage distance, and  time to calculate the hamming 
distance plus pairwise linkage distance, the total takes at most 4  or 4  time for a tree with  edges. However, we can optimize the 
algorithm by precomputing ,  ahead of time for all combinations of  and .  Each ,  can be calculated in 1  or  time depending on block 
and pairwise linkage, respectively (by considering each  with a particular  one 
by one according to their gray code such that two successive binary strings differ by 
one bit, after exhausting all 2  different values of , the next  is considered 
according to its gray code), as each protein can relate to at most one block (resp.  
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pairs) of linkage(s), the values at ,  for all pairs of  and  will take no 
more than 4  (resp. 4   time. As the value of , ′ , ′  for 
each child v of u can be computed independently, we can perform the calculation edge 
by edge along with the values of ,  for all internal nodes in 4 ·  time, 
where n is the number of leaf nodes. The time complexity for finding ,  ,  is 4  and 4  for block and pairwise 
linkage respectively. Algorithm 1 gives the pseudocode of the algorithm. 

 

Algorithm 1: PTRPL problem 

Input: Phylogentic tree  with  leaf nodes, each leaf node  labeled with a binary 
sequence  of length . 

Output: Minimum total cost (hamming distance and linkage distance) of T.  

1:  Pre-compute , ′ , for all pair , 0,1  

2:  Calculating the value of  ,  , , r is the root of T, by the 
following recursion:  , =

0  is a leaf and  
∞  is a leaf and ∑  , , ′ , ′    is not a leaf  

4 Experiments and Results 

In order to evaluate the significance of the use of linkage information in constructing 
a phylogenetic tree, we downloaded 10 phylogenetic trees from NCBI for 
experimentation. Each tree contains 10 species: 9 of them bacteria in 3 to 4 different 
genera and 1 Saccharomyces cerevisiae (yeast) working as an outlier. A total of 10 
orthology groups were selected for each tree such that each species is represented by a 
length-10 binary string with a particular position in the binary string assigned “1” if 
and only if the species has a protein from the corresponding orthology group. Two 
orthology groups (positions) are considered as having a pairwise linkage if and only if 
the two orthology groups are either both present or both absent in at least 8 species. A 
set of orthology groups are considered to be in the same block if all pairs of orthology 
groups in the set have pairwise linkage with each other.  

Nearest Neighbor Interchange algorithm [33] is applied to reconstruct the 
phylogenetic tree for the ten species based on different cost functions, including 
pairwise linkage distance, whole block linkage distance, partial block linkage distance 
and hamming distance. Given an initial tree topology, the Nearest Neighbor 
Interchange algorithm greedily updates the tree topology to minimize the total cost 
based on the corresponding cost function of the tree until no more improvement can 
occur. Since the initial tree topology has a dramatic effect on the final result, we 
randomly picked 100 initial trees for each experiment to minimize this effect. Among 
the 100 final results, the tree with the minimum total cost was considered as the 
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predicted tree. Different values of  and  δ  are considered, and the resulting 
assignemnts is not sensitive to the values of  and δ. We use  1 for the 
experiments of the whole block linkage distance problem and 1, δ = 0.5 for the 
partial block linkage distance and pairwise linkage distance problem. These 
parameters gave slightly better results than other parameters. 

We calculate the number of triplets in each predicted tree that match the NCBI 
tree. A triplet of three species A, B and C, where species A and B closer to each other 
than species C in the predicted tree, is considered as a match with the NCBI tree if a) 
species A and B are closer to each other than species C in the NCBI tree, or b) species 
A, B and C have the same closest ancestor in the NCBI tree.  

Table 1. Percentage of correct triplets for different cost functions 

 

From the results shown in Table 1, the trees we predict using both hamming 
distance and linkage distance information are more accurate than the trees we predict 
using hamming distance only. Our conclustion is that protein linkage provides 
information for the reconstruction of a more accurate phylogentic tree. When we 
compare the trees we construct based on whole block linkage distance and partial 
block linkage distance, we find that the trees we construct using pairwise linkage 
distance are more accurate.  

 

Fig. 5. NCBI tree topology and the predicted tree topologies based on pairwise linkage 
distance, whole block linkage distance, partial block linkage distance and hamming distance 
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Figure 5 shows an example of the NCBI tree topology and the predicted tree 
topologies based on pairwise linkage distance, whole block linkage distance, partial 
block linkage distance and hamming distance for a set of species (1 Saccharomyces, 2 
Methanocaldococcus, 3 Methanococcus and 4 Sulfolobus). The NCBI tree and the 
predicted tree based on pairwise linkage and partial block linkage distance are similar 
except that species Methanococcus maripaludis C6 (mmx) in the Methanococcus is 
misclassified as Methanocaldococcus (70.8% of triplets are correct). The predicted 
tree based on whole block linkage distance also resembles the NCBI tree except that 
species mmx in the Methanococcus is misclassfied as Sulfolobus (65.8% of triplets 
are correct). However, the predicted tree based on hamming distance merges the 
Methanococcus and Sulfolobus incorrectly and is quite different from the NCBI tree 
(only 63.3% of triplets are correct). 

All experiments were performed on a server machine with eight 2.4 GHZ CPUs 
and 140G memory. However, only one CPU is used in our experiments and the 
memory consumption for the program is less than 80G. The running times of the 
Neighbor Interchange algorithm based solely on hamming distance, hamming 
distance plus pairwise linkage distance and hamming distance plus block linkage 
distance on one experiment takes 1 second, 30 seconds and 5 seconds for a single 
experiment, respectively. Although the algorithm using protein linkage information 
requires a longer running time, it is acceptable for phylogenetic trees with a small set 
of species. 

5 Conclusion 

We have proved the NP-completeness for Phylogenetic Tree Reconstruction with 
Protein Linkages (PTRPL) problem under three definitions of linkage distance. A 
general algorithm for the PTRPL problem is presented for different linkages with time 
complexity 4  and 4  for two variations of linkage distance 
(block linkage and pairwise linkage).   

Lastly, we conducted experiments to confirm our hypothesis that the use of linkage 
information could lead to more accurate phylogenetic trees. For future work, we will 
try to further evaluate the efficiency and effectiveness of our dynamic programming 
algorithm. In particular, we shall study the PTRPL problem when the phylogenetic 
tree structure is not given, aim at developing effective heuristics, explore the linkage 
structures of real world data and develop algorithms for different versions of linkage 
structures. 
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