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Abstract 
Background 
Taxonomic annotation of reads is an important problem in metagenomic analysis. 

Existing annotation tools, which rely on the approach of aligning each read to the 

taxonomic structure, are unable to annotate many reads efficiently and accurately as 

reads (~100bp) are short and most of them come from unknown genomes. Previous 

work has suggested assembling the reads to make longer contigs before annotation. 

More reads/contigs can be annotated as a longer contig (in Kbp) can be aligned to a 

taxon even if it is from an unknown species as long as it contains a conserved region 

of that taxon. Unfortunately existing metagenomic assembly tools are not mature 

enough to produce long enough contigs. Binning tries to group reads/contigs of 

similar species together. Intuitively, reads in the same group (cluster) should be 

annotated to the same taxon and these reads altogether should cover a significant 

portion of the genome alleviating the problem of short contigs if the quality of binning 

is high. However, no existing work has tried to use binning results to help solve the 

annotation problem. This work explores this direction. 

Results 
In this paper, we describe MetaCluster-TA, an assembly-assisted binning-based 

annotation tool which relies on an innovative idea of annotating binned reads instead 

of aligning each read or contig to the taxonomic structure separately. We propose the 

novel concept of the ‘virtual contig’ (which can be up to 10 Kb in length) to represent 

a set of reads and then represent each cluster as a set of ‘virtual contigs’ (which 

together can be total up to 1 Mb in length) for annotation. MetaCluster-TA can 

outperform widely-used MEGAN4 and can annotate (1) more reads since the virtual 
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contigs are much longer; (2) more accurately since each cluster of long virtual contigs 

contains global information of the sampled genome which tends to be more accurate 

than short reads or assembled contigs which contain only local information of the 

genome; and (3) more efficiently since there are much fewer long virtual contigs to 

align than short reads. MetaCluster-TA outperforms MetaCluster 5.0 as a binning tool 

since binning itself can be more sensitive and precise given long virtual contigs and 

the binning results can be improved using the reference taxonomic database. 

Conclusions 
MetaCluster-TA can outperform widely-used MEGAN4 and can annotate more reads 

with higher accuracy and higher efficiency. It also outperforms MetaCluster 5.0 as a 

binning tool. 
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Background  
Text for this section. Metagenomics is the study of an entire community of 

microorganisms from an environmental sample. High-throughput next-generation 

sequencing (NGS) provides an opportunity to sequence and analyze genomes of 

multiple species from an environmental sample without cultivation. During the last 

several years, researchers have done many successful metagenomic projects on 

different samples based on NGS, such as human gut [1, 2] and cow rumen [3]. One of 

the important functions in metagenomic NGS analysis is to annotate to what species 

or what taxonomic group the metagenomic data belongs. This provides information 

on what kinds of species exist in the sample for further downstream analysis. 

There are two existing fundamental types of tools for metagenomic data analysis, 

namely assembly and binning. Assembly tools try to reconstruct the genomes that 

exist in the sample. Binning tools try to group the NGS reads of similar species 

together.  

In the ideal case, if we can assemble each species in the metagenomic sample, we 

can solve the annotation problem relatively easily. However, existing assembly tools 

are far from the ideal case and assembling metagenomic data is still a challenging and 

unresolved problem, although metagenomic assemblers can construct longer contigs.  

On the other hand, advances have been made for binning. Existing binning 

strategies can be divided into two categories: supervised methods (also called 

similarity-based methods) and unsupervised methods (also called composition-based 

methods).  

Supervised binning methods [4, 5] are the most common approaches for analyzing 

metagenomic samples. They make use of known genomes and sequence similarities 
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among reads or contigs (after assembly). Some supervised methods use generic 

features, such as 16S rRNA small subunit, recA and rpoB, to classify fragments. 

However, a large percentage (> 99%) of reads (or contigs) do not have these features 

[6]. Moreover, one species may have multiple markers and multiple species may share 

the same marker [7].  

Unsupervised methods, which do not rely on known genome information, are 

usually group reads/contigs together based on three observations: (A) the k-mer 

frequency of reads, where k ≅ 16, is generally linearly proportional to the abundance 

of the corresponding species [8]; (B) sufficiently long w-mers, where w ≥ 36,  have 

very high probability to be unique in each species [9]; and (C) sufficiently long 

reads/contigs from the same or similar species tend to have similar short q-mer 

distributions, where q = 4 or 5,  [10-15]. 

AbundanceBin [8], which is based on Observation (A), cannot separate reads from 

species with similar abundance. A recent tool, Improved-TOSS [16], uses 

Observation (A) to group reads together if they are from species with similar 

abundance, and then uses Observation (B) to separate reads from different species for 

each group. Improved-TOSS has good sensitivity performance for small datasets. 

MetaCluster 4.0 [11] is composed of three phases: Phase 1 groups reads according to 

a probabilistic model based on Observation (B); Phase 2 derives q-mer distribution; 

and Phase 3 further merges groups together with K-means clustering based on 

Observation (C). MetaCluster 5.0 [14] uses an extra round whose approach is based 

on Observation (A) to handle species of extremely low abundance in noisy samples. 

The MetaCluster software solves some important issues in unsupervised binning 

methods such as processing large datasets with many species and dealing with species 
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of different abundance. When the number of species increases (e.g. for the largest 

testing dataset T7 in [16]), MetaCluster 5.0 achieves better precision and sensitivity.  

Despite the recent advances in binning, to solve the annotation problem, we still rely 

on the approach of aligning each read to the taxonomic structure [17, 18]. In 

particular, MEGAN4 [18], which is widely used in metagenomic analysis, is based on 

this approach. Common annotation approaches, like MEGAN4, can be classified as 

‘nearest neighbor’ methods [19], as they usually assign reads to the lowest common 

ancestor (LCA) from the taxonomy of most similar sequences in the database. If the 

read can only be aligned to a single genome in the database, the read will be annotated 

to the species/subspecies of that genome. If the read can be aligned to many genomes, 

depending whether these genomes are within a species/genus/family, the read will be 

annotated to that species/genus/family.  

This procedure is time consuming and many reads cannot be aligned to any known 

sequences because many sequences for microorganisms remain unknown [20]. For 

better results, contigs after assembly, instead of reads, are used for annotation [21]. As 

the reads contributing to a contig are likely to belong to a single genome, using 

contigs for annotation has several advantages: (a) contigs can be aligned and 

annotated to a genome more readily than reads because contigs (of Kbp length) are 

much longer than reads, and (b) annotating a contig is equivalent to annotating all 

reads contributing to this contig, even though some of these reads cannot be aligned 

individually. 

To summarize, this approach of annotating metagenomic data by aligning each 

read/contig to the reference genomes in the taxonomic structure has the following 

shortcomings. 
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1) Unable to annotate many reads – Methods that rely on alignment of reads/contigs 

to known genomes still fail to align a large number of reads if they are from unknown 

species. Failure to align means that the read cannot be annotated. Contigs which are 

longer can be used instead of reads [21] as they can be aligned to known genomes 

with higher confidence and thus, more reads which are associated with the contigs can 

be annotated. But the improvement is limited due to the limited success in the 

assembly problem for producing long contigs. 

2) Less precise annotation for reads and more incorrect annotation for contigs – 

Even though the reads/contigs are from a particular species, they may be aligned to 

similar but different species under the same genus or family and thus be assigned to a 

higher taxonomy level. This means less precise in annotation.  This problem can be 

slightly alleviated for contigs as contigs are longer and the alignment can be more 

precise, thus resulting in a more precise annotation. However, since contigs are still 

short when compared with the length of a genome and can only capture some local 

information of the unknown genome, the problem of imprecise annotation cannot be 

solved completely. Even worse, there are cases that these contigs can be easily 

aligned to multiple genomes locally (due to horizontal gene transfer or housekeeping 

genes, etc) that make the annotation incorrect. 

3) Inefficient or time-consuming annotation – Annotating reads/contigs based on 

genomes of known species in the database may take a long time when certain errors 

are allowed during alignment. Even when the reads are assembled into contigs, there 

are still many contigs to align and annotate. 

Our contributions: In this paper, we extend the simple idea that contigs have better 

annotation performance than reads by using binning results, i.e., clusters, to perform 

annotation. Assembly is used to produce longer contigs which help annotation, but 
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also better binning results indirectly. We try to align each cluster to a taxon. To 

achieve this, we introduce the novel concept of virtual contigs, which are longer than 

traditional contigs because they are not, strictly speaking, contigs but functionally 

help to connect related reads together as a single unit for binning purposes, e.g. 

reads/contigs are binned together by paired-end reads or substantially-overlapped 

regions. Thanks to long virtual contigs, clustering by means of q-mer distribution can 

be more sensitive and precise since 5-mers for contigs of length longer than 10k bp 

can be used to yield better clustering results than the 4-mers used in MetaCluster 5.0. 

Note that contigs/virtual contigs can only contain local information of a genome. 

However, reads/contigs merged into a cluster through q-mer distribution can be far 

apart and thus can capture some global information of a genome. Unsupervised 

binning can cluster together reads from unknown species and such a cluster could be 

potentially annotated by the species/genus/family to which many of the reads/contigs 

in the cluster belong.  

The introduction of the virtual contig and binning techniques, which produces better 

clustering results for annotation, has further benefits: 

1) More annotated reads – An otherwise-unaligned read can be binned and 

annotated together with the other reads of the virtual contig (not only contigs) to 

which it belongs. 

2) More accurate annotation – The virtual contigs, which cover longer regions, can 

be better aligned to the genome of a particular species, reducing the likelihood that 

reads would be inaccurately assigned to a higher taxonomy.  Furthermore, reads in a 

cluster are annotated together through the information of reads/contigs/virtual contigs 

in the cluster. The annotation is more precise, because clusters are much larger in size 

(in terms of Mbp) and contain global information. The problem of horizontal gene 



 - 9 - 

transfers or housekeeping genes can be resolved because they only affect relative 

short regions (in terms of Kbp). 

3) More efficient annotation – Efficiency can be gained by annotating fewer clusters, 

instead of many individual reads/contigs. The number of clusters is usually about the 

number of species in the dataset, which is far smaller than number of reads/contigs. 
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Results  
We compared the performance of MetaCluster-TA with MetaCluster 5.0 and 

MEGAN4, since MetaCluster 5.0 is the most advanced unsupervised binning tool and 

MEGAN4 is a widely-used supervised binning and annotation tool. All the 

experiments were run on a UNIX machine with 4CPU of Intel Xeon X5650@2.4GHz.  

     In practice, reads from genomes of known species in the database can be annotated 

easily by alignments, e.g., BLASTN in MEGAN4. The main problem is those reads 

from unknown species. Reads from an unknown genome are usually annotated 

according to their similarity (by alignment) to the known genomes. In order to 

simulate the metagenomic environment of unknown species, instead of using the 

NCBI complete genome database (ftp.ncbi.nih.gov/genomes/), a set of genomes, 

called target genomes, which represent the set of unknown species, were selected and 

removed from the database. At the same time, we have to ensure that genomes of 

some related/similar species exist in the database (reference genomes). We say that 

the set of reads/contigs of an unknown (target) genome has species-reference if there 

exists at least one reference genome of the same species in the database as the 

unknown genome. Similarly, if there exists at least one reference genome in the 

database from the same order  as the reads/contigs of the target genome and there 

does not exist any reference genome in the database that belongs to a lower taxonomy 

level of that order, i.e., same as the target genome’s species, genus or family level, we 

say that these reads/contigs have order-reference. 

In our experiments, the testing datasets were generated from NCBI complete 

genome database (ftp.ncbi.nih.gov/genomes/). Based on the set of target genomes, we 

randomly generated a set of length-75 paired-end reads with 1% sequencing error and 

mailto:X5650@2.4GHz
ftp://ftp.ncbi.nih.gov/genomes/
ftp://ftp.ncbi.nih.gov/genomes/
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250±50 bp insertion distances according to some specified abundance. Three datasets, 

A1, A2 and B, were generated and detailed information about these three datasets 

such as number of selected genomes, selected genome names, coverage and reference 

genomes used in our experiments can be found on our website 

http://i.cs.hku.hk/~alse/MetaCluster/files/Datalist_Of_MetaCluster-TA. 

Improvement on annotation 
One important advantage of this method is its effectiveness in annotating more 

species. To evaluate the performance, we generated two testing datasets, one with 

high coverage (A1) and the other with low coverage (A2). 

A total of 50 target genomes were picked from different species to generate testing 

data. In addition to the removal of these 50 genomes from the reference database for 

simulating the scenario of the unknown species, we also remove genomes from the 

reference database so that reads from 25 genomes have species-reference (all 

genomes from the same subspecies as the target genome are removed) and the other 

25 genomes have order-reference only (all genomes from the same family as the 

target genome are removed). Reads sampled from these 50 genomes are used to 

generate the two datasets A1 and A2.  High coverage dataset A1 is generated by 

sampling reads from the 50 species with coverage of about 15x. Another low 

coverage dataset A2 is generated by sampling reads from the 50 species (two groups 

of 25 species, one group has specific reference and the other order-reference). In each 

group of 25 species, 20 are of coverage ≤ 3 and 5 are of coverage 8. 

Two experiments on MEGAN4 were performed for each dataset, one on 

metagenomic reads directly and the other on contigs after assembly using IDBA-UD 

[22]. As all reads contributing to the contig will be annotated with the taxonomy of 

the contig, more reads might be annotated. Reads that cannot be assembled will be 

treated as a single contig for annotation. In this section, we will compare MetaCluster-

http://i.cs.hku.hk/~alse/MetaCluster/files/Datalist_Of_MetaCluster-TA


 - 12 - 

TA with MEGAN4 on these two approaches, namely MEGAN4 (reads) and 

MEGAN4 (contigs), on two datasets, A1 and A2. As MEGAN4 takes BLASTN 

results as inputs, default parameters were used to run BLASTN and MEGAN4. 

Annotation performances on datasets A1 and A2 are shown in Table 1 and Table 2 

respectively.  

We compared the performance of the annotation algorithms based on four aspects: 

“Accurate” annotation, “Higher” annotation, “Incorrect” annotation and “Unassigned” 

reads. “Accurate” annotation refers to the reads annotated to the correct taxonomy, i.e. 

reads sampled from species-reference and order-reference genome annotated to the 

correct species level and order level respectively. “Higher” annotation refers to the 

reads annotated correctly but to higher taxonomy than the target genome, e.g. reads 

sampled from species-reference target genome are annotated to the family or higher 

taxonomy level of the target genome; similarly, reads sampled from order-reference 

target genome are annotated to the class or higher taxonomy level of the target 

genome. “Higher” annotation is considered as a correct but less precise annotation. 

“Incorrect” annotation refers to the reads annotated to wrong taxonomy. 

“Unassigned” reads are the reads that cannot be annotated by the corresponding 

software. Since a read can be annotated “Accurate”, “Higher”, “Incorrect” or 

“Unassigned”, the sum of the percentages in the corresponding part of each row in 

Table 1 and 2 should be 100%. 

Assume read R from target genome G is annotated with taxonomy T. We say R is 

correctly annotated if G is in taxonomy T (i.e., R is in the category “Accurate” or 

“Higher”). An annotation tool with good performance would be able to correctly 

annotate more reads, has less incorrect annotation and have less unassigned reads, i.e. 

more “Accurate” or “Higher” and less “Incorrect” or “Unassigned” reads.   
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For reads with species-reference in the high-coverage dataset A1, MetaCluster-TA 

has about 20% more “Higher” reads and slightly more “Accurate” reads than 

MEGAN4 (for both reads and contigs input). Since the target and the reference 

genomes are similar, all methods have high and similar “Accurate” annotations as 

many reads are from their common regions and are aligned to reference genomes 

correctly. For those reads from not-so-similar regions, they can only be annotated as a 

group together in a cluster and contig with more information. Thus, MetaCluster-TA 

and MEGAN4 (contigs) have more assigned reads. MEGAN4 (reads) has about 20% 

more unassigned reads than the other two. According to Table 1, MEGAN4 (contigs) 

does not have more “Higher” annotation as expected because the BLASTN alignment 

algorithm based on the default parameters might only depend on the matching of 

some short patterns in the contigs and this might result in the wrong annotation. 

MetaCluster-TA generates much longer sequences to do alignment, and the alignment 

result is supposed to be more accurate. Thus, this explains why even though 

MEGAN4 (contigs) can assign more reads than MEGAN4 (reads), it has about 20% 

more “Incorrect” reads than the other. As MEGAN4 (reads) annotates each read 

independently and cannot dig out taxonomic information for unaligned reads, 

MEGAN4 (reads) has the most “Unassigned” reads. 

As for reads with order-reference, since the reference and target genomes are less 

similar, fewer reads will be aligned. Consider MEGAN4 (reads), 95.2% are 

“Unassigned” and only 0.7% are “Accurate” annotated. MetaCluster-TA and 

MEGAN4 (contigs) have more “Accurate” annotations in the order that the former 

has more information (global) than the latter (local) for alignment; similar arguments 

for explaining why the numbers of “Unassigned” annotation are in the reverse order. 

Note that MEGAN4 (contigs) has the largest number of “Incorrect” annotation score 
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with more serious errors (than species-reference) partially because of the previous 

explanation about the BLASTN alignment algorithm and because the genomes are 

not-so-similar which leads to incorrect annotations. Specifically when compared to 

MEGAN4, MetaCluster-TA has much less “Incorrect” or “Unassigned” reads, about 

20% more “Accurate” reads and about 25% more “Higher” reads. Note that the 

incorrect percentage is based on all reads. If we only consider the annotated reads, the 

incorrect percentage for MEGAN4 (reads) will be much higher since it annotates 

much fewer reads, thus the precision of MEGAN4 (reads) is not high. 

Table 2 and 3 make further comparisons between MEGAN4 (contigs) and 

MetaCluster-TA on species-reference reads and order-reference reads respectively. 

For the species-references data, since most of the contigs and reads can be aligned to 

the reference genomes well, it is expected that there is not much improvement by 

MetaCluster-TA. However, among the reads annotated ‘Incorrect’ by MEGAN4 

(contigs), MetaCluster-TA successfully annotated 19.6% to ‘Higher’. It is because the 

cluster contains global information of the set of contigs and reads and prevents 

incorrect annotation due to local similarity between different species. When there is 

no similar genome as reference, i.e. the order-reference data, MEGAN4 (contigs) 

have more incorrect annotation and MetaCluster-TA can correct 20.5% reads to 

‘Accurate’ and 27.2% reads to ‘Higher’. 

For the low-coverage dataset A2 (Table 4), MEGAN4 (reads) has similar 

performances to the high-coverage dataset in all situations as each read is aligned and 

annotated independently without taking coverage into consideration. MEGAN4 

(contigs) can only have slightly better performances than MEGAN4 (reads) and have 

much lower “Incorrect” annotation because the coverage is too low for assembly. 

MetaCluster-TA has the best annotation performance in terms of the numbers 
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(percentages) of “Accurate” and “Higher” reads because clusters can still be formed 

with low coverage reads as MetaCluster 5.0 can handle low coverage binning 

reasonably well. For reads with order-reference, MetaCluster-TA has >20% more 

“Accurate” reads and >10% more “Higher” reads than MEGAN4. Since species in A2 

has low coverage, fewer and shorter contigs are formed and fewer reads can be 

associated with contigs. Thus, both MetaCluster-TA and MEGAN4 have more 

“Unassigned” reads for the low-coverage dataset than for the high-coverage dataset. 

Nevertheless, MetaCluster-TA has the least number of “Incorrect” and “Unassigned” 

reads. 

Table 5 and 6 show further comparison between MEGAN4 (contigs) and 

MetaCluster-TA on species-reference reads and order-reference reads respectively. 

The results are similar as in Table 2 and 3. Among the species-reference reads 

annotated ‘Unassigned’ by MEGAN4 (contigs), MetaCluster-TA annotated 4.3% to 

‘Accurate’ and 6.3% to ‘Higher’. Among the order-reference reads annotated 

‘Incorrect’ by MEGAN4 (contigs), MetaCluster-TA annotated 21.3% to ‘Accurate’ 

and annotated 11.9% to ‘Higher’. 

Another important advantage is that MetaCluster-TA is much more efficient. 

MEGAN4 (reads) and MEGAN4 (contigs) take about 4 days and 1 day respectively to 

complete a run, while MetaCluster-TA takes about 8 hours, including the time for 

assembly. 

Improvement on clustering 
Another important contribution of MetaCluster-TA is its clustering performance. In 

our hybrid approach, clustering takes advantage of taxonomy information.  

Assume a binning method outputs M clusters Ci  (1 ≤ i ≤ M) and there are N 

genomes in the sample. Let Rij be the number of reads in Ci that belong to genome j. 
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Cluster Cj represents genome j0 iff Rij0 =maxj Rij. Following the definition of precision 

and sensitivity of the clustering results as given in [14], we have:  
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MetaCluster 5.0 is designed to overcome binning difficulties like extremely-

low/low-coverage species, uneven coverage, and dataset containing too many species. 

To make fair comparison with MetaCluster 5.0 on clustering, we generated testing 

dataset B with reads sampled from genomes with different coverages.  

We randomly picked 100 species and selected one genome from each species. 

Their coverages vary from 1 to 20 and there are 5 genomes for each coverage. Thus, 

there are 55 species with ≥ 10x coverage, 20 species with [6x,10x) coverage and 25 

species with <6x coverage. 

Consider all reads sampled from a species S. If there exists a cluster C such that 

>50% reads sampled from S are in C and >50% reads in C are from S, we say that S is 

discovered by C.  

The results are shown in Table 7. For high coverage species (>10x), these two 

methods discovered the same number of species (47 out of 55 species), but 

MetaCluster-TA has better sensitivity. For low coverage species [6x,10x), 

MetaCluster 5.0 discovered 11 out of 20, while MetaCluster-TA discovered 3 more. 

MetaCluster-TA also achieves higher sensitivity. Overall, hybrid approach gets 6% 

higher precision and 8% higher sensitivity. Since the hybrid approach needs to 

annotate clusters, MetaCluster-TA requires reasonably more running time.  
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Discussion  
For metagenomic projects, clustering and binning/annotation remain difficult 

problems. Existing methods consider these two processes separately. However, better 

binning results can assist better annotation and an accurate annotation can improve the 

quality of annotated clusters. By considering them together, hybrid methods may 

achieve better results for both clustering and binning. 

Conclusions  
MetaCluster-TA can outperform widely-used MEGAN4 and can annotate more reads 

with higher accuracy and higher efficiency. It also outperforms MetaCluster 5.0 as a 

binning tool. 

Methods 
MetaCluster-TA is an assembly-assisted approach for the binning and annotation of 

metagenomic NGS reads. Instead of annotating each read or assembled contig 

separately, it bins similar reads/contigs into the same cluster and annotates the whole 

cluster. The annotation information could also be used for improving the clustering 

process and thus the annotation results. As shown in Figure 1, MetaCluster-TA 

consists of three phases: (1) construction of long virtual contigs from assembly and 

probabilistic grouping of short reads; (2) q-mer distribution estimation and clustering; 

(3) cluster annotation and merging. We will describe each phase in detail in the 

following sections. 

Phase 1: construction of long virtual contigs 
MetaCluster-TA applies a similar method as MetaCluster 5.0 (based on Observation 

(B)) to group short reads into clusters, i.e. the probability of two clusters of reads 

sharing common w-mer (length-w substring with w > 35) being sampled from the 

same species are calculated [14] and the clusters are merged into a single cluster if the 
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probability is high. However, instead of considering each read as an initial cluster, we 

assemble reads into long contigs (> 500bp) and consider reads aligned to the same 

contig (> 95% matches) as the initial cluster. The idea is that reads aligned to the 

same contig have higher probability of being sampled from the same species because 

contigs produced by today's assemblers have high precision. In our experiments, we 

use IDBA-UD [22], a non-aggressive and accurate assembler that is applicable for 

metagenomic data. Thus, large and accurate initial clusters can be obtained which can 

improve the performance of merging clusters. Each read that cannot be aligned to any 

contig will be treated as a cluster by itself initially and be merged based on w-mer 

sharing probability. 

    After merging, each group of reads (and contigs) will represent a virtual contig of a 

genome in the sense that these overlapping reads cover ‘multiple’ fragments of the 

same genome but these fragments might not be able to form a single contig in the 

usual way because they might be disconnected (grouped together based on paired-end 

reads) or contain repeated regions (branches which usually break up contigs). Thus, 

the ‘length’ (estimated based on the number of reads) of a virtual contig can be much 

longer than a contig and this facilitates later annotation. 

Phase 2: q-mer distribution estimation and clustering 
Observation (C) suggests that contigs or virtual contigs that share similar q-mer 

distributions have higher probability of being sampled from the same genome. Thus, 

virtual contigs produced in the first phase should be further clustered based on q-mer 

distributions. However, as the number of reads sampled from different regions of a 

genome can vary due to sequencing bias, the q-mer distributions of a virtual contig 

cannot be estimated directly from the q-mer distributions of the reads in the virtual 
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contig. We have to identify the overlapping regions of the reads and estimate the 

length of the virtual contigs as in [11]. 

Since the ‘length’ of the virtual contig produced by MetaCluster-TA is much longer 

than MetaCluster-5.0, q-mer distributions for larger q (q = 5 instead of 4) value can be 

estimated and better clustering results can be obtained. MetaCluster-TA groups virtual 

contigs using q-mers of different q values depending on their lengths. The 5-mer 

distributions of long virtual contigs (of length at least 10k bp) are estimated and these 

virtual contigs are grouped using the K-means clustering algorithm based on 

Spearman distances of their 5-mer distributions. Short virtual contigs (of length less 

than 10k bp) are assigned to their nearest clusters based on the Spearman distances of 

their 4-mer distributions. Note that only long virtual contigs based on their 5-mer 

distributions are used in clustering because short virtual contigs preserve less 

information and they may become noisy for the clustering, thus resulting in inaccurate 

clusters.   

Phase 3: cluster annotation and merging 
In this phase, we assign taxonomy to each cluster. For each cluster, we align each 

contig to the reference genome using BLASTN and find the genome with the highest 

alignment score. The cluster will then be annotated to the lowest common ancestor of 

these aligned genomes using MEGAN4, i.e. all reads and contigs in the cluster will be 

annotated to the LCA of all aligned genomes. When more than one cluster being 

annotated to the same species (or lower taxonomy), the clusters will be merged for a 

better binning result. However, when two clusters be annotated to the same genus (or 

higher taxonomy), the clusters will not be merged as they may represents reads 

sampled from different species from the same genus.  



 - 20 - 

Time complexity 
Phases 1 and 2, like MetaCluster 4.0 and 5.0, take a reasonably long time. Phase 3 

aligns contigs in cluster using BLASTN with time complexity O(n), where n is the 

total length of contigs. The annotation step of aligning each read to known genomes, 

based on BLASTN, is the bottleneck for MEGAN4, which takes an extremely long 

time. However, our annotation step annotates virtual contigs instead of reads/contigs, 

which is much more efficient. 
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Figures 
Figure 1 - Workflow of MetaCluster-TA 
  

Tables 
Table 1  - Annotation result on high-coverage dataset A1 

Methods 
Species-reference (~16.7 million reads) Order-reference (~20.0 million reads) 

Accurate Higher Incorrect Unassigned Accurate Higher Incorrect Unassigned 

MetaCluster-TA 60.9% 32.9% 4.0% 2.2% 31.8% 38.1% 22.6% 7.5% 

MEGAN4 (contigs) 60.7% 12.9% 22.3% 4.1% 12.3% 13.1% 65.3% 9.3% 

MEGAN4 (reads) 57.7% 14.8% 4.6% 22.8% 0.7% 0.7% 3.4% 95.2% 

* “Accurate” corresponds to the percentage of species-reference/order-reference reads 

annotated correctly, i.e., their correct species/order names of the target genomes;  

“Higher” corresponds to the percentage of species-reference/order-reference reads 

that are correctly annotated, but to taxonomy of higher levels than species/order of the 

target genomes (e.g. reads of E.coli-reference annotated with family name 

Enterobacteriaceae); “Incorrect” corresponds to the percentage of reads which are 

annotated incorrectly; “Unassigned” corresponds to the percentage of reads that 

cannot be annotated to any taxonomy. 
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* Running time of MetaCluster-TA is about 8 hours; running time of MEGAN4 

(reads) is about 4 days; running time of MEGAN4 (contigs) is about 1day. 

* About 80% reads can be aligned to contigs of length > 500bp with <5% 

mismatches. 

Table 2  - Further comparison between MEGAN4 (contigs) and MetaCluster-TA 
on species-reference of A1 

 MetaCluster-TA 

Accurate Higher Incorrect Unassigned 

M
EG

A
N

4 
(c

on
tig

s)
 Accurate 56.3% 3.1% 1.3% 0.0% 

Higher 3.2% 8.4% 1.3% 0.0% 

Incorrect 1.3% 19.6% 1.4% 0.0% 

Unassigned 0.1% 1.8% 0.0% 2.2% 

 

Table 3  - Further comparison between MEGAN4 (contigs) and MetaCluster-TA 
on order-reference of A1 

 MetaCluster-TA 

Accurate Higher Incorrect Unassigned 

M
EG

A
N

4 
(c

on
tig

s)
 Accurate 9.3% 1.3% 1.7% 0.0% 

Higher 1.3% 8.7% 3.1% 0.0% 

Incorrect 20.5% 27.2% 17.6% 0.0% 

Unassigned 0.7% 0.9% 0.2% 7.5% 

 

Table 4  - Annotation result on dataset A2 

Methods 
Species-reference (~16.7 million reads) Order-reference (~20.0 million reads) 

Accurate Higher Incorrect Unassigned Accurate Higher Incorrect Unassigned 

MetaCluster-TA 58.7% 8.9% 3.8% 28.6% 35.7% 15.1% 14.4% 34.8% 

MEGAN4 (contigs) 54.2% 1.8% 3.8% 40.1% 13.5% 4.3% 42.0% 40.3% 

MEGAN4 (reads) 57.3% 5.9% 4.3% 32.6% 1.1% 0.5% 3.9% 94.5% 

*Running time of MetaCluster-TA is about 5 hours; running time of MEGAN4 

(reads) is about 1.5 days; running time of MEGAN4 (contigs) is about 10 hours. 

* About 40% reads can be aligned to contigs of length > 500bp with <5% 

mismatches. 
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Table 5  - Further comparison between MEGAN4 (contigs) and MetaCluster-TA 
on species-reference of A2 

 MetaCluster-TA 

Accurate Higher Incorrect Unassigned 

M
EG

A
N

4 
(c

on
tig

s)
 Accurate 51.1% 0.7% 2.4% 0.0% 

Higher 0.8% 1.0% 0.0% 0.0% 

Incorrect 2.5% 0.9% 0.4% 0.0% 

Unassigned 4.3% 6.3% 1.0% 28.6% 

 

Table 6  - Further comparison between MEGAN4 (contigs) and MetaCluster-TA 
on order-reference of A2 

 MetaCluster-TA 

Accurate Higher Incorrect Unassigned 

M
EG

A
N

4 
(c

on
tig

s)
 Accurate 12.2% 1.0% 0.3% 0.0% 

Higher 1.6% 0.6% 2.1% 0.0% 

Incorrect 21.3% 11.9% 8.7% 0.0% 

Unassigned 0.6% 1.6% 3.3% 34.8% 

 

Table 7  - Clustering performance on dataset B 
 Species discovered Sensitivity Overall performance 

≥10x [6x, 10x) <6x ≥10x [6x, 10x) Precision Sensitivity Memory  Time 

MetaCluster 5.0 47 11 0 0.84 0.78 0.80 0.79 35GB 101min 

MetaCluster-TA 47 14 0 0.89 0.84 0.86 0.87 30GB 250min 
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