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Abstract. The problem of haplotype inference under the Mendelian law
of inheritance on pedigree genotype data is studied. The minimum re-
combination principle states that genetic recombinations are rare and
haplotypes with fewer recombinations are more likely to exist. Given
genotype data on a pedigree, the problem of Minimum Recombination
Haplotype Inference (MRHI) is to find a set of haplotype configurations
consistent with the genotype data having the minimum number of recom-
binations. In this paper, we focus on a variation of the MRHI problem
that gives more realistic solutions, namely the k-MRHI problem, which
has the additional constraint that the number of recombinations in each
parent-offspring pair is at most k. Although the k-MRHI problem is NP-
hard even for k = 1, the k-MRHI problem with k > 1 can be solved
efficiently by dynamic programming in O(nm3k+1

0 2m0) time by adopting
an approach similar to the one used by Doi, Li and Jiang [4] on pedigrees
with n nodes and at most m0 heterozygous loci in each node. In particu-
lar, the 1-MRHI problem can be solved in O(nm4

02
m0 ) time. We propose

an O(n2m0) algorithm to find a node as the root of the pedigree tree so as
to further reduce the time complexity to O(m0min(tR)), where tR is the
number of feasible haplotype configuration combinations in all trios in
the pedigree tree when R is the root. If the pedigree has few generations,
the 1-MRHI problem can be solved in O(min{nm4

02
m0 , nml+1

0 2µR+l})
time, where µR is the number of heterozygous loci in the root, and l
is the maximum path length from the root to the leaves in the pedi-
gree tree. Experiments on both real and simulated data confirm the
out-performance of our algorithm when compared with other popular
algorithms. In most real cases, our algorithm gives the same haplotyp-
ing results but runs much faster. In some real cases, other algorithms
give an answer which has the least number of recombinations, while our
algorithm gives a more credible solution and runs faster.

1 Introduction

The modeling of human genetic variation is critical to the understanding of the
genetic basis for complex diseases. Single nucleotide polymorphisms (SNPs [13])
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are the most frequent form of this variation. The Human Genome Project and
other large-scale efforts have identified millions of SNP markers that can be used
in genetic studies. Although each marker can be analyzed independently, it is
much more informative to analyze them in groups. Therefore, it is useful to an-
alyze haplotypes (haploid genotypes), which are sequences of linked markers on
a single chromosome. In diploid organisms, such as humans, chromosomes come
in pairs, and experiments often yield genotype information, which blend haplo-
type information for chromosome pairs. There is growing evidence that, in order
to better characterize the role of a candidate gene, full haplotype information
should be exploited instead of using only genotype information. Unfortunately,
it is both time-consuming and expensive to derive haplotype information experi-
mentally. This explains the increasing interest in inferring haplotype information,
or haplotyping, computationally [2][6].

Input genotype data can be with or without any other pedigree information.
Haplotyping pedigree data is believed to be more reliable than haplotyping popu-
lation data for unrelated individuals: the constraint provided by parents-offspring
relationships in a pedigree could force one to settle on a unique haplotype con-
figuration as being most probable.

Genetic research shows that recombinations are rare in human data [5]. The
genomic DNA can be partitioned into long blocks such that recombinations
within each block are rare or even nonexistent. Thus it is believed that haplo-
type configurations with fewer recombinations should be preferred in haplotype
inference [11][12].

The Minimum-Recombination Haplotype Inference (MRHI ) problem, which
is NP-hard [4], is to find a haplotype configuration with minimum number of
recombinations for a given pedigree genotype data. Various algorithms have been
presented for the MRHI problem [8][7][12][15]. In some cases, however, the MRHI
model might yield unrealistic results in which a few parent-offspring pairs have
many recombinations while others have no or few recombinations. We present a
more realistic problem, called the k-MRHI problem which basically is the MRHI
problem, but with an additional constraint that the number of recombinations
in each parent-offspring pair is bounded by a constant k. The k-MRHI problem
is NP-hard even for k = 1.

The k-MRHI problem can be solved by a dynamic programming (DP) algo-
rithm which is very similar to the algorithm by Doi, Li and Jiang [4]. By avoiding
studying all 23m0 haplotype configurations in each parents-offspring trio, our al-
gorithm takes O(nm4

02
m0) time when k = 1, instead of the O(nm023m0) time

needed by [4] for the MRHI problem on pedigrees with n nodes and at most m0

heterozygous loci in each node. Note that not all nodes have m0 heterozygous
loci, and the number of feasible haplotype configurations at a node is limited by
the number of feasible haplotype configurations of its neighbors, and thus the
number of possible haplotype configurations at a node can be much less than
2m0 . This observation leads to the idea of choosing different nodes in the pedi-
gree as the root of the tree in speeding up the algorithm. The main contributions
of this paper are: (1) to define a more realistic problem for haplotype inference
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(k-MRHI), (2) to give a more efficient and practical DP algorithm for the haplo-
type inference problem with improved time complexities, and (3) to present an
efficient algorithm to find the root in the pedigree for better performance in the
DP algorithm.

2 Preliminaries

Haplotypes and genotypes consist of linked genetic markers which are small
segments of DNA with some specific features. The physical position of a marker
on a chromosome is called a locus and its state is called an allele. Without loss
of generality, the two alleles of a biallelic (2-state) SNP can be denoted by ‘0’
and ‘1’, and a haplotype h with m loci is presented as a string of length m over
{0, 1}m, and a genotype g as a string over {0, 1, 2}m. Haplotype pair 〈h1, h2〉 is
compatible with a genotype g if (a) the two alleles of h1 and h2 are the same
at the same locus, for example ‘0’ (respectively ‘1’), then the corresponding
locus of g should also be ‘0’ (respectively ‘1’), which denotes a homozygous site;
otherwise, (b) the two alleles of h1 and h2 are different, then the corresponding
site of g should be ‘2’, which denotes a heterozygous site.
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Fig. 1. The pictorial representation and graph representation of a pedigree

A pedigree is a fundamental structure used in genetics. Figure 1(a) shows
the pictorial representation (used by the biologists) of a pedigree with 13 nodes.
A square represents a male node, a circle represents a female node, and a black
dot represents a mating node. The subgraph in the dashed square is a typical
nuclear family, which contains a father (node 1), a mother (node 2) and two
children (nodes 4 and 5). The children are placed under their parents. Nodes 1,
2 and 4 consist a parents-offspring trio, nodes 1 and 4, nodes 1 and 5, nodes 2
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and 4, nodes 2 and 5 are parent-offspring pairs. We define a pedigree formally
as in [4].

Defintion 1[4]. A pedigree is a weakly connected directed acyclic graph P =
(V, E), where V = M ∪ F ∪N , with M stands for the male nodes, F the female
nodes, N the mating nodes, and E = {(u, v)} with u ∈ M ∪ F and v ∈ N ,
alternatively u ∈ N and v ∈ M ∪ F .

Figure 1(b) shows the graph representation of the pedigree given in Figure
1(a). A sub-graph containing the father, the mother, and their children is a
nuclear family. A nuclear family can also be represented by a mating node which
connects them together. A parents-offspring trio, or just trio, consists of two
parents and one of their children; and a parent-offspring pair (PO-pair) refers
to a father and his child or a mother and her child. In this paper, we assume
that the pedigree never forms a cycle if the directions of edges are ignored (no
mating-loop).

Each individual node in a pedigree is associated with its genotype. In the
absence of genetic mutation, at each locus, the child must inherit one allele from
its father and the other from its mother. This is known as the Mendelian law of
inheritance. Usually, one haplotype of a child is inherited as a whole from one
of the two haplotypes of a parent. However, recombinations may occur, where
the two haplotypes of a parent get shuffled due to a crossover of a chromosome
and one of the shuffled copies (recombinant) is passed on to the child. However,
genetic research shows that recombinations are rare in human genetics. Thus we
are interested in finding the haplotype configurations such that the total number
of recombinations in the whole pedigree is minimized.

Defintion 2[12]. Minimum Recombinant Haplotype Inference (MRHI)
Problem: Given a pedigree graph P, each individual node of P associates with
a genotype. Find a haplotype configuration for the pedigree that each haplotype
pair at each node is an explanation of its corresponding genoytype and the total
number of recombinations is minimized.
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Fig. 2. Two different solutions for a pedigree of a nuclear family

Figure 2(a) shows a pedigree of a nuclear family containing a father F , a
mother M and 2 children C1, C2. Figure 2(b) gives a solution with no recom-
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bination in trio (F, M, C1) and 2 recombinations in trio (F, M, C2). Figure 2(c)
gives another solution, which also has 2 recombinations in total, but at most
one recombination in each trio, i.e. at most one recombination in each PO-pair.
As genetic studies show that recombinations are rare to have 2 recombinations
within one PO-pair, e.g., there are 13% single recombinations versus 0.84% dou-
ble recombinations in the Drosophila autosomal genes [5], Figure 2(c) should be
a more credible solution than Figure 2(b) for the haplotype inference problem.

Defintion 3 . k-Recombination Haplotype Inference (k-MRHI) Prob-
lem: Given a pedigree graph P with each individual node associated with a geno-
type, find a haplotype configuration that is compatible with the genotypes at all
nodes having the minimum number of recombinations and no more than k re-
combinations in each PO-pair.

3 A Dynamic Programming Algorithm for k-MRHI

3.1 The 1-MRHI Problem (k = 1)

In [4], Doi et al. gives a proof for the NP-hardness of the MRHI problem by a
reduction from MAX CUT. In their construction, the number of recombinations
within each PO-pair is limited to 1. This trivially implies that the k-MRHI
problem, even for k = 1, is also NP-hard.

However, in most cases, we can find a feasible solution for a k-MRHI instance
with k < 2. As we have mentioned before, more than 1 recombination within
a PO-pair is very unlikely in reality. Therefore, we shall focus on the 1-MRHI
problem first and generalize to the k-MRHI problem later.
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Fig. 3. The searching tree of the pedigree in Figure 1

A locus-based dynamic programming (DP) algorithm for the k-MRHI prob-
lem was presented in [4], with a time complexity of O(nm023m0), where m0 is
the maximum number of heterozygous loci in the genotype at each node of a
loopless pedigree. We adopt a similar DP approach to solve the 1-MRHI problem
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by (1) assigning an arbitrary node R in the pedigree as the root (an example is
given in Figure 3, which shows a rooted tree at node 5 for the pedigree in Figure
1); (2) recursively finding num[R][s], the minimum number of recombinations
required for all feasible haplotype configurations s of R; and (3) selecting the
haplotype with the minimum number of recombinations as the solution.

Let num[r][s] denote the minimum number of recombinations required in
the sub-tree rooted at r with the haplotype configuration s under the constraint
that there is at most 1 recombination in each PO-pair of the sub-tree. If r has
multiple mating nodes as its tree sons, we compute each mating node separately.
Each child mating node of r defines a unique nuclear family, which may contain r
as a parent or a child and the computation of num[r][s] is performed recursively
in that nuclear family.

Suppose that the nuclear family consists of father F , mother M and children
C1, · · · , Cd. If r is a leaf node, num[r][s] = 0 for any of haplotype configuration
s; else, if r is M (or F , respectively) with haplotype configuration s, then:

num[r][s] = min
p

(num[F ][p] +
d∑

i=1

min
ci

(num[Ci][ci] + numtrio(p, s, ci))) (1)

where p denotes the haplotype configuration at node F and ci the haplotype
configuration at Ci, one of the d children in this nuclear family. numtrio (p, s, ci)
returns the minimum number of recombinations required for a trio consisting of
F , M , and Ci with the haplotype configurations p, s and ci respectively, under
the constraint that no PO-pair can have more than one recombination. If there
does not have any feasible solution, then numtrio (p, s, ci) will return ∞, which
indicates “no solution”.

Similarly, if r is Cj with haplotype configuration s, then we have:

num[r][s] = min
p,q

(numtrio[p, q, s] + num[F ][p] + num[M ][q]

+
d∑

i=1,i�=j

min
ci

(num[Ci][ci]+numtrio(p, q, ci))) where r = Cj (2)

where p, q and ci are defined as before for haplotype configurations at F , M and
Ci respectively.

Note that the above algorithm is the same as that presented in [4], and thus
would have the same time complexity. However, a reduction in time complexity
is possible from an important observation: it is not necessary to consider all
combinations of haplotype configurations in each trio, which number O(23m0) in
total, because many combinations of haplotype configurations will be infeasible,
i.e. will not have at most one recombination per PO-pair.

For example, assume the genotype of F is (2, 2, · · · , 2) of length m0 and with
haplotype configuration s = 〈hs1, hs2〉 and hc1 in the haplotype c = 〈hc1, hc2〉
of Ci is inherited from s with no more than 1 recombination. There are m0 + 1
ways of forming hc1 by inheriting its first w alleles from the first w alleles in hs1

and the remaining (m0 − w) alleles from hs2 with 0 ≤ w ≤ m0. Similarly, there
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are another m0 + 1 ways of forming hc1 from the first w alleles in hs2 and the
remaining (m0−w) alleles from hs1 . Since there are double-counting in these two
cases when w = 0 and m0, the number of feasible haplotype configurations of c is
limited to 2m0, and the time complexity of the algorithm can be much reduced
if we limit the number of configurations needed to be searched for the optimal
result. More precisely, suppose r in Equation (1) is M (or F ), and s = 〈hs1, hs2〉,
let Ns be the set of feasible haplotype configurations c = 〈hc1, hc2〉 that can be
inherited by child Ci from s of r with no more than one recombination. Thus,
|Ns| ≤ 2m0. As hc2 is inherited from the haplotype configuration q = 〈hq1, hq2〉 of
F , let Nc be the set of feasible haplotype configurations of F which can produce
the haplotype configuration c in C with no more than one recombination. Let
N ′

s,Ci
= ∪c∈NsNc, which indicates the set of feasible haplotype configurations

at F which can go together with haplotype s at M to produce children Ci with
no more than one recombination in the father-child pair and in the mother-child
pair. Obviously, N ′

s,Ci
≤ 4m2

0.
As each haplotype configuration of F should be able to produce any of the

children C1, · · · , Cd, the set of feasible haplotype configurations in F is N ′
s =

∩iN
′
s,Ci

. Equation (1) can be rewritten as:

num[r][s] = min
p∈N ′

s

(num[F ][p] +
∑

i

min
ci∈Ns

(num[Ci][ci] + numtrio(p, s, ci))) (3)

As for Equation (2), if r is Cj and its haplotype configuration s = 〈hs1, hs2〉,
let Ns,F and Ns,M be the sets of feasible haplotype configurations in F and M ,
which can produce Cj with haplotype configuration s. As |Ns,F | ≤ 2m0 and
|Ns,M | ≤ 2m0, let Np,Ci(Nq,Ci) be the set of feasible haplotype configurations
on another child Ci with haplotype configuration p in F (q in M) and N ′′

p,q =
Np,Ci ∩ Nq,Ci be the set of feasible haplotype configurations for each child Ci

which can concurrently appear with the haplotype configuration s of child Cj .
Note that N ′′

p,q ≤ 2m0 and Equation (2) can be rewritten as:

num[r][s] = min
p∈Ns,F ,q∈Ns,M

(numtrio(p, q, s) + num[F ][p] + num[M ][q]

+
∑

i�=j

min
ci∈N ′′

p,q

(num[Ci][ci]+numtrio(p, q, ci))) where r = Cj (4)

Theorem 1. The above dynamic programming algorithm can solve the 1-MRHI
problem in O(nm4

02
m0) time and O(n2m0) space for pedigree with n nodes and

at most m0 heterozygous loci in each node.

Proof. The rooted tree can be constructed in O(n) time. As we have to consider
the 8m3

0 combinations in each trio for each haplotype configuration of a node
and we need O(m0) time to compute numtrio for each haplotype configuration
combination in a trio, it may take O(m4

02
m0) time to process each trio. There

are at most n parent-offspring trios in the pedigree, so the time complexity
is O(nm4

02
m0). Furthermore, we need to store the array num and pointers for

backtracking. The size of num is O(n2m0), so is the number of pointers. Thus
the space complexity is O(n2m0).
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3.2 The k-MRHI Problem

We have argued that in most cases, feasible solutions exist for 1-MRHI. However,
there are still some instances that require more recombinations within each PO-
pair. In almost all practical cases, there are at most 2 recombinations within
each PO-pair. In the following, we generalize the DP algorithm to the general
k-MRHI problem with some modifications.

We need to modify the definition of neighboring haplotype configurations set
from Ns to N

(k)
s : for each haplotype configuration c = 〈hc1, hc2〉 ∈ N

(k)
s , one of

〈hc1, hc2〉 is inherited from one of 〈hs1, hs2〉 with no more than k recombinations.
So we have |N (k)

s | = O(mk
0).

Similarly, we modify the definition of N
′(k)
s = ∩iN

′(k)
s,Ci

with N ′
s,Ci

to N
′(k)
s,Ci

in

Equation (3) and the definition of Ns,F and Ns,M to N
(k)
s,F and N

(k)
s,M , Np,Ci to

N
(k)
p,Ci

, and N ′′
p,q to N

′′(k)
p,q in Equation (4). Then we have:

Theorem 2. The time complexity of the DP algorithm solving the k-MRHI
problem is O(nm3k+1

0 2m0) for pedigree with n nodes and at most m0 heterozygous
loci in each node.

4 Root Selection for Better Performance

We have shown in Section 3 that in the 1-MRHI problem, the number of feasible
haplotype configuration combinations in each trio is no more than O(m2

02
m0).

However, in practice the feasible haplotype configuration combinations in each
trio may be much less than that because of the following reasons: (1) not all
nodes have m0 heterozygous loci; and (2) the number of feasible haplotype con-
figurations av of a node v is also bounded by the number of feasible haplotype
configurations avr of v’s neighbor vr, which can participate in the feasible hap-
lotype configuration combinations in a trio, i.e., av ≤ 2µvavr , where µv is the
number of heterozygous loci in v. Thus, different selections of a node in the
pedigree as the root for the DP algorithm will give different processing times.
The following we shall discuss an algorithm to find the best root based on the
estimated number of feasible haplotype configurations in each node.

Starting from any node R, as root and assuming αR be the number of feasible
haplotypes configurations of R, i.e., αR = 2µR , we will traverse the tree in
pre-order and, for each node v, evaluate the number of the feasible haplotype
configurations for its neighboring nodes.

If v has multiple mating nodes as v’s children, we compute each mating node
separately. Each mating node as v’s child defines a unique nuclear family, which
may contain v as a parent or a child. Suppose that the nuclear family consists
of father F , mother M and children C1, · · · , Ck.

If v is M (or F , respectively), αCi = min{2µCi , 2µCiαv} (i = 1, · · · , k)
and αF = mini{2µF , 2µF αCi}. If v is Ci, then αF = min{2µF , 2µF αv}, αM =
min{2µM , 2µMαv} and αCi = min{2µCi , 2µCiαF , 2µCiαM} (i = 1, · · · , k). Thus,
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the number of feasible haplotype configuration combinations ti in trio Ti can be
computed consequently, assuming an arbitrary node (node R) as the root of the
searching tree. The total number of feasible haplotype configuration combina-
tions in all trios in the pedigree is tR =

∑
i ti, which can be computed by a tree

traversal.

Theorem 3. Let m0 be the number of heterozygous loci and tR be the total
number of feasible haplotype configuration combinations for all trios in the pedi-
gree with node R as root. Then the node which gives min(tR) can be found in
O(n2m0) time and the 1-MRHI problem can be solved in O(m0 min(tR)) time.

Proof. We can evaluate tR for each node R in the pedigree in O(nm0) time and
choose the node with min(tR) as the root in O(n2m0) time. As the computation
of numtrio for each feasible haplotype configuration combination in each trio
takes O(m0) time, the 1-MRHI problem can be solved in O(m0 min(tR)) time
after selecting the best root for the DP algorithm.

4.1 Special Pedigrees with Few Generations

We notice that the diameters of the pedigree graphs in many practical instances
are usually small. For example, the 452 families in the CEPH database [1][3][10]
consist of only three generations, usually with four grandparents, two parents
and a number of children. Figure 4 shows a typical family (family 1413) with 21
members. The longest path starts from one of the grandparents from the father’s
side to one of the grandparents from the mother’s side and is of length 4 (not
counting the mating nodes). But if we start from any of the children, we can
reach any other node within 2 steps.

Suppose that the number of heterozygous loci in the chosen root R is µR, and
any other nodes can be reached within l steps from R. We shall enumerate all the
2µR feasible haplotype configurations of the root in the first step, and no more
than 2µR×2m0 feasible haplotype configurations for each of its neighboring nodes
in the second step, and so on. The number of feasible haplotype configurations
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Fig. 4. A typical family(family 1413) in the CEPH database
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is at most 2µR × (2m0)l at the most distant node. When µR � m0 and l is
relatively small, we will get an improvement in the time complexity:

Theorem 4. 1-MRHI can be solved in min{O(nm4
02m0), O(nml+1

0 2µR+l)} time
for pedigree with n nodes and at most m0 heterozygous loci in each node, where
l is the maximum path length from the root to the leaves and µR is the number
of heterozygous loci in root R.

Proof. We have to consider all combinations of feasible haplotype configurations
at nodes in each trio, which is at most 2µR × (2m0)l. We need O(m0) time to
compute numtrio for each haplotype configuration combination in each trio,
and there may be at most O(n) trios, the time complexity of the algorithm is
min{O(nm4

02m0), O(nml+1
0 2µR+l)}.

5 Experimental Results

We implemented the above DP algorithm in C++, and all experiments were
conducted on a Pentium IV PC with 1.7GHz CPU and 256MB RAM.

5.1 Real Data

We examined a real data set on Epsiodic Ataxia (EA) by Litt et al.[9] which
involves a family containing 29 people typed at 9 polymorphic markers on chro-
mosome 12p. Both the locus-based algorithm [4] and the 1-MRHI algorithm run
fast (t < 1 sec.) on this data set but the results are different. The locus-based
algorithm gives a feasible solution with 5 recombinations in total but with a
double recombination in one haplotype of member 100. The 1-MRHI algorithm,
however, finds a more credible solution that has 6 recombinations in total, but
with at most 1 recombination for each haplotype in the pedigree.

Another two real data sets are three generations families like those in the
CEPH database [1][3][10] ( ftp://genome.wi.mit.edu/distribution/mpg/hapmap/
hap struct/popA/ (Gabriel et al.)): family 1331 on chromosome 7a, and family
1346 on chromosome 2a. After removing the loci with missing alleles, family 1331
is a pedigree consisting of 8 members on 32 loci, and family 1346 is a pedigree
consisting of 8 members on 55 loci. Both the locus-based algorithm and the 1-
MRHI algorithm give the same answer for family 1331, but take 522.4s and 8.7s,
respectively. As for family 1346, the locus-based algorithm fails because of not
enough resources while the 1-MRHI algorithm finds out a solution in 31 minutes.

5.2 Simulated Data

We compare the performance of our algorithm, with the locus-based algorithm [4]
and PHASE [14], a widely used program based on Gibbs Sampling algorithm, the
running time t and the accuracy ratio ρ (in recovering the correct haplotypes).
We used three different tree pedigree structures in the experiment: (1) a tree
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with 13 nodes (Figure 1), (2) a tree with 29 nodes (Figure 8 in [7]), (3) a typical
family with 21 nodes from the CEPH database [1][3][10] (Figure 5).

For each pedigree, genotypes with 15 and 30 biallelic marker loci are con-
sidered. The two alleles at each locus of a founder are independently sampled
with a fixed frequency of 0.5. The recombination rate is set to r = 0, 0.1, 0.2
between generations, and we limit the number of recombinations to no more
than one in each PO-pair. For each combination of the above parameters, 100
sets of random genotype data are generated and the average performance of the
programs is computed, as shown in Table 1.

Table 1. Comparison of performances of different haplotyping programs on sim-

ulation data

m = 15 m = 30

locus-based[4] PHASE[14] 1-MRHI 1-MRHI

(n, r) t(sec.) ρ t(sec.) ρ t(sec.) ρ t(sec.) ρ

(13, 0.0) 255.7 1.00 688.2 .87 1.68 1.00 202.8 1.00
(29, 0.0) 576.3 1.00 1772.8 .91 12.33 1.00 839.6 1.00
(21, 0.0) 234.4 1.00 592.4 .95 1.02 1.00 44.0 1.00
(13, 0.1) 287.7 .93 972.3 .85 1.73 .91 241.1 .92
(29, 0.1) 542.8 .90 2210.2 .90 10.45 .90 1042.8 .94
(21, 0.1) 243.2 .91 1504.2 .93 0.52 .94 33.7 .96
(13, 0.2) 294.2 .85 1221.4 .85 3.17 .89 1032.4 .86
(29, 0.2) 613.5 .81 3022.2 .89 11.70 .84 916.1 .84
(21, 0.2) 244.1 .90 2106.7 .93 1.22 .95 47.4 .92

† Average performance is obtained from 100 independent executions of each
program and for each parameter setting. n stands for the number of nodes,
m for the number of marker loci, r for the recombination rate, t(sec.) for the
average running time, and ρ for the accuracy ratio.

‡ The locus-based algorithm cannot be applied to cases of m ≥ 30, due to the
space limitation. PHASE is also excluded for cases of m ≥ 30 because of the
time.

As we can see from the table, 1-MRHI runs quickest, and the locus-based
algorithm runs quicker than PHASE. Thus the 1-MRHI algorithm can be applied
to much larger instances than the locus-based algorithm and PHASE can (the
other two algorithms fail when m = 30).

In terms of the quality of solutions, all three algorithms can recover the
correct haplotype configurations with high probabilities. The accuracy ratio de-
creases with the increase in the number of recombinations, which is more obvious
for the locus-based algorithm and the 1-MRHI algorithm. Since we have limited
the number of recombinations within each PO-pair to no more than 1 in the
data, the locus-based algorithm, which often finds solutions with fewer recom-
binations than the actual haplotype configurations, performs worse than the
1-MRHI algorithm as expected.
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6 Concluding Remarks

1-MRHI brings an improvement on the running time of solving the general MRHI
problem, even though 1-MRHI and the general MRHI usually give the same solu-
tions as confirmed from the experiments. If the solutions are different, 1-MRHI
usually gives the more credible solutions. In some cases, if the total number
of recombinations for 1-MRHI solutions is much larger than the total number
of recombinations for 2-MRHI solutions, then it is plausible that the 2-MRHI
solution should be more credible. Our next goal is to find the most probable
haplotype configuration which can explain the genotypes in a pedigree when the
probabilities of single, double, triple recombinations are given.

Our algorithm for k-MRHI cannot deal with mating loops; nor can the locus-
based DP algorithm [4]. A member-based DP algorithm [4] can deal with pedi-
grees with mating loops, but may not be well-suited to solving the k-MRHI
problem because of the increase in time complexity. In practice, pedigree data
often contains missing alleles. It will be interesting to find an efficient algorithm
for k-MRHI on pedigrees with mating loop and genotypes with missing data.
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