
J Comb Optim
DOI 10.1007/s10878-015-9914-6

Constrained pairwise and center-star sequences
alignment problems

Yong Zhang1,3 · Joseph Wun-Tat Chan2 ·
Francis Y. L. Chin3 · Hing-Fung Ting3 ·
Deshi Ye4 · Feng Zhang5 · Jianyu Shi6

© Springer Science+Business Media New York 2015

Abstract Sequence alignment is a fundamental problem in computational biology,
which is also important in theoretical computer science. In this paper, we consider
the problem of aligning a set of sequences subject to a given constrained sequence.

A preliminary version of this paper appeared in the Proceedings of the 8th International Frontiers
of Algorithmics Workshop (FAW 2014) Lecture Notes in Computer Science, Volume 8497, 2014,
pp 309–319.

B Deshi Ye
yedeshi@zju.edu.cn

Yong Zhang
zhangyong@siat.ac.cn

Joseph Wun-Tat Chan
cswtchan@gmail.com

Francis Y. L. Chin
chin@cs.hku.hk

Hing-Fung Ting
hfting@cs.hku.hk

Feng Zhang
amyfzhang@gmail.com

Jianyu Shi
jianyushi@nwpu.edu.cn

1 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China

2 College of International Education, Hong Kong Baptist University, Kowloon, Hong Kong, China

3 Department of Computer Science, The University of Hong Kong, Pok Fu Lam, Hong Kong, China

4 College of Computer Science, Zhejiang University, Hangzhou, China

5 College of Mathematics and Information Science, Hebei University, Baoding, China

6 School of Life Science, Northwestern Polytechnical University, Xi’an, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10878-015-9914-6&domain=pdf

J Comb Optim

Given two sequences A = a1a2 . . . an and B = b1b2 . . . bn with a given distance
function and a constrained sequence C = c1c2 . . . ck , our goal is to find the optimal
sequence alignment of A and B w.r.t. the constraint C . We investigate several variants
of this problem. If C = ck , i.e., all characters in C are same, the optimal constrained
pairwise sequence alignment can be solved in O(min{kn2, (t − k)n2}) time, where
t is the minimum number of occurrences of character c in A and B. If in the final
alignment, the alignment score between any two consecutive constrained characters
is upper bounded by some value, which is called GB-CPSA, we give a dynamic
programming with the time complexity O(kn4/ log n). For the constrained center-
star sequence alignment (CCSA), we prove that it is NP-hard to achieve the optimal
alignment even over the binary alphabet. Furthermore, we show a negative result for
CCSA, i.e., there is no polynomial-time algorithm to approximate the CCSA within
any constant ratio.

Keywords Sequence alignment · Dynamic programming · Complexity

1 Introduction

Sequence alignment (Mount 2004) is a fundamental method in computational biology
to analyzing the functional, structural, or evolutionary relationships between a set of
DNA, RNA, or protein sequences. It is well-defined and had received in-depth study
in bioinformatics and theoretical computer science during these years.

Let � be the set of alphabets. For s, a sequence of n characters over �, s[x . . . y]
denotes the substring of s from the x th character to the yth character of s, where
1 ≤ x < y ≤ n. In particular, let s[x] denote the x th character of s. In general, the
size of the alphabet set is not large. In this paper, we assume that |�| = c, where c is
a constant. E.g., in DNA sequence, � = {A,C,G, T }.

Given two sequences s and t , the Pairwise Sequence Alignment (PSA) w.r.t. s and
t is two sequences s′ and t ′ such that s′ and t ′ have the same length n′ and removing
all space characters “−” from s′ and t ′ gives s and t respectively. Let function α

define the alignment positions, i.e., α(s, i) denotes the position of the character in
s′ corresponds to character s[i]. So s′[α(s, i)] = s[i]. For a given distance function
δ(x, y) ≥ 0 which measures the mutation distance between two characters, where
x, y ∈ � ∪ {-}, the pair-wise score of two length n′ sequences s′ and t ′ is defined as∑

1≤x≤n′ δ(s′[x], t ′[x]). Usually, δ(x, x) = 0 for any x ∈ �. The optimal pairwise
sequence alignment with the minimum alignment score can be solved in O(n2) time
by dynamic programming, where n is the length of the longer sequence. The problem
of finding the longest common subsequence (LCS) of two sequences is a special case
of the sequence alignment, which is well-studied for many years. Note that the target
of the LCS problem is to find the maximized length of a common subsequence of two
strings, however, this maximization problem can be converted to the minimization
problem by defining the distance function δ(·, ·), such that δ(x,−) = 1, δ(−, y) = 1,
δ(x, y) = 2 if x �= y and δ(x, y) = 0 if x = y, where both x and y are characters
in these two strings and not ′−′. The LCS problem can be solved in O(n2) time
(Cormen et al. 2009). The only subquadratic algorithm for LCS was given by Masek

123

J Comb Optim

and Paterson (1980), which runs in O(n2/ log n) if the size of the alphabet set is
bounded by a constant. Iliopoulos and Sohel Rahman (2008) introduced the LCS
problem with fixed gap (FIG), in which the distance between any two consecutive
characters in the common subsequence in both input sequences are bounded by a
given parameter K . They presented an O(n2 + R log log n) algorithm, where R is the
total number of matches between the input sequences.

In the multiple sequence alignment (MSA) problem, we are given m sequences
S = {s1, s2, . . . , sm} with maximum length n. The output of an MSA is an alignment
matrix A, with m rows and n′(≥ n) columns of characters over � ∪ {-}, such that
removing space characters from the i th row of A gives si for 1 ≤ i ≤ m. The sum-of-
pairs (SP) score of the MSA A is defined to be the sum of the pair-wise scores of all
pairs of the sequences, i.e.,

score(A) =
∑

1≤i< j≤m

∑

1≤p≤n′
δ(Ai,p, A j,p)

where Ai,p and A j,p are the characters at the i- and j th row and the pth column of A,
respectively. Star alignment is also an important alignment in computational biology
(Setubal and Meidanis 1997). In the star alignment, a center sequence s shall be iden-
tified, and it is used as the “center of star” when aligning with all other sequences. A
sequence is a center if it is the most similar to all the rest using pairwise alignment.
It was shown in Bonizzoni and Vedova (2001) and Wang and Jiang (1994) that find-
ing an alignment matrix with the minimum sum-of-pair alignment score for m ≥ 3
sequences is NP-Hard. There are a number of heuristics which approximate the opti-
mal alignment, some with guaranteed worst case approximation ratio, and some with
good performance in practice, e.g., BLAST (1990), Clustal W (2007). One of the
approximation algorithms in Gusfield (1993), based on the center-star alignment, can
approximate the optimal alignment within a factor of 2−2/m in O(mn2) time, where
m is the number of sequences.

According to the biology knowledge, some residues in the multiple sequence must
be aligned in the same columns. For example, His12, Lys41 and His119 should be
aligned in the same columns when consider the alignment of RNase sequence. That
motivates to study the constrained sequence alignment problem, which was intro-
duced by Tang et al. (2003). In the constrained multiple sequence alignment problem
(CMSA), we are given, in addition to the inputs of the multiple sequence alignment
problem, a constrained sequence C = c1c2 . . . ck , where C is a common subsequence
of all si ∈ {s1, s2, . . . , sm}. The solution of a CMSA problem is a constrained align-
ment matrix A which is an alignment matrix such that each character in C appears
in an entire column of A and also in the same order, i.e. there exists a list of integers
{g1, g2, . . . , gk} where 1 ≤ g1 < · · · < gk ≤ n′ and for all 1 ≤ i ≤ m and for all
1 ≤ j ≤ k, we have Ai,g j = c j .

Let A be a CMSA matrix for S = {s1, s2, . . . , sm} and the constrained sequence
C . Define score(A) to be the score of the CMSA matrix A. Let A∗

S,C be the optimal
CMSAmatrix and AS,C be the CMSAmatrix derived by an approximation algorithm.
The approximation algorithm is said to have an approximation ratio r if and only if
for any S and C ,

123

J Comb Optim

score(AS,C)

score(A∗
S,C)

≤ r.

For two sequences of a CMSA, it is called constraint pairwise sequence alignment
(CPSA), Tang et al. (2003) gave an algorithmwith both the time and space complexity
O(kn4), where k is the length of the constrained sequence. The result was improved
by Chin et al. (2004) to O(kn2). To approximate the optimal constrained alignment for
m ≥ 3 sequences, Chin et al. (2005) introduced the constrained center-star sequence
alignment (CCSA). Similar to the center-star sequence alignment to approximate the
multiple sequences alignment, the optimal constrained center-star sequence alignment
has an approximation ratio of nomore than 2−2/m. However, the proposed algorithm
for finding the optimal constrained center-star sequence alignment (CCSA) for m
sequences takes O(Cmn2) time, where C is the total number of occurrences of the
constrained sequence in them sequences.AsC can be exponential, the time complexity
for CCSA can be exponential.

In this paper, we consider various constrained sequence alignment problems. Note
that the constrained pairwise sequence alignment can be solved in O(kn2) Chin et al.
(2004). In this work, we give an O((t − k)n2) algorithm to solve the CPSA problem
in which the constrained sequence C = ck , and t is the minimum number of occur-
rences of character c in the two sequences. Combined with the previous result, this
variant can be solved in O(min{kn2, (t − k)n2}) time when k < t and O(n2) when
k = t . Next, we study another variant of the constrained pairwise sequence alignment,
say gap-bounded constrained pairwise sequence alignment (GB-CPSA), in which the
alignment score between any two consecutive constrained characters is upper bounded
by some value in the final alignment. For the GB-CPSA, we give a dynamic program-
ming with the time complexity O(kn2 + ∑k

p=1 Rp−1Rpn2/ log n) = O(kn4/ log n),
where Rp is the number of matches on cp in A and B. Finally, we show that the con-
strained center-star sequence alignment problem for multiple sequences is NP-hard
even if the size of the alphabet set is two, and this problem cannot be approximated
within a constant factor for some distance function.

In the remainder of this paper, we first consider two variants of the constrained
pairwise sequence alignment in Sect. 2. The we turn to study the complexity of the
constrained center-star sequence alignment problem in Sect. 3. The conclusion is given
in Sect. 4.

2 Constrained pairwise sequence alignment

In this sectionwe study the constrained pairwise sequence alignment (CPSA) problem.
Given two sequences A = a1a2 . . . an and B = b1b2 . . . bn , a constrained sequence
C = c1c2 . . . ck , and a distance function δ, the CPSA problem is to find the minimum-
score PSA, A′ and B ′, such that A′ and B ′ have the same length n′ ≥ n and A′[gi] =
B ′[gi] = ci for 1 ≤ i ≤ k and some integers 1 ≤ g1 < g2 < · · · < gk ≤ n′. The
distance function δ(x, y) is a score of aligning the character x and the character y,
where x, y ∈ � ∪ {-}. The distance function δ always satisfies δ(x, x) = 0 for any
x ∈ � ∪ {-}.

123

J Comb Optim

Let S(i, j, p) denote the optimal CPSA score for the sequences A[1 . . . i] and
B[1 . . . j]with the constrained sequenceC[1 . . . p] under the distance function δ. The
function S(i, j, p) can be described recursively as follows as in Chin et al. (2004).

S(i, j, p) = min

⎧
⎪⎪⎨

⎪⎪⎩

S(i − 1, j − 1, p − 1) if ai = b j = cp
S(i − 1, j − 1, p) + δ(ai , b j) if i, j > 0
S(i − 1, j, p) + δ(ai ,-) if i > 0
S(i, j − 1, p) + δ(-, b j) if j > 0

For the boundary cases, S(i, 0, 0) = S(0, j, 0) = 0 and S(0, j, �) = S(i, 0, �) = ∞
for 0 ≤ i, j ≤ n and 0 < � ≤ k. The last equation means there is no way to align an
empty sequence with a non-empty constraint sequence.

This algorithm computes all the entries S(i, j, p) in O(kn2) time because i, j ≤ n
and p ≤ k and each entry can be computed in constant time.

2.1 Constrained sequence C = ck

In this part, we consider a special case where c1 = c2 = . . . = ck , i.e., the k characters
are all the same. Let that character be c and denote C = ck . Without loss of generality,
assume that the number of occurrences of character c in B is t and it is no more
than the number of occurrences of c in A. Consider the case when k approaches t ,
previous algorithm (Chin et al. 2004) takes O(tn2) time. In the following we give a
more efficient algorithm when k is close to t . Our algorithm takes O(n2) time when
k = t and O((t − k)n2) time when k < t .

Nowwe showhow to find the optimal PSA score in O((t−k)n2) time. Let T (i, j, q)

denote the optimal PSA score for sequences A[1 . . . i] and B[1 . . . j] and the distance
function δ such that in the PSA, A′ and B ′, there are exactlyq occurrences of character c
in B ′ matched with a character (in A′) other than c. Precisely, there are exactly q
integers g1, g2, . . . , gq with B ′[gi] = c and A′[gi] �= c. The function T (i, j, q) can
be defined recursively as follows:

T (i, j, q) = min

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

T (i − 1, j − 1, q) + δ(ai , b j) if b j �= c or ai = b j = c
T (i − 1, j − 1, q − 1) + δ(ai , b j) if b j = c and ai �= c
T (i − 1, j, q) + δ(ai ,-) if i > 0
T (i, j − 1, q − 1) + δ(-, c) if b j = c
T (i, j − 1, q) + δ(-, b j) if b j �= c

In the recursive step, there are three choices for the optimal PSA to proceed. (Note
that the first and the second cases, the fourth and the fifth cases are mutually exclusive,
respectively.) The optimal PSA could either (i) match ai with b j (ii) match ai with
space, or (iii) match b j with space. Obviously, the optimal PSA should yield the
minimum score among these three choices. For (i), the PSAwould include the distance
between ai and b j and proceed with shortened inputs A[1 . . . i −1] and B[1 . . . j −1].
In case of b j �= c, or ai = b j = c, there are exactly q occurrences (otherwise q − 1)
of character c in B[1 . . . j − 1] will match with a character other than c. For (ii), the

123

J Comb Optim

PSAwould include the distance between ai and the space character “-”. Since only ai
is matched but not b j , the PSA proceeds with A[1 . . . i − 1] and B[1 . . . j] and it still
requires exactly q occurrences of character c in B[1 . . . j] matched with a character
other than c. For (iii), the PSA would include the distance between b j and the space
character “-” and proceed with A[1 . . . i] and B[1 . . . j − 1]. However, it differs for
the case where b j = c and b j �= c. If b j = c, we have this character c matched with a
character “-”, which is not c. Thus the subsequent PSA requires only q−1 occurrences
of character c in B[1 . . . j − 1] matched with a character other than c. Otherwise, it
still requires exactly q occurrences of character c in B[1 . . . j − 1] matched with a
character other than c.

Remind that in this section our target is to find the CPSAwith constrained sequence
ck . In fact, it is equivalent to find theminimum-score PSA among the PSAwith exactly
i occurrences of character c in Bmatchedwith a character other than c for i = 0 to t−k.
Therefore, the required CPSA is the minimum-score PSA among those correspond to
T (m, n, i) for 0 ≤ i ≤ t − k. In our algorithm we can compute the entries T (i, j, q)

for all i, j ≤ n, q ≤ t − k. Since each entry can be computed in constant time, the
algorithm can find CPSA in O((t − k)n2) time.

Combining the algorithm of Chin et al. (2004) with time complexity O(kn2) and
our new algorithm with time complexity O((t − k)n2) if k < t and O(n2) if k = t ,
we can compute the required CPSA efficiently as shown in the following theorem.

Theorem 1 The CPSA problem for two sequences with length n, the constrained
sequence of ck , and a given distance function can be solved in O(min{k, t − k}n2)
if k < t and in O(n2) if k = t where t is the minimum number of occurrences of
character c in these two sequences.

2.2 Gap-bounded constrained pairwise sequence alignment

In this part, we consider the gap-bounded constrained pairwise sequence alignment
(GB-CPSA), i.e., given two sequences A = a1a2 . . . an , B = b1b2 . . . bn , the con-
strained sequence C = c1c2 . . . ck and a distance function δ, the GB-CPSA is to find
a minimum-score PSA, A′ and B ′, such that A′ and B ′ have the same length n′ ≥ n,
A′[gi] = B ′[gi] = ci for some integers 1 ≤ g1 < g2 < · · · < gk ≤ n′ and the
alignment score between A′[gi + 1 . . . gi+1 − 1] and B ′[gi + 1 . . . gi+1 − 1] is upper
bounded by K . Roughly speaking, any two consecutive characters in the constrained
sequence are not far away in the final alignment. Different from FIG (Iliopoulos and
Sohel Rahman 2008), our problem focuses on the bounded gap of the consecutive
characters in the constrained sequence, but not in the common subsequence. Between
two consecutive constrained characters in the final alignment, some common charac-
ters may be aligned together. Due to the distribution of the constrained characters in
the input sequences A and B, there may not exist a PSA to satisfy the gap-bounded
property. In this case, the algorithm should output “No alignment”.

Let S(s, t) be the minimum alignment score w.r.t. sequences s and t . Let S1(i, j, p)
be the minimum score of GB-CPSA w.r.t. A[1 . . . i], B[1 . . . j] and the constrained
sequence C[1 . . . p] such that the constrained character cp is aligned with ai and b j .
S2(i, j, p) is defined similarly but the constrained character cp is not aligned with ai

123

J Comb Optim

and b j . Note that S1(i, j, 0) and S2(i, j, 0) are the traditional alignment score without
considering the constrained sequence. In details, S1(i, j, p) and S2(i, j, p) are given
as follows.

• S1(i, j, p)
– If ai �= cp or b j �= cp, S1(i, j, p) = +∞.
– If ai = b j = cp, the value of S1(i, j, p) depends on the previous values

S1(i ′, j ′, p − 1) and the alignment between A[i ′ + 1 . . . i − 1] and B[j ′ +
1 . . . j − 1] such that the alignment score between cp−1 and cp is bounded by
K . Formally,

S1(i, j, p) = min
i ′, j ′

{S1(i ′, j ′, p − 1) + S(A[i ′ + 1 . . . i − 1],
B[j ′ + 1 . . . j − 1])} + δ(cp, cp)

where ai ′ = b j ′ = cp−1 and S(A[i ′ + 1 . . . i − 1], B[j ′ + 1 . . . j − 1]) ≤ K .
• S2(i, j, p)
Since the constrained character cp is aligned before ai and b j , the score function
follows the traditional computation for sequence alignment, i.e.,

S2(i, j, p)=min

⎧
⎨

⎩

min{S1(i − 1, j − 1, p), S2(i − 1, j − 1, p)} + δ(ai , b j) if i, j > 0
min{S1(i − 1, j, p), S2(i − 1, j, p)} + δ(ai ,-) if i > 0
min{S1(i, j − 1, p), S2(i, j − 1, p)} + δ(-, b j) if j > 0

After all entries of S1(i, j, p) and S2(i, j, p) are computed for 1 ≤ i, j ≤ n and
1 ≤ p ≤ k, the minimum score of the GB-CPSA is

min{S1(n, n, k), S2(n, n, k)}.

There are kn2 entries in S1(i, j, p) and S2(i, j, p), respectively. The recursive
formula of S1(i, j, p), S2(i, j, p) can be determined in constant time given previous
values of S1() and S2(). To compute the value of S1(i, j, p), the previous alignments
on cp−1 with the bounded gap to cp have to be considered. Thus, we must do the
following two jobs:

(1) efficiently find the alignments such that of ai ′ = b j ′ = cp−1, and
(2) efficiently compute the alignment score between A[i ′ + 1 . . . i − 1] and B[j ′ +

1 . . . j − 1].
For the first job, we use two arrays to store the sorted positions of each character

cp in A and B, respectively. By scanning the sequences A and B once, the arrays for
cp (1 ≤ p ≤ k) can be constructed in O(n). When computing S1(i, j, p), we should
determine the positions i ′ and j ′ such that ai ′ = b j ′ = cp−1. Given i and j , the largest
i ′ and j ′ with i ′ < i , j ′ < j and ai ′ = b j ′ = cp−1 can be achieved in O(log n)

time by binary search. Whereas (ai ′ , b j ′) is the possible closest match satisfying the
constrained character cp−1 w.r.t. S1(i, j, p). Each of the previous matches can be
found in O(1) time by tracing the arrays for cp−1 in A and B.

123

J Comb Optim

For the second job, the O(n2/ log n) time algorithm from Masek and Paterson
(1980) can be applied to our problem because we do not need to consider the con-
strained characters and this job is computing the alignment score of two strings with a
constant size of alphabets set. The value of S(A[i ′+1 . . . i−1], B[j ′ +1 . . . j−1], φ)

can be achieved in O((i − i ′)(j − j ′)/ log n) time, which is upper bounded by
O(n2/ log n).

Let Rp be the total number of matches on cp in A and B. Thus, given previous
values, S1(i, j, p) can be computed in

O(log n + Rp−1n
2/ log n) = O(Rp−1n

2/ log n).

For cp, there are n2 entries of S1(i, j, p), besides these entries such that ai = b j = cp,
the values of all other entries can be determined to be+∞ in constant time. Therefore,
the complexity to fill all S1(i, j, p) entries w.r.t. cp is

O(Rp−1Rpn
2/ log n).

Considering all constrained characters in C = c1c2 . . . ck , filling all entries of
S1(i, j, p) takes time

O

⎛

⎝
k∑

p=1

Rp−1Rpn
2/ log n

⎞

⎠.

From above analysis, we conclude the following theorem.

Theorem 2 The Gap-Bounded Constrained Pairwise Sequence Alignment (GB-
CPSA) can be solved in O(kn4/ log n).

Proof The time complexity to compute all entries of S1(i, j, p) is

O
(∑k

p=1 Rp−1Rpn2/ log n
)
. The timecomplexity to compute all entries of S2(i, j, p)

is O(kn2). Determine the minimum score takes O(1) time by comparing S1(n, n, k)
and S2(n, n, k). Thus, the time complexity for solving GB-CPSA is

O

⎛

⎝kn2 +
k∑

p=1

Rp−1Rpn
2/ log n) = O(kn4/ log n

⎞

⎠.

�

RemarkWhen compute each entry of S1(i, j, p) and S2(i, j, p), wemay use two tables
T1(i, j, k) and T2(i, j, k) to store the previous entry leads to the minimum value. Thus,
for the GB-CPSA problem, the sequence alignment with the minimum score can be
achieved in linear time by tracing back from T1(i, j, p) and T2(i, j, p).

123

J Comb Optim

3 Constrained center-star sequence alignment

In this section, we study the problem of constrained center-star sequence alignment
(CCSA). This problem is similar to the CMSA problem since the goal is also to find an
optimal alignmentmatrixwith a constrained sequence. However, CCSAhas a different
way of calculating the score of an alignment matrix. In CMSA, we minimize the sum
of all pairwise scores of the alignment matrix. In CCSA, we minimize, for s ∈ S, the
sum of the pairwise scores of s with every sequence in S − {s}. Precisely speaking,
the score of an alignment matrix A in CCSA is defined to be

min
1≤i≤m

∑

1≤ j≤m, j �=i

∑

1≤p≤n′
δ(Ai,p, A j,p).

For an optimal alignmentmatrix A, we call a particular sequence s� the center sequence
if the score of A is

∑

1≤ j≤m, j �=�

∑

1≤p≤n′
δ(A�,p, A j,p).

3.1 NP-hardness of CCSA

In this part, we prove that CCSA is NP-Hard over binary alphabet, i.e., the size of
alphabet set is 2. To prove this, we give a polynomial time reduction from the NP-
hard problem Maximum Independent Set (MIS) (Garey and Johnson 1979) to CCSA.
Consider the decision version of MIS as follows.

Maximum Independent Set (MIS): Given a graph G = (V, E) and an integer k,
is there a subset V ′ ⊆ V of vertices for |V ′| = k such that each edge in E is
incident on at most one vertex in V ′?

For any instance of the decision version ofMISwhich includes a graphG = (V, E)

and an integer k, we give a polynomial-time transformation to an instance of CCSA
which includes the alphabet set �, a set of sequences S over �, a constrained
sequence C , and a distance function δ. We define the transformation as �, i.e.,
�(G, k) = (�, S,C). Let V = {v1, v2, . . . , vn} and E = {e1, . . . , em}. The trans-
formation �(G, k), constructed according to G and k, is shown as follows. We have
� = {a, b} and S = {t1, . . . , tm, s1, . . . , sm}, where t1 = · · · = tm = (aba)n and each
si is an encoding corresponding to an edge ei . Suppose ei = (vp, vq)with p < q, then
si = (bab)p−1(baa)(bab)q−p−1(aab)(bab)n−q . The constrained sequence c = bk .
The distance function δ between any two characters in � ∪ {-} of the constructed
CCSA instance is defined as follows.

a b -

a 0 1 2
b 1 0 2
- 2 2 0

123

J Comb Optim

Consider si = (bab)p−1(baa)(bab)q−p−1(aab)(bab)n−q and t j = (aba)n for
1 ≤ i, j ≤ m and ei = (vp, vq) where p < q. Two possible alignments of si and t j
are

s′
i = -(bab)p−1(baa)(bab)q−p−1(aab)(bab)n−q

t ′j = (aba)n- (1)

and

s′
i = (bab)p−1(baa)(bab)q−p−1(aab)(bab)n−q-

t ′j = -(aba)n . (2)

It is easy to check that both alignments yield a score of n + 3. The following lemma
shows that except the above two alignments all other alignments of si and ti yield a
score greater than n + 3.

Lemma 1 For any 1 ≤ i, j ≤ m, the alignments of si and t j according to Align-
ments (1) and (2) yield a score of n+ 3. All other alignments of si and t j yield a score
greater than n + 3.

Proof Suppose edge ei = (vp, vq), then si = (bab)p−1(baa)(bab)q−p−1(aab)
(bab)n−q . We also have t j = (aba)n .

We consider all possible alignments of si and t j and divide them into 7 cases. These
cases are characterized by how the sub-string “baa” in si “overlaps”with the pth “aba”
in t j . The positions of the characters of sub-string “baa” in si (as well as the pth “aba”
in t j) are 3p−2, 3p−1 and 3p, respectively. The following cases consider all possible
relationships between the values of α(s, 3p − 2), α(s, 3p − 1), α(s, 3p), α(t, 3p −
2), α(t, 3p − 1), and α(t, 3p).

Case (1) α(t, 3p − 2) > α(s, 3p).
In this case the corresponding sub-string “baa” in si appears before the pth “aba”

in t j in the alignment. We further consider the sub-case α(s, 3p) < α(t, 3p − 2) ≤
α(s, 3p+1). The other sub-case α(s, 3p+1) < α(t, 3p−2) can be proved similarly.
The alignment can be seen as breaking each of si and t j into two parts and aligning
corresponding parts of si and t j as follows.

si (bab)p−1baa (bab)q−p−1(aab)(bab)n−q

t j (aba)p−1 aba(aba)n−p

The first part of si , denote by s1i has p + 1 “a” and 2p − 1 “b”, the first part of t j ,
denote by t1j has 2p − 2 “a” and p − 1 “b”. Even if all “a” in s1i and all “b” in t1j are
matched, there are still p − 3 “a” and p “b” unmatched. Therefore, the score of the
first part of this alignment is at least p + 3 because if all unmatched p − 3 “a” align
with p−3 “b” there are still 3 “b” that must align with space characters. For the same
reason, the score of second part of this alignment is at least n− p+4. Hence, the total
score of this pairwise alignment is at least n + 7.

123

J Comb Optim

Case (2) α(s, 3p − 1) < α(t, 3p − 2) ≤ α(s, 3p). The alignment can be seen as
breaking each of si and t j into two parts and aligning corresponding parts of si and t j
as follows.

si (bab)p−1ba a(bab)q−p−1(aab)(bab)n−q

t j (aba)p−1 aba(aba)n−p

Similarly to the counting in Case (1), we have the score of the first part of the
alignment at least p + 2 and the score of the second part of the alignment at least
n − p + 2. Hence, the total score of the alignment is at least n + 4.

Case (3) α(s, 3p − 2) < α(t, 3p − 2) ≤ α(s, 3p − 1). The alignment can be seen
as breaking each of si and t j into two parts and aligning corresponding parts of si and
t j as follows.

si (bab)p−1b aa(bab)q−p−1(aab)(bab)n−q

t j (aba)p−1 aba(aba)n−p

In the first part, the minimal alignment score is p + 1, and this happens only when
s1i

′ = (bab)p−1b and t1j
′ = -(aba)p−1. Otherwise, the score is greater than p+1. For

the second part, consider the sub-string of “aa”, the (n− p− 1) sub-strings of “bab”,
and the sub-stringof “aab”,which form s2i . The score of eachof “aa” and the (n−p−1)
“bab” is at least 1. Moreover, there must be at least one space character to be inserted
to s2i for the alignment with t2j . So the minimum score is n − p + 2 and it happens

only when s2i
′ = aa(bab)q−p−1(aab)(bab)n−q- and t2j

′ = (aba)n−p+1. Thus the
minimum score for aligning si and t j in this case is n + 3 and it happens only when
s′
i = (bab)p−1(baa)(bab)q−p−1(aab)(bab)n−q- and t ′j = -(aba)n . Otherwise, the
score is greater than n + 3.

Case (4) α(t, 3p−2) ≤ α(s, 3p−2) and α(t, 3p) ≥ α(s, 3p). We further consider
the sub-case α(s, 3p− 3) < α(t, 3p− 2) ≤ α(s, 3p− 2) and α(s, 3p) ≤ α(t, 3p) <

α(s, 3p+ 1). The other sub-cases can be proved similarly. The alignment can be seen
as breaking each of si and t j into three parts and aligning corresponding parts of si
and t j as follows.

si (bab)p−1 baa (bab)q−p−1(aab)(bab)n−q

t j (aba)p−1 aba (aba)n−p

The alignment score for the first part is at least p + 3, for the second part is at least
2, and for the third part is at least n − p + 2. Thus the alignment score of si and t j is
at least n + 7.

Case (5) α(t, 3p − 2) ≤ α(s, 3p − 2) and α(s, 3p − 1) ≤ α(t, 3p) ≤ α(s, 3p).
The alignment can be seen as breaking each of si and t j into two parts and aligning
corresponding parts of si and t j as follows.

123

J Comb Optim

si (bab)p−1ba a(bab)q−p−1(aab)(bab)n−q

t j (aba)p−1aba (aba)n−p

Similarly to that of Case (3), in the first part, the minimal alignment score is p+ 1,
and this happens only when s1i

′ = -(bab)p−1ba and t1j
′ = (aba)p−1. Otherwise,

the score is greater than p + 1. For the second part, the minimum alignment score is
n − p + 2 and it happens only when s2i

′ = a(bab)q−p−1(aab)(bab)n−q and t2j
′ =

(aba)n−p−. Thus the minimum score for aligning si and t j in this case is n + 3 and
it happens only when s′

i = -(bab)p−1(baa)(bab)q−p−1(aab)(bab)n−q and t ′j =
(aba)n-. Otherwise, the score is greater than n + 3.

Case (6) α(t, 3p−2) ≤ α(s, 3p−2) and α(s, 3p−2) ≤ α(t, 3p) ≤ α(s, 3p−1).
The alignment can be seen as breaking each of si and t j into two parts and aligning
corresponding parts of si and t j as follows.

si (bab)p−1b aa(bab)q−p−1(aab)(bab)n−q

t j (aba)p−1aba (aba)n−p

Similar to that in Case (2), the total score of this alignment is at least n + 4.
Case (7) α(t, 3p) < α(s, 3p − 2). The alignment can be seen as breaking each of

si and t j into two parts and aligning corresponding parts of si and t j as follows.

si (bab)p−1 baa(bab)q−p−1(aab)(bab)n−q

t j (aba)p−1aba (aba)n−p

Similar to that in Case (1), the total score of this alignment is at least n + 7.
�
Corollary 1 If the score for the constrained center-star sequence alignment is at most
m(n + 3), the center sequence must be one of t j for 1 ≤ j ≤ n.

Proof By Lemma 1, the alignment score between si and t j for any i and j is at least
n + 3. It is obvious that the alignment score between si and s j for any i �= j is more
than 0. Thus, if si for some i is the center sequence, the total alignment score must
be greater than m(n + 3). Therefore, we can assume that the center sequence must be
one of t j for 1 ≤ j ≤ n.
�
Lemma 2 There is an independent set forG of size k if andonly if there is a constrained
center sequence alignment for the transformed instance �(G, k) of CCSA with score
m(n + 3).

Proof First, if G has an independent set � of size k, we give a constrained center
sequence alignment with score m(n + 3). The alignment has t1 (or any one of t j for
1 ≤ j ≤ m) as the center sequence. We have t ′j = -(aba)n- for 1 ≤ j ≤ n. For a
sequence si corresponding to edge ei = (vp, vq) with p < q, we have s′

i as follows.

• If vp ∈ �, s′
i = –si = –(bab)p−1(baa)(bab)q−p−1(aab)(bab)n−q ,

• If vp /∈ �, s′
i = si– = (bab)p−1(baa)(bab)q−p−1(aab)(bab)n−q–.

123

J Comb Optim

Recall that the constrained sequence is bk . We prove that the constrain is sat-
isfied in the alignment. Consider a vertex vx ∈ �. We can see that t ′j [3x] = b
for 1 ≤ j ≤ m. For an edge ei = (vx , vy) incident to vx and if x < y, then
s′
i == –(bab)x−1(baa)(bab)y−x−1(aab)(bab)n−y and s′

i [3x] = b. If y < x ,
since vy /∈ �, s′

i == (bab)y−1(baa)(bab)x−y−1(aab)(bab)n−x– and we also have
s′
i [3x] = b. If an edge ei is not incident to vx , we have s′

i [3x] = b. Therefore, the
constrain is satisfied.

For the alignment score, by Lemma 1, we can see that the score of the alignment
t ′1 and s′

i for each 1 ≤ i ≤ m is n + 3 and the score of the alignment t ′1 and t ′j for each
1 ≤ j ≤ m is 0. Thus the total score is m(n + 3).

Second, if there is a constrained center sequence alignment with scorem(n+3), we
prove that there is an independent set � for G of size k. We prove it by contradiction.
Assume that the maximum independent set of G is of size k′ < k.

By Corollary 1, we can assume that t1 is the center sequence. By Lemma 1, we
can further assume that the pair-wise alignment score between t1 and each of si for
1 ≤ i ≤ n is exactly n + 3 and the alignment follows either Alignment (1) or (2). As
the constrain bk is satisfied, we assume the x th “b” in bk appear in column �x of the
alignment matrix, in which the whole column should consist of “b” only. Suppose that
column �x intersects with the h(x)th “aba” of t1, and h(x)th “bab”/“baa”/“aab” of
si for 1 ≤ i ≤ n. We define a subset of vertex � that includes all vh(x) for 1 ≤ x ≤ k.

We prove that � is an independent set of G. For any two vertices vh(x) and vh(y)

in � for x < y, we claim that edge ei = (vh(x), vh(y)) does not exist. If not, there is a
sequence si = (bab)h(x)−1(baa)(bab)h(y)−h(x)−1(aab)(bab)n−h(y). It can be verified
that to follow Alignment (1) or (2), there is no way to have both the “b” in “baa” and
the “b” in “aab” of si appear in column �x and column �y of the alignment matrix,
respectively. Thus si , as well as ei , does not exist. Therefore, � is an independent set
of G and it is of size k > k′, which is a contradiction.
�

By Lemma 2, we can reduce the NP-hard problem of MIS to CCSA with binary
alphabet, and hence we have the following theorem.

Theorem 3 ConstrainedCenter-Star Sequence Alignment (CCSA)with binary alpha-
bet is NP-Hard.

3.2 Inapproximability of CCSA

In this part, we show that unless P = N P , no polynomial-time algorithm can solve
the CCSA problem of an arbitrary distance function within a constant approximation
ratio r > 0. If there is such an algorithm, we show that the MIS problem can be solved
in polynomial time. In particular, we will focus on the CCSA problems where the
distance function δ does not satisfy the triangle inequality.

We show a new reduction from MIS to CCSA which is similar to that in Sect. 3.1.
The new transformation �′(G, k) = (�, S, c, δ) is defined as follows. The alphabet
set consists of one more character than before, i.e., � = {a, b, c}. The set of sequence
S = {t1, . . . , tm, s1, . . . , sm}, where t1 = · · · = tm = c(aba)nc and for each edge
ei = (vp, vq) with p < q si = c(bab)p−1(baa)(bab)q−p−1(aab)(bab)n−qc. The

123

J Comb Optim

constrained sequence is still C = bk . The new distance function δ between any two
characters in � ∪ {-} is defined as follows.

a b c -

a 0 1 2 B
b 1 0 2 B
c 2 2 0 0
- B B 0 0

where B = r ·m(n+3)+1. Note that the distance functionmay not satisfy the triangle
inequality.

Similar to Lemma 2, we can show the new transformation �′ yields a polynomial-
time reduction from MIS to CCSA.

Lemma 3 There is an independent set forG of size k if andonly if there is a constrained
center sequence alignment for the transformed instance �′(G, k) of CCSA with score
m(n + 3).

In fact, for the transformed instance�′(G, k), one can obtain the optimal alignment
if the guaranteed score is at most r · m(n + 3).

Lemma 4 If there is a constrained center sequence alignment for the transformed
instance �′(G, k) of CCSA with score at most r · m(n + 3), then this alignment has
score exactly m(n + 3).

Proof Consider the case that when there is a center constrained sequence alignment of
�′(G, k) with score at most r ·m(n + 3). Since the distance between space character
and a or b is greater than r · m(n + 3), the alignment between si and t1 (ignoring the
“c”) for any i must follow Alignment (1) or (2). Hence, the score of each pair-wise
alignment is exactly n + 3, and thus the total alignment score is m(n + 3).
�

As a result, if there is an algorithm that gives a solution of �′(G, k) with approx-
imation ratio r , then we can determine if an independent set for G of size k exists
or not. If the algorithm gives an alignment of score at most r · m(n + 3), then by
Lemma 4 the optimal alignment has score m(n + 3) and then by Lemma 3, there is an
independent set for G of size k. If the algorithm gives an alignment of score greater
than r · m(n + 3), then the optimal alignment has score greater than m(n + 3) and
then by Lemma 3, there is no independent set for G of size k. Therefore, we have the
following theorem for the inapproximability of CCSA.

Theorem 4 Unless P = N P, there is no polynomial-time algorithm for CCSA with
constant approximation ratio.

4 Conclusion

We have studied the CPSA problem when the constrained sequence is a string of k
identical characters and gave an O(n2) algorithmwhen k = t , where t is the minimum

123

J Comb Optim

number of occurrences of that character in these two sequences, i.e, the largest number
of that character in the constrained sequence. However, for some k < t and problem
instances, this CPSA problemmight take O(n3) time. It is not sure whether this CPSA
problem can be solved in strictly less than O(n3) time for all k.

Two negative results of the CCSA problem were shown in this paper. However,
whether there exist constant approximation algorithms for binary alphabets or for 3-
letter alphabetswith distance function satisfying triangle inequality are both interesting
open problems.

Since the solution for the center-star alignment problem can provide a good approx-
imation for theMSA problem, the solution for the CCSA problem can also give a good
approximation for the CMSA problem. Unfortunately, the CCSA problem has been
proved to be NP-complete and also difficult to find an approximate solution for some
distance function. Thus, it remains open whether there exists a good approximation
algorithm for the CMSA problem.

Acknowledgments The authors thank the anonymous referees for their helpful comments to improve the
presentation of this paper. This work was supported by NSFC (61433012, U1435215, 11171086), HK RGC
Grant (HKU 7114/13E, HKU 7164/12E, HKU 7111/12E), HKU small project funding 201309176064,
Natural Science Foundation of Hebei A2013201218, Chinese Academy of Sciences research Grant (No.
KGZD-EW-103-5(9)), Fundamental Research Foundation of Northwestern Polytechnical University in
China (Grant No. JC201164), Fundamental Research Funds for the Central Universities (Grant No.
3102015ZY081), and China Postdoctoral Science Foundation (Grant No. 2012M521803).

References

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol
Biol 215(3):403–410

Bonizzoni P, Vedova GD (2001) The complexity of multiple sequence alignment with sp-score that is a
metric. Theor Comput Sci 259(1–2):63–79

Chin FYL, Santis AD, Ferrara AL, HoNL, Kim SK (2004) A simple algorithm for the constrained sequence
problems. Inf Process Lett 90:175–179

Chin FYL, Ho NL, Lam TW, Wong PWH (2005) Efficient constrained multiple sequence alignment with
performance guarantee. J Bioinform Comput Biol 3(1):1–18

Cormen TH, Leiserson CE, Rivest RL, Stein C (2009) Introduction to algorithms, 3rd edn. The MIT Press,
Cambridge

Garey M, Johnson D (1979) Computers and intractability: a guide to the theory of NP-completeness. W. H.
Freeman and Company, San Francisco

Gusfield D (1993) Efficient methods for multiple sequence alignment with guaranteed error bounds. Bul
Math Biol 55:141–154

Iliopoulos CS, RahmanMS (2008) Algorithms for computing variants of the longest common subsequence
problem. Theor Comput Sci 395(2–3):255–267

Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM,
Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) ClustalW and ClustalX version 2.
Bioinformatics 23(21):2947–2948

Masek WJ, Paterson MS (1980) A faster algorithm computing string edit distances. J Comput Syst Sci
20(1):18–31

Mount DM (2004) Bioinformatics: sequence and genome analysis, 2nd edn. Cold SpringHarbor Laboratory
Press, Cold Spring Harbor

Setubal J, Meidanis J (1997) Introduction to computational molecular biology (Chap. 3). PWS Publishing
Company, Boston

123

J Comb Optim

Tang CY, Lu CL, Chang MD-T, Tsai Y-T, Sun Y-J, Chao K-M, Chang J-M, Chiou Y-H, Wu C-M, Chang
H-T, Chou W-I (2003) Constrained multiple sequence alignment tool development and its application
to rnase family alignment. J Bioinform Comput Biol 1(2):267–287

Wang L, Jiang T (1994) On the complexity of multiple sequence alignment. J Comput Biol 1(4):337–348

123

	Constrained pairwise and center-star sequences alignment problems
	Abstract
	1 Introduction
	2 Constrained pairwise sequence alignment
	2.1 Constrained sequence C=ck
	2.2 Gap-bounded constrained pairwise sequence alignment

	3 Constrained center-star sequence alignment
	3.1 NP-hardness of CCSA
	3.2 Inapproximability of CCSA

	4 Conclusion
	Acknowledgments
	References

