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Abstract We study the problem of (off-line) broadcast scheduling in minimizing total flow
time and propose a dynamic programming approach to compute an optimal broadcast sched-
ule. Suppose the broadcast server has k pages and the last page request arrives at time n. The
optimal schedule can be computed in O(k3(n + k)k−1) time for the case that the server has
a single broadcast channel. For m channels case, i.e., the server can broadcast m different
pages at a time where m < k, the optimal schedule can be computed in O(nk−m) time when
k and m are constants. Note that this broadcast scheduling problem is NP-hard when k is a
variable and will take O(nk−m+1) time when k is fixed and m ≥ 1 with the straightforward
implementation of the dynamic programming approach.
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1. Introduction

In an on-demand broadcasting system, the server receives the client requests for pages at
arbitrary times and serves the requests by broadcasting (sending) pages via the broadcast
channels. After the server broadcasts a page, all pending requests for that page are satisfied.
The goal of the broadcast scheduler is to arrange the order of page broadcasts so as to
minimize the total (or average) flow time of the requests.

In this paper we assume that time is discrete and represented by non-negative integers.
Every page can be broadcast to clients in one time unit. The server has m broadcast channels,
i.e., at most m different pages can be broadcast at a time. The broadcast scheduling problem is
formulated as follows. Assume that the server contains k pages, namely P0, P1, . . . , Pk−1. The
requests for these pages arrive at some integer times. Let rt,i denote the number of requests for
Pi at time t . For a schedule, let bt,i be the earliest time at or after time t when Pi is broadcast.
The flow time of a request for Pi arriving at time t is bt,i − t + 1. Suppose the last request
arrives at time n. The total flow time of the schedule, which is to be minimized, is equal to∑n

t=0

∑k−1
i=0 rt,i (bt,i − t + 1). Note that an optimal schedule that minimizes the total flow time

is also an optimal schedule that minimizes the average flow time. In this paper we consider
the off-line version of the problem, in which the server is aware of all the requests in advance.

Previous work of the problem considered that the number of broadcast channels m = 1 and
the number of pages k is a variable. Erlebach and Hall (2004) showed that this problem is NP-
hard. Bansal et al. (2005) gave an algorithm that achieved an O(

√
k) approximation, and very

recently the algorithm was improved with an approximation factor O(log2(k + n)) (Bansal
et al., 2006). Besides, most of the previous works considered the resource augmentation
setting. An m-speed algorithm refers to an algorithm that utilizes m broadcast channels and
an m-speed c-approximation algorithm is an m-speed algorithm that produces schedules
with total flow time at most c times that of the schedule by the optimal 1-speed algorithm.
Kalyanasundaram et al. (2001) gave an 1

ε
-speed 1

1−2ε
-approximation algorithm for any fixed

ε ∈ (0, 1
3 ]. Gandhi et al. (2004) gave an 1

ε
-speed 1

1−ε
-approximation algorithm for any fixed

ε ∈ (0, 1
2 ]. To match the performance of the 1-speed optimal algorithm, Erlebach and Hall

(2004) gave a 6-speed algorithm, which was improved to 4-speed (Gandhi et al., 2004) and
then to 3-speed by Gandhi et al. (2002). The on-line version of the problem was studied by
Edmonds and Pruhs (2003, 2005). Bartal and Muthukrishnan (2000) considered the problem
that minimizes the maximum flow time.

This paper is the first to give algorithms for finding optimal broadcast schedules that
minimize total flow time. Note that the straightforward implementation of the dynamic pro-
gramming approach will take O(nk) time. Based on a dynamic programming technique and
the concave property of the optimization function, our algorithms construct an optimal sched-
ule for the case when m = 1 in O(k3(n + k)k−1) time where k is the number of pages and the
last request arrives at time n. When k is a constant, the time complexity is O(nk−1). We gen-
eralize this result in the m channels case where a server has 1 ≤ m < k broadcast channels.
We show that an optimal schedule can be found in O(k( k−1

m )(( k−1
m−1 ) + k)(n + k/m)k−m) time

or O(nk−m) time when k and m are constants.
The rest of the paper is organized as follows. In order to illustrate the idea, a simple case

when m = 1 and k = 2 is considered. A straightforward dynamic programming implemen-
tation would take O(n2) time. In Section 2, a linear-time optimal algorithm based on the
concavity of the optimization function for m = 1 and k = 2 is given. The application of the
concave property for general k is not straightforward, we have shown, in Sections 3 and 4
respectively, how the algorithms for the cases of m = 1 and general m can be speeded up.
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2. Broadcast scheduling for two pages

Assume we have m = 1 broadcast channel, and k = 2 pages (P0 and P1), and the last request
arrives at time n. Our target is to efficiently compute the minimum total flow time for satisfying
all requests.

Definition 1. For i ∈ {0, 1} and 0 ≤ t ≤ n + 1, let Fi (t) denote the minimum total flow time
in satisfying all the requests arriving at or after time t where Pi must be broadcast at time t .

Note that Fi (n + 1) = 0 because there is no request after time n. As either P0 or P1 is
broadcast at time 0, we can see that the minimum total flow time in satisfying all requests,
denoted by F , is equal to min{F0(0), F1(0)}. In the following we show how Fi (t) can be
computed recursively. The base case is when t = n + 1,

F0(n + 1) = 0 and F1(n + 1) = 0.

In general, consider 0 ≤ t ≤ n. For F0(t), the optimal schedule must have P0 broadcast at
each time t, t + 1, . . . , s − 1 for some s ≥ t + 1, and then P1 broadcast at time s. Thus,

F0(t) = min
t+1≤s≤n+1

{c1(s, t) + F1(s)}

where c1(s, t) = ∑s−1
i=t (ri,0 + ri,1(s − i + 1)) is the total flow time in satisfying the requests

arriving between time t and time s − 1 inclusively. Similarly,

F1(t) = min
t+1≤s≤n+1

{c0(s, t) + F0(s)}

where c0(s, t) = ∑s−1
i=t (ri,0(s − i + 1) + ri,1).

By Lemmas 2 and 3, functions c0(s, t) and c1(s, t) can be computed in constant time for
any given s and t after an O(n)-time preprocessing.

Lemma 2. Given a sequence of n + 1 numbers, a0, . . . , an, with O(n) time preprocessing,
we can compute

∑ j
k=i ak for any 0 ≤ i ≤ j ≤ n in constant time.

Proof: Compute all the prefix sums bi = ∑i
k=0 ak in O(n) time. After that, each of the

partial sums
∑ j

k=i ak = b j − bi−1 can be computed in constant time. �

Lemma 3. Given a sequence of n + 1 numbers a0, . . . , an, with O(n) time preprocessing,
we can compute

∑ j
k=i ak (d − k) for any 0 ≤ i ≤ j ≤ n and any d in constant time.

Proof: Compute all the prefix sums bi = ∑i
k=0 ak and weighted prefix sums wi = ∑i

k=0(k ·
ak) in O(n) time. After that, each of the functions

j∑
k=i

ak (d − k) = d
j∑

k=i

ak −
j∑

k=i

(k · ak) = d(b j − bi−1) − (w j − wi−1),

can be computed in constant time. �
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Implementing the recursive formulas with a brute-force method, F can be found by
computing all Fi (t) for all i ∈ {0, 1} and 0 ≤ t ≤ n, which takes O(n2) time. By the technique
of Galil and Park (1990), we show that F , as well as the optimal schedule, can be found in
linear time. We say that a function w() is concave if it satisfies the quadrangle inequality,
i.e., w(a, c) + w(b, d) ≤ w(a, d) + w(b, c) for a ≤ b ≤ c ≤ d. Galil and Park proved the
following theorem.

Theorem 4. (Galil and Park, 1990). Given a concave function w(i, j) for integer 0 ≤ i ≤
j ≤ n and given E(0), the recurrence E( j) = min0≤i< j {D(i) + w(i, j)} for 1 ≤ j ≤ n can
be solved in O(n) time, if D(i) can be computed in constant time.

We show that our recurrences can be transformed to that of Theorem 4, and thus they can
also be solved in linear time. We give the details for the case of F0() and the case of F1() can
be done similarly. Let E( j) = F0(n − j + 1) for 0 ≤ j ≤ n + 1. The base case is E(0) =
F(n + 1) = 0. Let w(i, j) = c1(n − i + 1, n − j + 1) for 0 ≤ i < j ≤ n + 1. We have the
recurrence E( j) = min0≤i< j {D(i) + w(i, j)} for 1 ≤ j ≤ n + 1, where D(i) = F1(n − i +
1). Given that the relevant values of F1() (resp. F0()) are already known when D(i) is needed,
D(i) can be obtained in constant time. Lemma 5 shows that function w(i, j) satisfies the
quadrangle inequality. Thus, by Theorem 4, we can find the minimum total flow time and
the optimal schedule in linear time, as given in Theorem 6.

Lemma 5. The function w(i, j) = c1(n − i + 1, n − j + 1) (resp. c0(n − i + 1, n − j +
1)) for integer 0 ≤ i < j ≤ n + 1 satisfies the quadrangle inequality, i.e., w(a, c) +
w(b, d) ≤ w(a, d) + w(b, c) for integer a ≤ b ≤ c ≤ d.

Proof: We consider the case of c1(n − i + 1, n − j + 1) and the case of c0(n − i + 1, n −
j + 1) can be proved similarly. For w(i, j) = c1(n − i + 1, n − j + 1) = ∑n−i

x=n− j+1(rx,0 +
rx,1(n − i − x + 2)), we can see that

∑n−a
x=n−c+1 rx,0 + ∑n−b

x=n−d+1 rx,0 = ∑n−a
x=n−d+1 rx,0 +∑n−b

x=n−c+1 rx,0 and

n−a∑
x=n−c+1

rx,1(n − a − x + 2) +
n−b∑

x=n−d+1

rx,1(n − b − x + 2)

=
n−a∑

x=n−c+1

rx,1(n − a − x + 2) +
n−c∑

x=n−d+1

rx,1(n − b − x + 2) +
n−b∑

x=n−c+1

rx,1(n − b − x + 2)

≤
n−a∑

x=n−d+1

rx,1(n − a − x + 2) +
n−b∑

x=n−c+1

rx,1(n − b − x + 2). {∵ n − a ≥ n − b}

The last inequality is due to n − a ≥ n − b. Therefore we have w(a, c) + w(b, d) ≤
w(b, c) + w(a, d). �

Theorem 6. An optimal schedule in minimizing the total flow time for the broadcast schedul-
ing problem with one channel and two pages and requests arriving at integer time 0 to time
n can be computed in O(n) time.
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3. Broadcast scheduling for k pages

In this section we consider the problem with a single broadcast channel and k pages, in
particular for k ≥ 2. We formulate the problem as a dynamic programming problem which
is a generalization of that in Section 2.

A sub-problem in the dynamic programming can be specified by a k-dimensional vector
v = (v0, . . . , vk−1). A value vi represents the earliest broadcast time of Pi , and hence
0 ≤ vi ≤ n + k − 1. Moreover, at any time only one page is broadcast, i.e., vi �= v j if
i �= j .

The sub-problem corresponding to v is to find the minimum total flow time in satisfying all
the requests arriving between min0≤i≤k−1{vi } and n inclusively, with vi being the earliest
broadcast time of Pi . For example, when k = 2, F0(t) defined in Section 2 refers to the
minimum total flow time over all sub-problems corresponding to the vectors v = (t, t ′) with
t ′ > t . For general k, there are �((n + k)k) possible such k-dimensional vectors as well as
sub-problems, the time complexity in solving the recurrence will be at least �((n + k)k).
In the following, we modify slightly the definition of the vectors corresponding to the sub-
problems so that better than O((n + k)k) time can be achieved.

The vector v = (v0, . . . , vk−1) is similar to what is defined earlier except that one of the
vi ’s value is unspecified, which is represented as “∗”. If vα = ∗ for some 0 ≤ α < k, it means
that in the sub-problem corresponding to v, the earliest broadcast time of Pα is not fixed, yet
it cannot be earlier than that of all other pages.

Definition 7. For a vector v = (v0, . . . , vk−1), denote by vmin the minimum values among vi

besides that equals to ∗. Precisely, vmin = min0≤ j≤k−1 & v j �=∗{v j }.

The sub-problem corresponding to v, say with vα = ∗, is to find the minimum total flow
time in satisfying all the requests arriving between time vmin and n inclusively, with vi being
the earliest broadcast time of Pi for i �= α. The earliest broadcast time of Pα can be any
possible value between vmin + 1 and n + k − 1 which is not equal to any other vi , i.e., some
integer in Cv = {t | t �= v j for all v j �= ∗ and vmin + 1 ≤ t ≤ n + k − 1}.

Definition 8. Let F(v) denote the minimum total flow time for the sub-problem correspond-
ing to a vector v.

The function F(v) can be defined recursively as follows. In the base case, we let

F(v) = 0 for all v with vmin ≥ n + 1

because there is no request arriving after time n. In general, we consider 0 ≤ vmin ≤ n and
assume that vα = ∗. Although vα is unspecified, the allowable earliest broadcast time of Pα

can only be some value β ∈ Cv . Therefore, F(v) equals the minimum total flow time among
the sub-problems corresponding to v with vα assigned a value β, for each β ∈ Cv . After a
value of β is chosen, we observed a property similar to that of the recurrence in Section 2. If
vx = vmin, then the schedule must have Px broadcast at each time vmin, vmin + 1, . . . , s − 1
where s = min{β, minv j �=vmin & v j �=∗{v j }} is the earliest broadcast time of the pages other than
Px . Note that there is no pending request for Px immediately after time s − 1. Thus, we can
identify a “smaller” sub-problem corresponding to a vector vβ = (vβ

0 , . . . , v
β

k−1) based on v
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and β as follows.

v
β

i =
⎧⎨⎩

∗ for i where vi = vmin,

β for i = α, i.e., vi = ∗,

vi otherwise.
(1)

Let ft,i (vβ, v) be the total flow time of the rt,i requests for Pi arriving at time t for
vmin ≤ t ≤ v

β
min − 1, i.e.,

ft,i (v
β, v) =

{
rt,i for i where vi = vmin,

rt,i (v
β

i − t + 1) otherwise.

The total flow time of the rt,i requests for Pi arriving at time t for vmin ≤ t ≤ v
β
min − 1 and

0 ≤ i ≤ k − 1, denoted by c(vβ, v), is
∑k−1

i=0

∑v
β
min−1

t=vmin
ft,i (vβ, v). To compute F(v), we can

consider the |Cv| different “smaller” sub-problems resulting from choosing the |Cv| different
values for β, i.e.,

F(v) = min
β∈Cv

{F(vβ ) + c(vβ, v)}. (2)

3.1. Straightforward implementation

First, we give an analysis on a brute-force implementation in solving the above recurrence of
F(v). Then we present a faster implementation by generalizing the approach used in Section 2.
Similar to the case of k = 2 in Section 2, with O(kn)-time preprocessing,

∑v
β
min−1

t=vmin
ft,i (vβ, v)

can be computed in constant time for any given i, vmin and v
β
min − 1 (see Lemmas 2 and 3) and

thus a particular c(vβ, v) can be computed in O(k) time. Since the number of sub-problems
corresponding to vβ , derived from a given v, is O(n), a particular F(v) can be computed
in O(kn) time. Lemma 9 implies that there are k(n + k)!/(n + 1)! different sub-problems
corresponding to a k-dimensional vector. Therefore, the brute-force method in finding the
minimum total flow time by computing all F(v) takes O(k2n(n + k)!/(n + 1)!) time, or
concisely, O(k2(n + k)k) time.

Lemma 9. There are k(n + k)!/(n + 1)! different k-dimensional vectors v = (v0, . . . , vk−1)
with vi ∈ {∗} ∪ {0, . . . , n − k + 1} for 0 ≤ i ≤ k − 1 and exactly one of vi ’s value must equal
∗ and vi �= v j for i �= j .

Proof: As each vi should have a distinct value and one of them must be ∗, there are ( n+k
k−1 ) ways

of choosing the k − 1 distinct values from {0, 1, . . . , n + k − 1}. Since the k − 1 distinct
values have k! ways of assigning to the k positions of vi , there are altogether k(n + k)!/
(n + 1)! different possible vectors of v. �

3.2. Efficient implementation

Note that up to this stage, there is no gain in the time complexity and �((n + k)k) time is
still needed. In order to improve the time complexity, the concave property of the function
c(vβ, v) should be exploited as in Section 2. In the faster implementation, we group the
sub-problems, equivalently the corresponding vectors, into k2 groups denoted as Gx,y for
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0 ≤ x, y ≤ k − 1. Two vectors v and u belong to the same group Gx,y if vmin = vx and
umin = ux , and vy = uy = ∗, i.e., both sub-problems each corresponding to v and u having
Px broadcast earlier than all the other pages and the earliest broadcast time of Py unspecified.
We further divide the vectors in each group into sub-groups. Two vectors v and v′ of the
same group Gx,y belong to the same sub-group if except Px and Py every page have the same
earliest broadcast time in both sub-problems corresponding to v and v′, i.e., v j = v′

j for all
j with j �= x and j �= y. It is clear that there are O(n) vectors in each sub-group and we can
prove that there are (n + k − 1)!/(n + 1)! sub-groups in each group in the following lemma.

Lemma 10. There are (n + k − 1)!/(n + 1)! sub-groups in each group.

Proof: By symmetry, there are the same number of sub-groups in each group. Without
loss of generality, we can consider a particular group G0,1. For v ∈ G0,1, since v0 is the
minimum among all v j except v1, no v j for 2 ≤ j ≤ k − 1 can be of value 0. The number
of sub-groups in G0,1 is equal to the number of ways of choosing k − 2 distinct values from
{1, 2, . . . , n + k − 1} for v2, v3, . . . , vk−1, i.e., ( n+k−1

k−2 ). As these k − 2 distinct values have
(k − 2)! ways of assigning to v2, v3, . . . , vk−1, there are (n + k − 1)!/(n + 1)! sub-groups in
G0,1, and each other group. �

Consider the set of F(v) for all vectors v of the same sub-group. We can transform the
recurrence for these F(v) to the form as in Theorem 4 of Section 2. Without loss of generality,
we consider a sub-group H from G0,1, and other sub-groups can be handled similarly. For all
vectors v in H , we have v0 = vmin and v1 = ∗ and all other v j fixed. For ease of explanation,
we assume that v j ∈ {n + 2, n + 3, . . . , n + k − 1} for all 2 ≤ j ≤ k − 1. (The assumption
is not necessary for the correctness of our algorithm.) For 0 ≤ t ≤ n + 1, let E(t) = F(v)
where v0 = vmin = n − t + 1. The base case is E(0) = F(v) = 0 when t = 0 and v0 = n + 1.
For 0 ≤ s ≤ n, let u = vn−s+1 and D(s) = F(u) where u0 = ∗, u1 = n − s + 1, and u j = v j

for 2 ≤ j ≤ k − 1. The construction of u (i.e., vn−s+1) from v follows that in Equation (1).
Since the values v j for 2 ≤ j ≤ k − 1 are fixed for all v in H , there are only n + 1 val-
ues of F(u) to consider. For 0 ≤ s < t ≤ n + 1, let w(s, t) = c(u, v), which is given as
follows.

w(s, t) =
n−s∑

i=n−t+1

ri,0 +
n−s∑

i=n−t+1

ri,1(n − s − i + 2) +
k−1∑
j=2

n−s∑
i=n−t+1

ri, j (v j − i + 1)

Lemma 11 shows that the function w(s, t) satisfies the quadrangle inequality. By Theorem 4,
all F(v) for v in H can be computed in O(kn) time. Together with Lemma 10 and the fact that
there are k2 groups, all F(v) of all sub-groups can be computed in O(kn · k2 · (n + k − 1)!/
(n + 1)!), or concisely, O(k3(n + k)k−1) time. Thus, we have Theorem 12.

Lemma 11. The function w(s, t) for 0 ≤ s < t ≤ n + 1 satisfies the quadrangle inequality,
i.e., w(a, c) + w(b, d) ≤ w(a, d) + w(b, c) for a ≤ b ≤ c ≤ d.

Proof: We have

w(s, t) =
n−s∑

i=n−t+1

((
ri,0 +

k−1∑
j=2

ri, j (v j − i + 1)

)
+ ri,1(n − s − i + 2)

)
.
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Consider ri,0 + ∑k−1
j=2 ri, j (v j − i + 1) as a function of i , say f (i). It is easy to see that∑n−a

i=n−c+1 f (i) + ∑n−b
i=n−d+1 f (i) = ∑n−a

i=n−d+1 f (i) + ∑n−b
i=n−c+1 f (i). As in the proof of

Lemma 5, we have shown that
∑n−a

i=n−c+1 ri,1(n − a − i + 2) + ∑n−b
i=n−d+1 ri,1(n − b − i + 2)

≤ ∑n−a
i=n−d+1 ri,1(n − a − i + 2) + ∑n−b

i=n−c+1 ri,1(n − b − i + 2). Hence, w() satisfies the
quadrangle inequality. �

Theorem 12. An optimal schedule in minimizing the total flow time for the broadcast
scheduling problem with one channel and k pages and requests arriving at integer time
0 to time n can be computed in O(k3(n + k)k−1) time.

4. Broadcast scheduling with multiple channels

Assume that there are m broadcast channels available to the server. At each time slot, the
server can broadcast at most m different pages among the k pages, where m < k. Without
loss of generality, we can assume that there is an optimal schedule that broadcasts exactly m
different pages at each time slot.

We apply the framework in Section 3 to solve the problem using the dynamic program-
ming approach. Each sub-problem in the dynamic programming can be specified by a k-
dimensional vector v = (v0, . . . , vk−1) where 0 ≤ vi ≤ n + �k/m� − 1 represents the earli-
est broadcast time of Pi . It is clear that after time n we need at most �k/m� − 1 time units
to satisfy all pending requests. Let t = min0≤i≤k−1{vi }. The sub-problem corresponding to v

is to find the minimum total flow time in satisfying all the requests arriving between t and n
inclusively, with vi being the earliest broadcast time of Pi . Since we consider the schedules
that broadcast m pages at each time, in particular time t , it is sufficient to consider only those
vectors v with m v j ’s values equal to t .

Same as that in Section 3, we consider every vector v has one of the v j equal to ∗. For a
vector v with vα = ∗ for some 0 ≤ α < k, it means that in the corresponding sub-problem
the earliest broadcast time of Pα is unspecified but it can only be some integer in Cv = {i |
there are less than m v j ’s values equal to i for 0 ≤ i ≤ n + �k/m� − 1}.

We adopt the notations defined in Section 3. Let F(v) denote the minimum total flow time
for the sub-problem corresponding to v and let vmin = min0≤i≤k−1 & vi �=∗{vi }. We show that
F(v) can be defined recursively. For the base case, F(v) = 0 if vmin ≥ n + 1. In general, we
assume 0 ≤ vmin ≤ n andvα = ∗. Consider a schedule S for the sub-problem corresponding to
v. Let β be the earliest broadcast time of Pα . It is clear that β ∈ Cv . Suppose vx1 = vx2 = . . . =
vxm = vmin for some 0 ≤ x1, . . . , xm ≤ k − 1. S must have all pages Px1 , . . . , Pxm broadcast at
each of times vmin, vmin + 1, . . . , s − 1 where s = min{β, minv j �=vmin & v j �=∗{v j }} is the earliest
broadcast time of the pages other than Px1 , . . . , Pxm . Note that there is no pending request
for Px1 , . . . , Pxm immediately after time s − 1.

We can construct a “smaller” sub-problem based on v and β. This sub-problem is char-
acterized by another vector, denoted by ṽβ , which is relaxed in the sense that exactly m ṽ

β

j ’s
values equal to ∗ and the vector is defined as follows.

ṽ
β

i =
⎧⎨⎩

∗ for i where vi = vmin,

β for i = α, i.e., vi = ∗,

vi otherwise.
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Similar to Definition 7, let ṽ
β
min = min0≤ j≤k−1 & ṽ

β

j �=∗{ṽβ

j }. The sub-problem corresponding
to ṽβ is to find the minimum total flow time, denoted by F(ṽβ ), in satisfying all requests
arriving between ṽ

β
min and n inclusively, with ṽ

β

j being the earliest broadcasting time of Pj

for ṽ
β

j �= ∗. We do not need to compute F(ṽβ ) directly. In fact F(ṽβ ) = min{F(u) | u is a
non-relaxed vector and umin = ṽ

β
min and u j = ṽ

β

j for all ṽβ

j �= ∗}, which is the minimum F(u)
among those corresponding to the sub-problems with the earliest broadcast time u j of Pj at
time ṽ

β

j , for all j except those with ṽ
β

j = ∗.
Let ft,i (ṽβ , v) be the flow time of the rt,i requests for Pi arriving at time t for vmin ≤ t ≤

ṽ
β
min − 1, i.e.,

ft,i (ṽ
β , v) =

{
rt,i for i where vi = vmin,

rt,i (ṽ
β

i − t + 1) otherwise.

The total flow time of the rt,i requests for Pi arriving at time t for vmin ≤ t ≤ ṽ
β
min − 1 and

0 ≤ i ≤ k − 1, denoted by c(ṽβ , v), is
∑k

i=0

∑ṽ
β
min−1

t=vmin
ft,i (ṽβ , v). The recurrence of F(v) can

be defined as follows,

F(v) = min
β∈Cv

{F(ṽβ ) + c(ṽβ , v)}.

4.1. Straightforward implementation

We give an analysis on a brute-force implementation in solving the above recurrence of F(v),
and then we show a faster implementation. Lemma 13 implies that there are O(k( k−1

m )(n +
k/m)k−m) different sub-problems we need to consider.

Lemma 13. There are at most O(k( k−1
m )(n + k/m)k−m) different k-dimensional vectors v =

(v0, . . . , vk−1) satisfying the following conditions: (i) For all 0 ≤ i ≤ k − 1, v j ∈ {∗} ∪
{0, . . . , n + �k/m� − 1} and exactly one of v j ’s value must equal ∗; (ii) for each 0 ≤ t ≤
n + �k/m� − 1, there are at most m v j ’s values equal to t; and (iii) exactly m v j ’s values
equal vmin.

Proof: For the v j for 1 ≤ j ≤ k, there are k( k−1
m ) combinations such that one of them is

chosen for ∗ and m of them are chosen for vmin. For the actual values of v j , we have 0 ≤ vmin ≤
n + �k/m� − 1 and 1 ≤ v j ≤ n + �k/m� − 1 for v j �= vmin and v j �= ∗. Therefore the total
number of different vectors is at most O(k( k−1

m ) · (n + �k/m�) · (n + �k/m� − 1)k−m−1), i.e.,
O(k( k−1

m )(n + k/m)k−m). �

If F(ṽ) for all relaxed vector ṽ are known and can be retrieved in constant time, then
the computation of F(v) for each non-relaxed vector v takes O(k(n + k/m)) time because
computing c(ṽβ , v) takes O(k) time and there are O(n + k/m) different ṽβ to be considered.
We can compute all F(ṽ) as follows. Since F(ṽ) = min{F(v) | v is a non-relaxed vector
and vmin = ṽmin and v j = ṽ j for all ṽ j �= ∗}, after each F(v) is computed we update the
corresponding values of F(ṽ) where ṽmin = vmin and ṽ j = v j for all ṽ j �= ∗, if F(v) < F(ṽ).
It takes O(( k−1

m−1 )) time to update for each F(v) because there are ( k−1
m−1 ) corresponding ṽ, as

shown in Lemma 14. Therefore, it takes O(k(n + k/m) + ( k−1
m−1 )) time to handle each F(v),
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hence O((k(n + k/m) + ( k−1
m−1 ))k( k−1

m )(n + k/m)k−m) time to compute all values of F(v) in
the brute-force implementation. If k and m are constant, it still takes O(nk−m+1) time.

Lemma 14. For a k-dimensional non-relaxed vector v with exactly one v j ’s value equals
to ∗, there are ( k−1

m−1 ) k-dimensional relaxed vectors ṽ with exactly m ṽ j ’s values equal to ∗
where ṽmin = vmin and ṽ j = v j for all ṽ j �= ∗.

Proof: Since there is already one v j ’s value equal to ∗, we need to select m − 1 more of v j

to be ∗. Thus the number of ṽ is equivalent to the number of ways in choosing m − 1 out of
the (k − 1) v j ’s values with v j �= ∗. �

4.2. Efficient implementation

Similar to the efficient implementation in Section 3, we can partition the vectors into groups
and sub-groups. Two vectors v and u belong to the same group G(x1, x2, . . . , xm, y), if vx1 =
vx2 = . . . = vxm = vmin and ux1 = ux2 = . . . = uxm = umin and vy = uy = ∗. Furthermore,
two vectors v and v′ of the same group G(x1, x2, . . . , xm, y) belong to the same sub-group if
v j = v′

j for all j with j �= x1, . . . , j �= xm , and j �= y. Then by Theorem 4 we can compute
all F(v) of v in a sub-group in O(k(n + k/m)) time. The concave property of c(ṽβ , v)
can be proved as in Lemma 11. Theorem 16 shows that the overall time complexity of
computing all F(v) is O(k( k−1

m )(( k−1
m−1 ) + k)(n + k/m)k−m). When k and m are constants, the

time complexity becomes O(nk−m).

Lemma 15. There are k( k−1
m ) groups and there are at most O((n + k/m)k−m−1) sub-groups

in each group.

Proof: The number of groups is equal to the number of ways in choosing two disjoint
subsets {y} and {x1, x2, . . . , xm} from {1, . . . , k} with one and m values, respectively, which is
(m + 1)( k

m+1 ) = k( k−1
m ). The number of sub-groups in each group is O((n + k/m)k−m−1)

because for a vector v in G(x1, . . . , x2, y) each v j can be assigned a value in {1, . . . , n +
�k/m� − 1} for j �= x1, . . . , j �= xm , and j �= y, which consists of at most O((n + �k/m� −
1)k−m−1), i.e., O((n + k/m)k−m−1) different combinations. �

Theorem 16. An optimal schedule in minimizing the total flow time for the broadcast
scheduling problem with m channels and k pages and requests arriving at integer time 0
to time n can be computed in O(k( k−1

m )(( k−1
m−1 ) + k)(n + k/m)k−m) time, or O(nk−m) time if

k and m are constants.

Proof: By Lemmas 13 and 14, the overall time to update F(ṽ) after computing each
F(v) is O(k( k−1

m−1 )( k−1
m )(n + k/m)k−m). By Lemma 15, the overall time to compute F(v)

using the technique of Galil and Park is O(k(n + k/m) · (n + k/m)k−m−1 · k( k−1
m )), i.e.,

O(k2( k−1
m )(n + k/m)k−m). Altogether the time complexity is O(k( k−1

m )(( k−1
m−1 ) + k)(n +

k/m)k−m), or O(nk−m) if k and m are constants. �
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