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Abstract

We study the problem of on-line scheduling of parallel jobs on two machines. The jobs are parallel in the sense that each of
them specifies the number of processors, in this case 1 or 2, required for simultaneous processing. The jobs are presented one by
one. Upon receiving a job, we must assign the job to a time slot in the schedule before the next job is presented. No re-assignment
is allowed. The goal is to minimize the makespan of the final schedule. There is a straightforward algorithm which achieves a
competitive ratio of 2. In this paper we show that no on-line algorithm can have a competitive ratio less than 1 + √

2/3 (≈ 1.816).
We also study two special cases of the problem: (i) Jobs arrive in a non-decreasing order of processing times where we give an
optimal algorithm with competitive ratio 3/2; (ii) Jobs arrive in a non-increasing order of processing times where we show that no
on-line algorithm has a competitive ratio less than 9/7 and give a greedy algorithm with a competitive ratio 4/3.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In the classical job scheduling, each job requires only a single machine (or processor) for processing. However, this
assumption may not apply to modern computer systems, especially in the parallel supercomputers, where some jobs
can only be processed on several processors in parallel. The scheduling model for parallel jobs has been proposed
and studied extensively [1–7] in recent years. The problem we study in this paper can be described as follows. A job
j = (s,p) is associated with two parameters p and s, where p is the processing time of the job and s is the number of
machines required for simultaneous processing. The jobs are presented one by one. The problem is on-line in the sense
that upon receiving a job and before the next job is presented, we need to assign the job to a time slot of the schedule
so that the required number of machines is available. No splitting of jobs (i.e., preemption) and no re-assignment is
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allowed. The goal is to minimize the makespan of the final schedule, i.e., the completion time of the last job to finish
in the schedule. In this paper we focus on the case of two machines and therefore each job can request for either 1 or
2 machines for processing, which is denoted as the 1-machine job or 2-machine job, respectively.

We use the competitive analysis [8] to measure the performance of an on-line algorithm. For any input job se-
quence I , let CA(I) denote the makespan of the schedule produced by the on-line algorithm A and COPT(I ) denote
the makespan of the optimal schedule. We say that A is k-competitive if

sup
I

{
CA(I)

COPT(I )

}
� k.

We also say that k is the competitive ratio of A. Notice that for any input job sequence, a k-competitive on-line
algorithm can always give a schedule with makespan at most k times that of the optimal schedule. For simplicity, we
use CA and COPT instead of CA(I) and COPT(I ) if there is no confusion.

If in our problem all jobs require one machine only, it is the traditional job scheduling problem in multiple ma-
chines, first investigated by Graham [9]. A fundamental algorithm called the List Scheduling algorithm [9] is to
schedule a newly arrived job to a machine in which the job can start as early as possible. By Graham’s analysis, List
Scheduling algorithm can be shown to be (2 − 1/m)-competitive, where m is the number of machines. Faigle et al.
[10] showed that the List Scheduling algorithm is in fact an optimal algorithm for 2 and 3 machines.

In general, if a job can request any number of available machines, Johannes presented an on-line algorithm with
competitive ratio 12 [7]. She also proved that no on-line algorithm is better than 2.25-competitive [7]. Ye and Zhang
improved the upper bound by giving an 8-competitive on-line algorithm [6], which was then further improved by Ye
with a 7-competitive on-line algorithm [11]. There were also some results for the cases where some extra information
on the jobs is known in advance. If the jobs arrive in a non-increasing order of processing times, Ye and Zhang gave an
on-line algorithm with competitive ratio 2 [6]. If the longest processing time is known, Ye gave an on-line algorithm
with competitive ratio 4 [11].

In this paper we investigate the two machines case in scheduling parallel jobs. We prove a lower bound of 1+√
2/3

on the competitive ratio of any on-line algorithm. We also study two special cases of the problem and give a constant
competitive on-line algorithm for each of the cases. (i) When the jobs arrive in a non-decreasing order of processing
times, we give an optimal algorithm which is (3/2)-competitive. (ii) When the jobs arrive in a non-increasing order
of processing times, we show that no on-line algorithm has a competitive ratio less than 9/7 and we give a (4/3)-
competitive on-line algorithm.

The rest of the paper is organized as follows. In Section 2 we give an adversary to show the lower bound of
1 + √

2/3. In Section 3 we present a greedy on-line algorithm. For each of two special case inputs where the jobs
arrive in either non-decreasing or non-increasing order of the processing times, we show that the greedy algorithm is
constant competitive. The greedy algorithm is indeed optimal in the first case.

2. Lower bound

In this section we show that for scheduling parallel jobs on two machines, no on-line algorithm can achieve a
competitive ratio less than 1 + √

2/3 (≈ 1.816). Before we prove the lower bound, we point out that, on the other
hand, there is a straightforward on-line algorithm that can guarantee a competitive ratio of 2. The algorithm simply
schedules all jobs one after the other leaving no idle time between jobs. For the 1-machine jobs, they are all scheduled
to one particular machine only. In the worst case, there is no 2-machine job. The optimal schedule has all jobs evenly
scheduled in the two machines but it still requires a makespan at least half the makespan of the on-line schedule,
which is equal to the total processing time.

We prove the lower bound on the competitive ratios of all on-line algorithms by giving an adversary job sequence
such that any on-line algorithm ALG has a competitive ratio at least 1+√

2/3. The adversary job sequence S consists
of at most 5 jobs, j1, j2, j3, j4, and j5 arriving in that order. The adversary runs as follows. For i = 1 to 5, after ALG
schedules ji , if the ratio of the makespans of the on-line schedule and the optimal schedule for jobs j1, . . . , ji is at
least 1 + √

2/3, then the adversary stops.
We let j1 = (1,1) where the first ‘1’ denotes the required number of machines and the next ‘1’ denotes the required

processing time. The parameters for the subsequent jobs depend on how the on-line algorithm schedules the previous
jobs. Without loss of generality, suppose an on-line algorithm schedules j1 in Machine 1 at some time h1 � 0 (see
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Fig. 1. An on-line schedule for the adversary job sequence S.

Fig. 1). We let j2 = (2, h1 + ε) where ε is a sufficiently small positive constant (the exactly value of ε will be known
in the proof of the lower bound). Since the processing time of j2 is larger than h1 (the available slot before j1), j2
must be scheduled after j1. Suppose j2 is scheduled h2 units after j1. Next, let j3 = (1,1 + h1 + h2 + ε). Similarly,
since j3 cannot fit into any available slot in either machine before j2, j3 must be scheduled after j2. Suppose j3 is
scheduled h3 units after j2. Since it is indifferent to schedule j3 in either machine after j2, we assume without loss
of generality that j3 is scheduled in Machine 1. Next, let j4 = (2, y) where y = max{h1, h2, h3} + ε. Again, since
j4 cannot fit into any available slot in both machines before j3, we assume j4 is scheduled h4 units after j3. Finally,
let j5 = (1, z) where z = 1 + h1 + h2 + max{h3 + h4 + ε,1} + ε. We can see that it is also not possible to schedule
j5 before j4. Thus, the best way is to schedule j5 immediate after j4. It is also indifferent to schedule j5 in either
machine, so we assume j5 is scheduled in Machine 1. See Fig. 1 for the on-line schedule of these jobs.

In the following lemma, we prove that no on-line algorithm can schedule the above adversary job sequence with
competitive ratio less than 1 + √

2/3. Note that the analysis is tight because the on-line algorithm can choose h1 =√
2/3 and h2 = h3 = h4 = 0 and achieve the competitive ratio 1 + √

2/3 in scheduling the adversary job sequence.

Lemma 1. No on-line algorithm can schedule the adversary job sequence S with competitive ratio less than 1+√
2/3.

Proof. Let Si denote the job subsequence j1, . . . , ji . We prove that the maximum among the competitive ratios
max{CALG(Si)/COPT(Si) | 1 � i � 5} � 1 + √

2/3. It is shown by the argument that if both CALG(S1)/COPT(S1) �
1 + √

2/3 − δ and CALG(S3)/COPT(S3) � 1 + √
2/3 − δ for some δ > 0, then CALG(S5)/COPT(S5) � 1 + √

2/3.
First, we consider S1. The optimal schedule for S1 has j1 to start at time 0, so we have

CALG(S1)

COPT(S1)
= 1 + h1 � 1 +

√
2

3
− δ ⇒ h1 �

√
2

3
− δ.

For the optimal schedule for S3, j1 and j3 both start at time 0 but on different machines and j2 starts at time 1 + h1 +
h2 + ε on both machines. Therefore, we have

CALG(S3)

COPT(S3)
= 2 + 3h1 + 2h2 + h3 + 2ε

1 + 2h1 + h2 + 2ε
� 1 +

√
2

3
− δ

⇒ h3 �
(

2

√
2

3
− 1 − 2δ

)
h1 −

(
1 −

√
2

3
+ δ

)
h2 −

(
1 −

√
2

3
(1 + 2ε) + (1 + 2ε)δ

)

�
(

2

√
2

3
− 1 − 2δ

)
h1 let ε �

√
3

8
− 1

2
� h1.

Since j4 = (2, y) where y = max{h1, h2, h3} + ε, and h3 � h1, we can simplify y = max{h1, h2} + ε.
In the following we consider an offline schedule for S5 and analyze the ratio of the makespans of the on-line

schedule and this offline schedule. Clearly, this ratio will be at most the competitive ratio of the on-line schedule.
The offline schedule has j2 to start at time 0, j4 at time h1 + ε. Then j1 and j5 are scheduled at time h1 + y + ε in
Machine 1 and Machine 2, respectively. Finally, j3 is scheduled at time 1 + h1 + y + ε in Machine 1. See Fig. 2 for
the offline schedule.
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Fig. 2. An offline schedule for the adversary job sequence S.

We present the analysis case by case and show that CALG(S5)/COPT(S5) � 1 + √
2/3.

Case 1. Assume h3 + h4 + ε � 1. Thus we have j5 = (1, z) with z = 1 + h1 + h2 + h3 + h4 + 2ε. The competitive
ratio is

CALG(S5)

COPT(S5)
� 3 + 4h1 + 3h2 + 2h3 + 2h4 + y + 4ε

1 + 2h1 + h2 + h3 + h4 + y + 3ε

� min

{
2,

1 + h2 + y + 4ε

y + 3ε

}

� min

{
2,

h1 + h2 + max{h1, h2} + 1 − √
2/3 + δ + 5ε

max{h1, h2} + 4ε

}
as h1 �

√
2

3
− δ

= 2 let ε � 1 − √
2/3 + δ

3

� 1 +
√

2

3
.

Case 2. Assume h3 + h4 + ε < 1. Thus we have j5 = (1, z) with z = 2 + h1 + h2 + ε. The competitive ratio is

CALG(S5)

COPT(S5)
= 4 + 4h1 + 3h2 + h3 + h4 + y + 3ε

2 + 2h1 + h2 + y + 2ε
� 4 + 4h1 + 3h2 + y + 3ε

2 + 2h1 + h2 + y + 2ε
.

Case 2.1. Assume h1 � h2. Thus y = h2 + ε, and we have

CALG(S5)

COPT(S5)
= 4 + 4h1 + 4h2 + 4ε

2 + 2h1 + 2h2 + 3ε
� 1 +

√
2

3
let ε � 2 − 2

√
2/3√

6 − 1
.

Case 2.2. Assume h1 > h2. Thus y = h1 + ε, and we have

CALG(S5)

COPT(S5)
= 4 + 5h1 + 3h2 + 4ε

2 + 3h1 + h2 + 3ε

� 4 + 5h1 + 4ε

2 + 3h1 + 3ε
the function is decreasing w.r.t. h1 for ε � 2/3

� 4 + 5(
√

2/3 − δ) + 4ε

2 + 3(
√

2/3 − δ) + 3ε
as h1 �

√
2

3
− δ

� 1 +
√

2

3
let ε � δ(

√
6 − 2)√
6 − 1

.

In conclusion, we prove that any on-line algorithm has the competitive ratio at least 1 + √
2/3 in scheduling the

adversary job sequence S. �
By the above lemma, we have actually proved the following theorem that no on-line algorithm can achieve a

competitive ratio less than 1 + √
2/3 in scheduling parallel jobs on two machines.

Theorem 2. For the problem of scheduling parallel jobs on two machines, no on-line algorithm is better than (1 +√
2/3)-competitive.
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3. Upper bounds on two special cases

In this section we study the problem with special case inputs. Section 3.1 considers the job sequences with jobs
arriving in a non-decreasing order of processing times. Section 3.2 considers the job sequences with jobs arriving in
a non-increasing order of processing times. In these two sections, we analyse the performance of a Greedy Algorithm
(defined below) and prove that its competitive ratios are 3/2 and 4/3, respectively. In Section 3.2 we also show that if
the jobs arrive in a non-increasing order of processing times, no on-line algorithm can achieve a competitive ratio less
than 9/7.

In the following, we define how the Greedy Algorithm schedules a job.

• If the job is (1,p), i.e., a 1-machine job with processing time p, then schedule the job at the earliest time t to
a machine where the machine is idle throughout the period from time t to t + p. If both machines satisfy the
requirement for the same earliest time t , then schedule the job to Machine 1 at time t .

• If the job is (2,p), i.e., a 2-machine job with the processing time p, then schedule the job at the earliest time t

when both machines are idle throughout the period from time t to t + p.

We observe some properties of the greedy schedule. First, there is no time instance in the schedule (from time 0 to
the makespan of the schedule) with both machines being idle. Without loss of generality, we can assume that the last
job finished in the greedy schedule is a 1-machine job, which is the worst case scenario. Otherwise, removing that job
from the input sequence results in a greedy schedule having a larger competitive ratio.

We need some definitions for further discussion. An idle slot x of a machine in the greedy schedule is defined to
be a period where the machine is idle and the machine is scheduled to run some jobs immediate before (except for the
first idle slot which may start at time 0) and after the period. In fact the job scheduled immediate after the idle slot
must be a 2-machine job, otherwise, the job can start earlier which contradicts to the Greedy Algorithm. Let xi denote
the i-th idle slot of the machines in the greedy schedule ordered by the start time of the slot. For simplicity, xi also
denotes the length of the idle slot.

3.1. Jobs arrive in non-decreasing order of processing times

In this section we show that the Greedy Algorithm is (3/2)-competitive if the jobs arrive in a non-decreasing order
of processing times. In fact, Greedy Algorithm is optimal because no on-line algorithm can achieve a competitive
ratio smaller than 3/2 as proved by Faigle et al. [10].

Theorem 3. Greedy Algorithm is (3/2)-competitive in scheduling parallel jobs on two machines if the jobs arrive in
a non-decreasing order of processing times.

Proof. In the greedy schedule, for every idle slot xi , let yi denote both the 2-machine job and its processing time that
starts immediate after xi . Let � denote both the last (1-machine) job to finish in the greedy schedule and its processing
time. Suppose there are k idle slots in the greedy schedule. Let X = ∑k

i=1 xi be the total length of the idle slots and
Y = ∑k

i=1 yi be the total processing time of the 2-machine jobs starting immediate after the idle slots. Let CGreedy

denote the makespan of the greedy schedule.
Define the total weighted processing time to be the sum of the weighted processing time of all jobs where a w-

machine job has weight w, for w = 1 or 2. Note that any schedule has makespan at least half of the total weighted
processing time. By the greedy schedule, the total weighted processing time is at least 2CGreedy − X − �. Let COPT

denote the makespan of the optimal schedule. We have COPT � CGreedy − (X + �)/2. From another point of view, any
schedule must have the 1-machine and 2-machine jobs processed in different time slots, in particular consider the jobs
yi and the last job �. Thus the makespan of any schedule, including the optimal schedule, must be at least Y + �. As a
result, we have COPT � max(CGreedy − (X + �)/2, Y + �).

We show that COPT � max(CGreedy − (X + �)/2, Y + �) � (2/3)CGreedy by considering the following two cases.

(1) Assume (X + �)/2 � CGreedy/3. We have COPT � CGreedy − (X + �)/2 � (2/3)CGreedy.
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(2) Assume (X + �)/2 > CGreedy/3. We have � > (2/3)CGreedy − X � (2/3)CGreedy − Y because each job yi ar-
rives after xi which implies the processing time yi � xi . Therefore COPT � Y + � > Y + (2/3)CGreedy − Y =
(2/3)CGreedy.

As a result, we have in any case COPT � (2/3)CGreedy, i.e., the competitive ratio of the Greedy Algorithm is at most
3/2. �
3.2. Jobs arrive in non-increasing order of processing times

In this section we show that the Greedy Algorithm is (4/3)-competitive if the jobs arrive in a non-increasing order
of processing times and we give a job sequence to illustrate that the analysis is tight. Moreover, we also show that no
on-line algorithm can achieve a competitive ratio less than 9/7.

Firstly, we assume that the last job to finish in the greedy schedule does not start at time 0, otherwise, both the
greedy and the optimal schedules have the same makespan. For subsequent discussion, we define the all-busy slot in
the greedy schedule to be a period where both machines are processing some jobs and either of the two machines is
idle immediate before and immediate after the period. Note that for ease of explanation we consider both machines
are idle before time 0 and after the makespan. Let zi denote the ith all-busy slot ordered by the start time of the slot.
For simplicity, zi also denotes the length of the slot. The following lemma reveals the arrangement of the all-busy
slots and the idle slots. It also implies that the number of all-busy slots is one more than the number of idle slots. See
Fig. 3 for an example of a greedy schedule.

Lemma 4. Every idle slot is immediately preceded and immediately followed by an all-busy slot in the greedy schedule
for jobs arriving in a non-increasing order of processing times.

Proof. Since the greedy schedule does not have any time instance that both machines are idle, every idle slot must be
immediately preceded by an all-busy slot, perhaps except the first idle slot which may start at time 0. We argue that
if the last job to finish in the greedy schedule is a 1-machine job (which is assumed), then x1 must be preceded by
an all-busy slot. Since the first job arrived is the longest job in this special input, which is scheduled at time 0 by the
Greedy Algorithm, x1 must be at least the value of this processing time. Thus slot x1 must be able to accommodate
any subsequent jobs including the last job, which implies that an all-busy slot must exist preceding x1. The definition
of idle slot implies that the slot must be followed by an all-busy slot. �

In addition to the idle slots xi defined before, we define the “open” idle period as follows. Suppose Machine 1 and
Machine 2 finish all their jobs at time t1 and t2, respectively, and without loss of generality, let t1 � t2. The period
from time t2 to t1, for which Machine 2 is idle, is called the open idle period x′. For simplicity, x′ also denotes the
length of the period, i.e., t1 − t2. Similar to the idle slot, the open idle period should be preceded by an all-busy slot,
which is the last all-busy slot. Otherwise, the last job must start at time 0 which contradicts to the assumption we made
in the beginning of the section. We show the relationship among the all-busy slots, the idles slots, and the open idle
period, in the following lemma.

Lemma 5. Suppose the greedy schedule has k idle slots xi and k + 1 all-busy slots zi for k � 0, and one open idle
period. We have zi � xi for 1 � i � k and zk+1 � x′.

Fig. 3. An example to show that greedy schedule has a competitive ratio arbitrarily close to 4/3.
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Proof. We first prove that zi � xi . Consider the slot xi and for instance suppose it appears in Machine 1. We can
see that Machine 2 must be processing a single 1-machine job, say j , throughout the period of slot xi . Otherwise,
the second job processed by Machine 2 during slot xi can be scheduled by the Greedy Algorithm to start earlier in
Machine 1 during slot xi . Then we have the processing time of j , pj � xi . If there is any 2-machine job scheduled in
the all-busy slot zi , the processing time of that job, say p′, must be at least pj because the 2-machine job must arrive
before job j . Hence, we have zi � xi . If there is no 2-machine job scheduled in the all-busy slot zi , xi must be the first
idle slot, i.e., i = 1. There must be a 1-machine job scheduled and completed in slot z1 before slot x1 in Machine 1
and the processing time of this job is at least x1. It is because this job must have the same or longer processing time
than that of the last job which cannot be scheduled in slot x1. Thus we have proved that zi � xi . In a similar approach,
we can also prove zk+1 � x′. �
Theorem 6. Greedy Algorithm is (4/3)-competitive in scheduling parallel jobs on two machines if the jobs arrive in
a non-increasing order of processing times.

Proof. Let X = ∑k
i=1 xi and Z = ∑k+1

i=1 zi . By Lemma 5, we have Z � X + x′. Since the greedy schedule does not
have any time instance that both machines are idle, we have the makespan of the greedy schedule CGreedy = Z+X+x′.
Since Z � X + x′, we also have Z � CGreedy/2. On the other hand, the makespan of the optimal schedule COPT must
be at least half the sum of the weighted processing time of all jobs, where the weights of the 1-machine and 2-machine
jobs are 1 and 2, respectively. Therefore, we have COPT � Z + (X+x′)/2 = CGreedy/2+Z/2 � (3/4)CGreedy. Hence,
the competitive ratio of the Greedy Algorithm is at most 4/3. �

We show that the analysis for Theorem 6 is tight by giving a job sequence such that the competitive ratio of
the Greedy Algorithm is arbitrarily close to 4/3. Consider a sequence of 4 jobs arriving in the order: j1 = (1,2),
j2 = (1,1 + ε), j3 = (2,1) and j4 = (1,1), where ε is a sufficiently small positive number. The makespan of the
greedy schedule is 4, while the makespan of the optimal schedule is 3 + ε (see Fig. 3). Thus the competitive ratio is
arbitrarily close to 4/3.

In fact, the performance of the Greedy Algorithm is not too bad when compared with the optimal algorithm. In the
following theorem, we show that no on-line algorithm is better than (9/7)-competitive.

Theorem 7. For the problem of scheduling parallel jobs on two machines with the jobs arriving in a non-increasing
order of processing times, no on-line algorithm is better than (9/7)-competitive.

Proof. We give an adversary job sequence to show that no on-line algorithm has a competitive ratio less than 9/7 − δ

for any δ > 0. The adversary consists of at most 4 jobs, j1, j2, j3 and j4 arriving one by one in that order. After each
job is scheduled, if the competitive ratio of the on-line schedule is at least 9/7 − δ, the adversary stops. We show that
if an on-line algorithm has a competitive ratio less than 9/7 − δ both after scheduling j1 and after scheduling j2, then
the on-line algorithm must have a competitive ratio at least 9/7 − δ after scheduling all 4 jobs.

Let j1 = (1,1). The on-line algorithm must schedule j1 at time h < 2/7 − δ, otherwise, the competitive ratio is at
least 9/7 − δ. Then let j2 = (2,3/4 + ε) where ε is a sufficiently small positive number. Job j2 must be scheduled
after j1 and at time 1 + x where x < 1/2 + 2ε/7. Otherwise, the competitive ratio is at least 9/7 − δ. Let j3 =
(1, (1 + x)/2 + 6ε/7) and j4 = (1, (1 + x)/2 + 6ε/7). It can be verified that (1 + x)/2 + 6ε/7 � 3/4 + ε because
x < 1/2 + 2ε/7. Thus the processing times of all these 4 jobs are in a non-increasing order. Since the sum of the
processing times of j3 and j4 are greater than the length of the idle slot before j2, which is 1 + x, at least one of
the two jobs must be scheduled after j2 (see Fig. 4). Therefore, the competitive ratio of the on-line algorithm after
scheduling all 4 jobs is at least

9/4 + 3x/2 + 13ε/7

7/4 + x + 19ε/7
� 9/4 − 7δ/4 + 3x/2 + +7δ/4 + 13ε/7

7/4 + x + 19ε/7

� min

(
9/7 − δ,3/2,

7δ/4 + 13ε/7

19ε/7

)

= 9/7 − δ {let ε � 343δ/320}.
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Fig. 4. The on-line and offline schedules for the adversary in the proof of Theorem 7.

By the above argument, if there is an on-line algorithm with a competitive ratio k < 9/7, we can show that the
algorithm is at least (9/7 − δ)-competitive for 9/7 − δ > k, by letting δ < 9/7 − k, which is a contradiction. As a
result, we have proved that no on-line algorithm is better than (9/7)-competitive. �
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