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Abstract Given a seller with k types of items, m of each, a sequence of users {u1, u2, . . .}
arrive one by one. Each user is single-minded, i.e., each user is interested only in a particular
bundle of items. The seller must set the price and assign some amount of bundles to each
user upon his/her arrival. Bundles can be sold fractionally. Each ui has his/her value function
vi (·) such that vi (x) is the highest unit price ui is willing to pay for x bundles. The objective
is to maximize the revenue of the seller by setting the price and amount of bundles for each
user. In this paper, we first show that a lower bound of the competitive ratio for this problem
is �(log h + log k), where h is the highest unit price to be paid among all users. We then
give a deterministic online algorithm, Pricing, whose competitive ratio is O(

√
k · log h log k).

When k = 1 the lower and upper bounds asymptotically match the optimal result O(log h).

Keywords Online algorithms · Pricing · Competitive ratio

1 Introduction

The problem of item pricing is one of the most important problems in computational
economics. Item pricing contains two kinds of participators: the seller and the user. The
seller has some items, which will be sold to the users at some designated prices; the user will
buy the items at an acceptable price. The objective is to maximize the total revenue of the
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seller by assigning items to the users. To achieve this target, the prices of the items must be
sold dynamically, i.e., the prices of items are different for different users, at different times,
with different amounts, . . . If the designated price is higher than the expected price of a user,
this user will reject the assignment; otherwise, this user will accept the assignment.

Pricing is a computationally interesting and realistic problem. Some researchers have
studied more complex and realistic user preferences in the complete information setting,
with the aim of devising fast algorithms to give the optimal, or a good approximate, pricing
solution [5–9,12–19]. Other researchers have studied the situation where the seller must set
prices without knowledge, or complete knowledge, of the valuations of future users, with the
aim of devising algorithms that will perform well even in the face of adversarial users trying
to undermine the seller [1–4,10,11,20].

The motivation of the problem studied in this paper is from some situations in economics.
In investing in the stock market, suppose someone wants to sell all her shares to achieve the
highest revenue. The price of the shares fluctuates with time, she only knows the prices of
the history and has no idea of the future price. At each time, she must decides whether or not
sell some shares, and determines the number of shares to be sold. Another example, suppose
a travel agent has some commodities, e.g., flights and hotels, to be sold to some users and the
target is to maximize his revenue. Each user has her interested package of flights and hotels,
and the valuations on different users are different. The travel agent must decide the price and
amount of packages sold to each user on her arrival.

In this paper, we study the online pricing for bundles of multiple items. Formally speaking,
given a seller with k types of items, i1, i2, . . . ik , the amount of each type is m. A sequence of
users {u1, u2, . . .} come one by one, each user is single-minded, i.e., each user is interested
only in a particular bundle of items. For example, user u’s bundle of interest is Iu = {i1, i2}
(or Iu = {1, 2}). The bundles can be sold fractionally, but the amount of each item in the
sold bundle must be the same. Still considering the above example, the seller may sell a
half bundle to u, i.e., half i1 and half i2. The seller must set the unit price and sell a certain
number of bundles to each user on his/her arrival. In this paper, for ease of computation and
comparison, the unit price is defined on items, not on bundles, even though one can convert
to the other easily. For example, if the seller sells 1.5 bundles Iu = {1, 2} to u at price 3, then
the unit price is 1. Actually, if we define the unit price on a bundle, the results in this paper
still hold, because the unit price on bundle I can be regarded as |I | times the unit price on an
item. However, defining the unit price on an item is more convenient since different bundles
can be compared easily. Each ui has his/her value function vi (·) such that vi (x) is the highest
unit price ui is willing to pay for x bundles. Generally, the more bundles a user buys, the
lower unit price he expects. Thus, in this paper, we assume that vi (x) is non-increasing. Let
h be the highest value among all vi (x), i.e., vi (x) ≤ h for all i and x . When user u comes
with his bundle of interest Iu , suppose that the seller sets the item unit price p and assigns �

bundles to u. If p > vi (�), then user u cannot accept this price, and no bundle is bought by
u. Otherwise, p ≤ vi (�), and u accepts this price and pays p · � · |Iu | to the seller.

To understand this model clearly, consider the example as shown in Fig. 1. The seller has
k = 3 types of items, and each type contains m = 2 items. There are three single-minded
users who want to buy these items. User 1’s bundle of interest is I1 = {1, 2}; the unit prices at
which user 1 is willing to buy his bundle are 5 and 5 for buying 1 and 2 bundles respectively,
i.e., v1(1) = v2(1) = 5. User 2’s bundle of interest is I2 = {2, 3}; the unit prices at which
user 2 is willing to buy his bundle are 6 and 4 for buying one and two bundles respectively,
i.e., v2(1) = 6 and v2(2) = 4. User 3’s bundle of interest is I3 = {1, 3}; the unit prices
at which user 3 is willing to buy his bundle are 7 and 4 for buying one and two bundles
respectively, i.e., v3(1) = 7 and v3(2) = 4. When user 1 comes, to maximize the seller’s
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Fig. 1 An example of online
pricing for multiple items

revenue on this user, the seller will assign 2 bundles of I1 = {1, 2} at unit price 5 to him.
When user 2 and user 3 come, there is no item 1 and item 2 left. In this case, user 2 and user
3 cannot buy anything and the total revenue of the seller is 20. However, the optimal strategy
can achieve a total revenue of 36 by assigning one bundle of I1 at unit price 5 to user 1, one
bundle of I2 = {2, 3} at unit price 6 to user 2, and one bundle of I3 = {1, 3} at unit price 7
to user 3.

We consider the online version of this problem, i.e., before the i th user comes, the seller has
no information of the j th user for j ≥ i . To measure the performance of online algorithms,
competitive analysis is generally used, i.e., to compare the outputs between the online algo-
rithm and the optimal offline algorithm (which assumes all information is known in advance).
Given the seller with item set B and a user sequence σ , let A(B, σ ) and O(B, σ ) denote
the total revenue received by the seller according to the online algorithm A and the optimal
offline algorithm O , respectively. The competitive ratio of the algorithm A is

RA = sup
B,σ

O(B, σ )

A(B, σ )
.

The pricing problem for items has been well studied in the past few years. Both multiple types
of items and single type of items have been considered. Previous work has mainly focused on
two supply models: the unlimited supply model [2,5,9,15,17] where the number of each type
of item is unbounded and the limited supply model [2,6–8,12,16,18,19] where the number
of each type of item is bounded by some value. As for the users, there are several users’
behaviors studied, including single-minded [12–15,17,19] (each user is interested only in
a particular set of items), unit-demand [5–9,17,19] (each user will buy at most one item in
total) and envy free [2,8,12,15,17] (after the assignment, no user would prefer to be assigned
a different set of items with the designated prices, loosely speaking, each user is happy with
his/her purchase). Most of the previous studies have considered a combination of the above
scenarios (e.g. envy-free pricing for single-minded users when there is unlimited supply). In
Zhang et al. [20], considered a more practical and realistic model in the sense that the seller
has a finite number of items (one type of item with limited supply) and users can demand
more than one items and arrive online. They proved that the lower bound of the competitive
ratio is �(log h), moreover, they gave a deterministic online algorithm with competitive ratio
O(log h), where h is the highest unit price.

In this paper, besides generalizing the problem to more than one type of items and bundles
of items required by users, the idea used in our proposed online pricing algorithm is rooted
by considering the amount of remaining items in additional to the user’s value function in
determining the price and amount of items to be sold. The proof in establishing the upper
bound is more complicated by employing a fine price partition. The result in this paper can
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also match the optimal result O(log h) [20] asymptotically when there is only one type of
item (k = 1) in the model.

This paper is organized as follows: Sect. 2 proves the lower bound of the competitive ratio
for this variant to be �(log h + log k); in Sect. 3, a deterministic online algorithm whose
competitive ratio is O(

√
k log h log k) is given.

2 Lower bound of the competitive ratio

In this section, our target is to show that the lower bound of the competitive ratio of the online
pricing problem for multiple items is �(log h + log k), where h is the highest unit price and
k is the number of types.

For easy analysis of the lower bound, we assume that h = 2� and k = 2 j , i.e., log h and
log k are both integers. The lower bound is proved step by step. In each step, the adversary
sends a user with his value function to the seller. In this proof, all value functions are flat,
particularly, the value function v(x) is some power of 2 for all x .

In the first log k steps, the value function v(x) = 1.

Step 1:
The adversary sends user u1 to the seller, with bundle of interest {1}.
If the seller assigns x1 bundles to u1 such that x1 ≤ m/(log h + log k), the adversary stops.

In this case, the revenue of the seller is at most m/(log h + log k), while the maximal revenue
is m by assigning all m bundles to u1. Thus, the ratio in this case is at least �(log h + log k).

Otherwise, the seller assigns more than m/(log h + log k) bundles to u1. The adversary
will send the next user to the seller.

Step 2:
The adversary sends user u2 to the seller, with bundle of interest {1, 2}.
If the seller assigns x2 bundles to u2 such that x1 +x2 ≤ 2m/(log h + log k), the adversary

stops. In this case, the revenue of the seller is at most x1 + 2x2 ≤ 3m/(log h + log k), while
the optimal revenue is 2m by assigning all i1 and i2 to user u2. Thus, the ratio in this case is
at least �(log h + log k).

Otherwise, the seller assigns x2 bundles to u2 such that x1 + x2 > 2m/(log h + log k).

Step �: (1 < � ≤ log k)
The adversary sends user u� to the seller, with bundle of interest {1, 2�−2 + 1 −−2�−1}.
If the seller assigns x� bundles to u� such that

∑�
t=1 xt ≤ � · m/(log h + log k), the

adversary stops. In this case, the revenue achieved by the seller is

x1 + 2x2 + · · · + (2�−2 + 1)x� (1)

Lemma 1 If the adversary stops at step �, the total revenue is at most

(2�−1 + � − 1)m

log h + log k
.

Proof From previous steps, we have

t∑

p=1

x p ≥ tm

log h + log k
(1 ≤ t < �),
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thus,

�∑

p=t+1

x p ≤ (� − t)m

log h + log k
(1 ≤ t < �).

Therefore, Eq. (1) achieves the maximal value (2�−1+�−1)m
log h+log k when each x p equals to m/(log h+

log k). ��
The optimal revenue is (2�−2 + 1)m by assigning all m bundles to u�. Therefore, in this

case, the competitive ratio is still bounded by �(log h + log k).
Otherwise, the adversary sends the next user to the seller.

In the following log h steps (step log k + 1 ≤ � ≤ log k + log h), the bundles of interest
are {1, k/2 + 1 −−k}, and the value functions are v(x) = 2�−log k at step �.

Step log k + 1:
The adversary sends user ulog k+1 to the seller.

If the seller assigns xlog k+1 bundles to ulog k+1 such that
∑log k+1

�=1 x� ≤ (log k +
1)m/(log h + log k), the adversary stops. In this case, the revenue achieved by the seller
is

x1 + 2x2 + · · · + (k/2 + 1)xlog k + 2 · (k/2 + 1)xlog k+1 (2)

Similar to the proof in Lemma 1, we can find that the revenue achieved is at most

(3k/2 + log k + 1)m

log k + log h
.

The optimal revenue is (k + 2)m by assigning all m bundles to ulog k+1. Therefore, in this
case, the competitive ratio is still bounded by �(log h + log k).

Otherwise, the adversary sends the next user to the seller.

The analysis from Step log k + 2 until Step log k + log h − 1 are similar to the above one.

Step log k + log h:
The adversary sends user ulog k+log h to the seller and the seller assigns xlog k+log h bundles

to the user. Since all bundles of interest include i1, thus, the total number of all assigned
bundles is no more than m. Thus, the adversary must stop at this step. Similar to the previous
analysis, the ratio between the optimal solution and the revenue achieved by the online
algorithm is at least �(log k + log h).

Therefore, we have the following conclusion.

Theorem 2 For the online pricing for multiple items, the lower bound of the competitive
ratio is �(log h + log k).

3 Online algorithm

To maximize the revenue of the seller on a particular user u with bundle of interest I , a
straightforward idea is finding unit price p and amount of bundles b such that p is acceptable
when buying b bundles, and b · p is maximized. If we assign b bundles with unit price p to
u, the revenue is b · p · |I |.
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In our algorithm, we assign unit price 2�(� ≥ 0) to each user. In this way, the performance
will not be affected too much. Let (b, p) be the assignment such that b · p · |I | is maximal.
W.l.o.g., suppose 2i ≤ p < 2i+1, note that v(x) is non-increasing, we have v−1(2i+1) ≤
b ≤ v−1(2i ), where v−1(.) is the reverse function of v(.). Thus,

b · p ≤ v−1(2i ) · p ≤ v−1(2i ) · 2i+1 = 2 · v−1(2i ) · 2i .

If we choose the unit price equals to some power of 2, (v−1(2i ), 2i ) is a candidate of the
assignment, which is at least half of the maximal revenue on the user.

In our algorithm, we partition the amount of each type of item into �log h� stages, from
stage 1 to stage �log h�. The amount of items in stage i can be only assigned with unit price
2i−1. Furthermore, partition the items in each stage into �log k� + 1 levels, from level 0 to
level �log k�. For type i , items in level � can be assigned only to users such that type i is in
the user’s bundle of interest and the size of the bundle is within [2�−1 + 1, 2�]. For example,
a user u’s bundle of interest is {1, 2, 3, 4}, thus, in our algorithm, we choose items from level
2 in some stage to satisfy this user.

Let δ
s,t
i denote the available amount of items of type i in stage s level t . Initially,

δ
s,t
i = m/(�log h�(�log k� + 1)).

Next, we will formally describe the pricing algorithm for multiple items.

Algorithm 1 Pricing
1: Let I be the bundle of interest of the coming user u.
2: Let � = 	log |I |
 � � denotes the level which may assign items to user i .
3: Let x j be the largest amount of bundles that user i is willing to buy given unit price 2 j and satisfying

x j ≤ m.

4: Let y j = min{x j , mini∈I {δ j+1,�
i }}.

5: Let s = arg max j y j · 2 j such that y j > 0.
6: if no such s exists then
7: Assign 0 bundles to user u.
8: else
9: Set the unit price p = 2s .
10: Assign ys bundles to user u.

11: δ
s+1,�
i = δ

s+1,�
i − ys for all i ∈ I .

12: end if

According to the algorithm Pricing, if a user u with bundle of interest I cannot be satisfied,
that means in each stage s such that 2s is an acceptable price for u, at least one type of item
in I at level 	log |I |
 are all assigned to other users.

For a user sequence {u1, u2, . . .}, let ALG denote the total revenue received from the
algorithm Pricing, let O PT be the revenue achieved by the optimal algorithm. Next, we give
the competitive ratio of the algorithm Pricing, i.e., prove the upper bound of the ratio between
O PT and ALG.

After the assignment on the whole user sequence {u1, u2, . . .} by the algorithm Pricing, for
each type of item, some levels in some stages are full, the others still contain some available
items. Classify all levels into two classes: L f

i denotes the levels of type i which are full, i.e.,

level t in stage s of type i belongs to L f
i if δ

s,t
i = 0; Ln

i denotes the levels of type i which
contain available items, i.e., δ

s,t
i > 0 for the corresponding levels.

Compare the assignments from the optimal algorithm and Pricing, we also partition the
assignments from the optimal algorithm into two classes according to L f

i and Ln
i . In the
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optimal solution, consider the assignment to a user with bundle of interest I , suppose the
unit price p ∈ [2�, 2�+1). In the assignment from Pricing, if there exist i ∈ I such that
δ
�+1,	log |I |

i = 0, i.e., this level belongs to L f

i , we say the revenue of this assignment from

the optimal algorithm belongs to O f . Otherwise, if for any i ∈ I, δ�+1,	log |I |

i > 0 in the

assignment w.r.t. Pricing, the revenue of this assignment belongs to On .
Moreover, we partition the assignment according to the size of the bundle. If |I | ≤ √

k, we
say the size of the bundle is small, otherwise, the size is large. The revenue of the assignment
from the optimal algorithm is further partitioned into four classes: Os

f , Ol
f , Os

n , and Ol
n ,

where Os
f and Os

n denote the revenue from small bundles, Ol
f and Ol

n denote the revenue

from large bundles. Note that Os
f + Ol

f = O f and Os
n + Ol

n = On . Next, we compare these
four classes with ALG respectively.

Lemma 3
Os

f
ALG ≤ O(

√
k · log h log k).

Proof By the optimal algorithm, consider an assignment A on a bundle I with unit price
p ∈ [2�, 2�+1). Assume that |I | ≤ √

k and in the assignment from Pricing, at least one type
i ∈ I at level 	log |I |
 in stage � + 1 is full. The optimal revenue of the assignment A is

p · m · |I | (3)

From the algorithm Pricing, the revenue at level 	log |I |
 in stage � + 1 of type i is

2� · m/(�log h�(�log k� + 1)) (4)

The ratio between (3) and (4) is

O(
√

k · log h log k).

Suppose by the optimal algorithm, there are more than one assigned small bundles, I1, I2,

. . . , I j with unit prices p1, p2, . . . , p j satisfy p j ′ ∈ [2�, 2�+1) for 1 ≤ j ′ ≤ j and all
	log |I j ′ |
 (1 ≤ j ′ ≤ j) are equal. If these bundles share an item i such that in the assignment
from Pricing, level 	log |I1|
 in stage �+1 of item i is full, the total revenue on these bundles
in the optimal solution is at most

max{p j ′ } · m · max{|I j ′ |} 1 ≤ j ′ ≤ j (5)

Compare the value in Eq. (5) with the revenue from Pricing at level 	log |I |
 in stage � + 1
of type i (Eq. (4)), the ratio is also

O(
√

k · log h log k).

From the optimal pricing, all assignments in Os
f can be partitioned into parts, each part

contains the assignments which satisfy the property mentioned above. Since the total revenues
on such full levels is a lower bound of ALG, we have

Os
f

ALG
≤ O(

√
k · log h log k).

��
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Lemma 4
Ol

f
ALG ≤ O(

√
k · log h log k).

Proof By the optimal algorithm, consider some amount of bundle I with unit price
p ∈ [2�, 2�+1) is assigned to a user. Assume that |I | >

√
k and there exist an item i ∈ I

such that in the assignment from Pricing, level 	log |I |
 in stage � + 1 of item i is full. Note
that from the algorithm Pricing, items in this level can be only assigned to bundles with size
in between (2	log |I |
−1, 2	log |I |
], thus, the total revenue on level 	log |I |
 in stage � + 1 is
at least

2� · m · 2	log |I |
−1

�log h�(�log k� + 1)
(6)

Note that the optimal revenue for bundles with unit price p ∈ [2�, 2�+1) is at most

2�+1 · m · k (7)

The ratio between the above two equations is O(
√

k · log h log k). Combine all revenues in
Ol

f , this lemma is true. ��
Lemma 5 Os

n
ALG ≤ O(

√
k · log h log k).

Proof Again, consider an assigned bundle I from the optimal algorithm, such that the revenue
on I belongs to Os

n and the unit price is p ∈ [2�, 2�+1). The algorithm Pricing chooses the
unit price 2 j such that 2 j · y j is maximized. Note that (2�, y�) is also a candidate for satisfying
bundle I .

• If Pricing assigns (2�, y�), since after the assignment, δ
�+1,	log I

i > 0 for all i ∈ I , the

revenue achieved on I by Pricing is at least half of the maximal revenue on this bundle.
• Otherwise, Pricing assigns (2 j , y j ) such that j �= �. From the choosing criteria,

2 j · y j ≥ 2� · y�.

– If δ
�+1,	log I

i > y� for all i ∈ I , from the above analysis, the revenue on I by Pricing is

at least half of the maximal revenue on this bundle.
– Otherwise, δ�+1,	log I


i = y� for some i ∈ I . Since 2 j · y j ≥ 2� · y�, the revenue achieved
on I by Pricing plus the current revenue on level 	log I
 in stage �+1 of type i is at least

2� · m

�log h�(�log k� + 1)
(8)

This is because if we assign (2�, y�) for this bundle, level 	log I
 in stage � + 1 of type
i is full.
Similar to the analysis in Lemma 3, suppose more than one assigned small bundles
I1, I2, . . . with unit price p1, p2, . . . within [2�, 2�+1) and the sizes of these bundles are
all within (2	log |I1|
−1, 2	log |I1|
], if all these bundles share type i , the total revenue on
such bundles by the optimal scheme is at most

2�+1 · m · 2	log |I1|
 (9)

The ratio between the (9) and (8) is O(
√

k · log h log k).

Mapping the assignments in Os
n to the corresponding assignments of Pricing described

above, each assignment by Pricing is counted at most TWICE. Combining with the above
analysis,

Os
n

ALG
≤ O(

√
k · log h log k).

��
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Lemma 6 Ol
n

ALG ≤ O(
√

k · log h log k).

Proof The proof of this lemma is similar to the proofs in Lemmas 3 and 4. Consider a bundle
I such that the revenue on I from the optimal algorithm belongs to Ol

n and the unit price is
p ∈ [2�, 2�+1). For the same bundle I , the algorithm Pricing chooses the unit price 2 j such
that 2 j · y j is maximized. Since any level 	log |I |
 in stage � + 1 of item i ∈ I is not full,
(2�, y�) is also a candidate of assignment of the algorithm Pricing.

• If Pricing assigns (2�, y�), since δ
�+1,	log I

i > 0 for all i ∈ I after the assignment of the

whole user sequence, the revenue achieved on I is at least half of the maximal revenue
on this bundle.

• Otherwise, Pricing assigns (2 j , y j ) such that j �= �. From the choosing criteria,
2 j · y j ≥ 2� · y�.

– If δ
�+1,	log I

i > y� for all i ∈ I , from the above analysis, the revenue on I by Pricing is

at least half of the maximal revenue on this bundle.
– Otherwise, δ�+1,	log I


i = y� for some i ∈ I . Since 2 j · y j ≥ 2� · y�, the revenue achieved
on I by Pricing plus the revenue on level 	log I
 in stage � + 1 is at least

2� · m · 2	log |I |
−1

�log h�(�log k� + 1)
(10)

This is because if we assign (2�, y�) for this bundle, level 	log I
 in stage � + 1 of
type i is full, and the size of each bundle on this level is at least 2	log |I |
−1. From the
optimal scheme, the total revenue on assignments from unit price in between [2�, 2�+1)

and bundle size in between (2	log |I |
−1, 2	log |I |
] is at most

2�+1 · m · k (11)

The ratio between (11) and (10) is O(
√

k · log h log k)

Mapping the revenue of assignments in Ol
n to the assignments by Pricing, from the above

analysis, each assignment by Pricing is counted at most TWICE. Thus,

Ol
n

ALG
≤ O(

√
k · log h log k).

��
Now we give the main conclusion of this paper.

Theorem 7 The competitive ratio of the algorithm Pricing is at most

O(
√

k · log h log k).

Proof From the definitions on Os
f , Ol

f , Os
n , and Ol

n , these four classes are disjoint. Note that

if a requested bundle cannot be satisfied, it must belongs to Os
f or Ol

f . Combining Lemmas

2, 3, 4 and 5, the competitive ratio of the algorithm Pricing is O(
√

k · log h log k). ��

4 Concluding remark

In this paper, we study the online pricing problem for bundles of multiple items. To maximize
the revenue, the seller must have a good strategy to decide the price and amount of bundles
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sold to each user on her arrival. This model has several realistic motivating applications. We
give an online pricing strategy for this problem, and the upper bound of the competitive ratio
is proved. Moreover, we also show the lower bound of the performance ratio. In this model,
we assume that the amount of each item in any assigned bundle must be the same and each
type of items has the same amount m. Based on this assumption, we have the competitive
algorithm by partitioning the amount of items into levels and stages. In future research, it
would be interesting to examine a generalization of this model that removes this assumption.
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