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Abstract

Given n items with at most d of them having a particular property (referred
as positive items), a test on a selected subset of them is positive if and only
if the subset contains at least one positive item. The non-adaptive group
testing problem is to design how to group the items to minimize the number
of tests required to identify all positive items in which all tests are performed
in parallel. This problem is well-studied and algorithms exist that match
the lower bound with a small gap of log d asymptoticically. An important
generalization of the problem is to consider the case that individual positive
item cannot make a test positive, but a combination of them (referred as
positive subsets) can do. The problem is referred as the non-adaptive complex
group testing. Assume there are at most d positive subsets whose sizes are
at most s, existing algorithms either require Ω(logs n) tests for general n
or O(

(
s+d
d

)
log n) tests for some special values of n . However, the number

of items in each test cannot be very small or very large in real situation.
The above algorithms cannot be applied because there is no control on the
number of items in each test. In this paper, we provide a novel and practical
derandomized algorithm to construct the tests with two important properties.
(1) Our algorithm requires only O

(
(d+ s)d+s+1/(ddss) log n

)
tests for all

positive integers n which matches the upper bound on the number of tests
when all positive subsets are singletons, i.e. s = 1. (2) All tests in our
algorithm can have the same number of tested items k. Thus, our algorithm
can solve the problem with additional constraints on the number of tested
items in each test, such as maximum or minimum number of tested items.
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1. Introduction

In biological studies, there are many situations in which we need to iden-
tify a subset of items with a particular property (called positive items) from
a large set of items. Instead of testing each item one by one, we can group
and test several items together in one experiment. If the outcome is negative,
we can conclude that all items in the group do not have that property using
only one experiment. By grouping the items carefully, biologists can save
a lot of experiments. For example, during World War II, biologists needed
to identify people with syphilitic antigen from a large population using the
Wasserman-type blood test [8]. Instead of performing the test on each blood
sample, they performed tests on grouped blood samples in order to reduce
the total number of tests. In DNA library screening [6, 13], biologists need to
identify from the DNA library a subset of cloned DNA segments containing
a particular substring, called probe. Instead of performing an experiment
on each clone-probe pair, biologists group several cloned DNA segments to-
gether and perform a single experiment on them. In phenotype knockout
studies [17, 21, 26], biologists need to identify genes causing a particular
phenotype from a set of genes. Instead of knocking out genes one by one in
each experiment, biologists can knockout several genes at the same time and
check whether the phenotype still appears in one experiment.

The group testing problem [9, 15], which has been studied since World
War II on the Wasserman-type blood test mentioned above, is to find the
best way of grouping items in each test so as to minimize the total number
of tests needed in the worst case. If the tests can be performed sequentially
after knowing the results of the previous tests, the problem was solved more
than 30 years ago and there exist algorithms [15, 18, 23] for which the number
of tests required is close to the optimal (in term of exact number of tests).
However, some experiments are time-consuming, e.g. each phenotype knock-
out experiment requires several months, and we cannot afford the time to
perform tests one after another. Instead, it is desirable to perform all tests in
parallel without knowing the results of others. In this case, the non-adaptive
group testing problem, also called pooling design [5, 11, 12, 19], is needed. In
this paper, we focus on this non-adaptive version.

Given a set of n items with at most d hidden positive items P , the result
of a test on a subset S of items is positive if P ∩S 6= ∅, otherwise, the result is
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negative. The non-adaptive group testing problem is to design the minimum
number of tests t, as a function of n and d, for determining all positive
items P from the results of the tests assuming that all tests are performed
in parallel and designed without any knowledge of other test results.

The non-adaptive version of the problem seems to be more difficult than
the adaptive version. Only recently, there were some breakthrough results
for solving the problem. Porat and Rothschild [20] solved the problem by
constructing an Error Correction Code (ECC). ECC encodes the alphabets
in a message into binary strings with the Hamming distance between any
pair of strings is at least d. Thus up to d/2 errors in each string can be
detected and corrected. By picking a suitable alphabet size, they can convert
the ECC into O(d2 log n) tests for the non-adaptive group testing problem
which almost matches the lower bound of O(d2 logn

log d
) [4]. Indyk et al. [16]

provided another solution also with O(d2 log n) tests based on concatenated
code. They first construct a Reed-Solomon code with suitable parameters,
then encode it with another independent random binary code and convert it
into O(d2 log n) tests. By decoding the test results in two levels, they can
determine the positive items in O(polylog(n)) time which is faster than other
algorithms which takes O(poly(n)) time.

However, many important biological applications cannot be modeled by
the above group testing problem becasue of two reasons. First, because of the
sensitivity of the experiments, we may not be able to group many items in a
test. Similarly, there are cases for which we cannot group too few items. One
example is the phenotype knockout experiment. We cannot knock out many
genes and leave too few for the test, otherwise the tested individual cannot
survival. Therefore, there may be a minimum (or maximum) requirement
on the number of tested items in a test. Second, in many real biological
cases, instead of individual items, a combination of items (forming a positive
subset) is required to make the test positive. That is, the test will show a
positive result only if all items in a positive subset are all present in the test.
For example, in DNA hybridization [22], the test result is positive with the
presence of some pairs of hybridized DNA strands (positive subset of size
2). In two-hybrid screening [27] for detecting protein-protein interaction, the
test result is positive if the test sample contains some pairs of interacting
proteins (another example of positive subset of size 2). Similarly in three-
hybrid screening [1], the test result is positive if the test sample contains
some sets of interacting proteins and RNA (positive subset of size 3). Thus,
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we need a generalization to model these applications.
Given a set of n items with at most d distinct hidden positive subsets Si

with |Si| ≤ s, the result of a test on a subset S of items is positive if there
is a positive subset Si ⊆ S, otherwise, the result is negative. The complex
group testing problem [10, 14] is to find the best way of grouping items in
each test, so as to minimize the total number of tests needed in the worst
case for finding all the hidden positive subsets Si. In practice, we sometimes
require |S| ≥ k (or |S| ≤ k) for some k. In the following, we only consider the
case for |S| ≥ k as the other case is symmetric (Our algorithm can calculate
the optimal k for a given range).

The group testing problem is a special case of the complex group testing
problem with s = 1 and no requirement on |S|. However, none of the algo-
rithms [5, 11, 12, 19] for solving the non-adaptive group testing problem can
be extended to solve the complex version with s > 1 even without any re-
striction on the size of S. At first glance, one may replace the n items by the(
n
s

)
combinations of items and apply the above algorithms to design a set of

tests. As the
(
n
s

)
combinations of items are not independent, e.g. we cannot

test {1, 2} without testing {1} or {2}, this trivial reduction does not work.
This complex version of the group testing problem seems to be even more
difficult and only limited results exist [2, 14, 24, 25]. None of these solutions
can handle the requirement on the size of S. And they either require many
tests (Ω(logs n) tests) [14], or designed only for specific n values [24, 25, 7],
or there is no guarantee on the running time or the number of tests [2]. For
example, Gao et al. [14] represent each item by a distinct polynomial gi(x)
of degree z in a finite field GF (q) with n ≤ qz and sdz ≤ q. They select
sdz distinct elements in GF (q) and perform a test on those items with the
same value of gi(y) for each element y. By choosing the value of q and z
carefully, they can solve the problem with O(s(d logq n)s+1) tests. Stinson et
al. [24, 25] construct a set of tests using perfect hash family. They construct
a separating hash family with n = 72i elements by recursion on integer i.
Then they encode this hash family into O(

(
s+d
s

)
log n) tests. However, their

method cannot solve the non-adaptive complex group testing problem (or
require much more tests) when n 6= 72i . Bishop et al. [2] solved the problem
with s = 2 by assigning each item to a test with probability p. By setting a
suitable probability p and number of tests t, they can find all Si with some
false positive subsets. Thus, another round of experiments are needed to
identify the false positive subsets.

In this paper, we introduce a deterministic algorithm based on randomiza-
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tion and derandomization to solve the non-adaptive complex group testing
problem for all possible number of items n and using no more than t0 =

O
(

d+s
rs(1−r)d log n

)
tests, where r = max{ k

n−d+1
, s
d+s
}. When there is no re-

striction on k i.e. k = 1, our algorithm requires O
(
(d+ s)d+s+1/(ddss) log n

)
tests which matches the lower bound [4] of O(d2 log n) for s = 1. When
compared with Porat and Rothschild’s algorithm [20] and Indyk et al.’s al-
gorithm [16], our algorithm is more flexible because it can handle the cases
when s > 1 and k > 1. Our main contributions can be summarized as
follows.

1. Our approach is novel, different from any of the previous work even
though the techniques used for this approach are not new. The novelty
stems from the following observation. It is known that solving the
non-adaptive group testing problem is equivalent to designing a binary
t × n d̄-separable matrix [5, 11, 12, 19] with the minimum number of
rows. We first extend this concept to a (d̄, s̄)-separable matrix for the
complex version of the problem (see the definition in Section 2), then
we show that the probability of a random binary t × n matrix with
t ≥ t0 being a (d̄, s̄)-separable matrix is non-zero, i.e. there always
exists such a matrix. We use a greedy approach to fill the matrix row
by row and guarantee that every time we fill an entry, there must still
exist a solution to fill the rest of the entries to make it (d̄, s̄)-separable.

2. Our approach can solve more general group testing problem, none of
previous approaches can be modified to solve the general problem. In
particular, an additional advantage of our solution is that we can guar-
antee every test has exactly k′ items where k′ ≥ k which can handle
the cases when there is a restriction on the size of S.

3. Our approach is practical and gives an optimal design in the sense that
the number of tests matches the lower bound of the special case.

The paper is organized as follows. In Section 2, we define what a (d̄, s̄)-
separable matrix is and the relationship between such a matrix and the
non-adaptive complex group testing problem. Section 3 shows a sufficient
condition for a matrix to be (d̄, s̄)-separable and proves the the existence of
t0 tests to solve the non-adaptive complex group testing problem. Then, we
will describe a derandomized algorithm which constructs no more than t0
tests in Section 4. Section 5 concludes the paper.
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2. Preliminaries

Definition The Non-adaptive Complex Group Testing (NCGT) Problem:
Given n items and d′ hidden distinct positive subsets of items, F = S1, S2,
. . ., Sd′ , d

′ ≤ d, |Si| ≤ s, Si 6⊆ Sj for all i 6= j. The result of a test on a set of
items T is positive if and only if there is at least one positive subset Si ⊆ T .
The NCGT problem is to design the minimum number of non-adaptive tests
for discovering all the positive subsets in F .

When the size of each positive set s = 1, the NCGT problem is equiva-
lent to the classical non-adaptive group testing problem (pooling design) [19].
When s = 2, it is equivalent to the non-adaptive group testing for disjoint
pairs problem [2]. Any solution with t tests to the NCGT problem can be
represented as a t×n binary matrix M and item j is included in the i-th test
if M(i, j) = 1 (column or item and test or row will be used interchangeably
if no confusion arises).

For any family F = S1, S2, . . . , Sd′ , d
′ ≤ d given in the NCGT problem,

each Si corresponds to a subset of at most s columns in M and F corresponds
to a collection of at most d subsets of columns. For any F , we first take
the and-product of the columns corresponding to each Si, then take the or-
product of all these and-products. The resulting bit vector is denoted as
R(F ). Note that since the outcome of a test is positive if and only if all
items in a positive subset are included in the test, the outcomes of the t
tests are the same as R(F ) for any family F of positive subsets. If such a
matrix represents a solution to the NCGT problem, for any two families F1,
F2, R(F1) and R(F2) must be different otherwise it is no way to distinguish
whether F1 or F2 is the collection of the positive subsets only based on the
outcomes of the tests. This motivates us to define a (d̄, s̄)-separable matrix
as follows.

Definition A (d̄, s̄)-separable matrix is a binary matrix, such that for any
family F of at most d subsets of columns, each subset Si has at most s
columns, the or-product of the ≤ d and-products of ≤ s columns corre-
sponding to those subsets in F , denoted as R(F ), is distinct.

Given a t×n (d̄, s̄)-separable matrix M and a property represented by family
F , R(F )) is the test results on the subset of items represented by each row
in M with ‘1’ means positive and ‘0’ means negative. Since R(F ) is distinct
for different F , it is easy to see that M is a solution of the NCGT problem
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using t tests. Thus, the NCGT problem is equivalent to designing a t × n
(d̄, s̄)-separable matrix with the minimum number of rows.

3. Existence of (d̄, s̄)-Separable Matrix

In this section, we show that there always exists a t × n (d̄, s̄)-separable
matrix with t ≤ t0 and all rows have at least k ‘1’, i.e. each test has at least
k tested items.

t0 =
(d+ s) lnn− d ln(d+ s)− s ln s+ d+ 2s

rs(1− r)d
= O

(
(d+ s) lnn

rs(1− r)d

)
where r = max{ k

n−d+1
, s
d+s
}. We first describe a sufficient condition for a ma-

trix with exactly k ‘1’ in each row to be a (d̄, s̄)-separable matrix. (Theorem
3.1). Based on this sufficient condition, we prove that there always exists
such a t0×n (d̄, s̄)-separable matrix with exactly k ‘1’ in each row (Theorem
3.4).

Theorem 3.1. Given a t × n binary matrix M , if M has the property that
for any d + s distinct columns, there are

(
d+s
s

)
rows such that the induced(

d+s
s

)
× (d+ s) matrix contains different set of s ‘1’ entries in each row, then

M is a (d̄, s̄)-separable matrix.

Proof Let A = {Ai} and B = {Bj} be two distinct families of ≤ d subsets
of ≤ s columns in M respectively. Remove those subsets Ai and Bj with
Ai = Bj. W.L.O.G. assume a subset Amin ∈ A contains the minimum
number of columns among the remaining subsets. Since Ai 6⊆ Amin and
S 6⊆ Amin for all Ai 6= Amin and remaining subsets S 6= Amin respectively,
Bj 6⊆ Amin for all Bj ∈ B. There always exist at most s + d columns
containing all columns in Amin and one column from each distinct subset Bj

as |Amin| ≤ s and |B| ≤ d. Since there are
(
d+s
s

)
rows in M such that the

induced
(
d+s
s

)
× (d+ s) matrix contains a row with ‘1’ at these ≤ s columns

in Amin and ‘0’ at the rest ≤ d columns. Thus the values of R(A) and R(B)
are different (1 and 0 respectively) on that row. �

In particular when s = 1, Theorem 3.1 reduces to the existence of (d+ 1)×
(d+1) identity matrix for any d+1 columns. It is because given two distinct
sets of positive items A and B, we should always find a row such that the ≤ d
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positive items in B is ‘0’ and a positive item in A is ‘1’. For example, when
n = 9, d = 4 and s = 1, A = {3, 5, 7, 9}, B = {1, 5, 6, 9}, the corresponding
d + 1 columns can be {3, 1, 5, 6, 9} and the row must have 1 at positions 3
and 0 at the others such that the test results on this set for properties with
positive items A and B are positive and negative respectively.

By considering a t × n random matrix where each row is assigned with
k ‘1’ randomly, we find that the probability that a t × n random matrix
with exactly k ‘1’ in each row satisfies the sufficient condition of Theorem
3.1 is non-zero when t ≥ t0 (Theorem 3.4). Thus, there always exists such
t0 × n (d̄, s̄)-separable matrix with exactly k ‘1’ in each row; otherwise, the
probability should be zero. Similar theorems as Theorem 3.4 are shown in
[3, 25]. However, since Bonis proved the theorem by considering a hypergraph
while Stinson and Wei proved it by partitioning the matrix into submatrices,
these proofs cannot be used to construct the derandomized algorithm.

Lemma 3.2. Given a t×n binary matrix M with exactly k randomly selected
‘1’ in each row, the probability that M being a (d̄, s̄)-separable matrix is at
least

1−
(

en

d+ s

)d+s(
e(d+ s)

s

)s (
1− rs(1− r)d

)t
where r = k

(n−d+1)
and e ≈ 2.71 is the Euler’s number

Proof When the k ‘1 are assigned randomly among n columns, the proba-
bility that exactly s ‘1’ are assigned in some particular positions in a subset
of d+ s columns is

(
n−(d+s)
k−s

)
/
(
n
k

)
. Thus the probability that a particular com-

bination of s out of a particular subset of d+ s columns are not assigned ‘1’
is 1−

(
n−(d+s)
k−s

)
/
(
n
k

)
.

Pr(M is (d̄, s̄)-separable)

≥ Pr(M satisfies Theorem 3.1)

≥ 1− Pr(There are d+ s columns s.t. any induced
(
d+s
s

)
× (d+ s) matrix

does not contain all possible combinations of s out of d+ s columns)

≥ 1−
(

n

d+ s

)(
d+ s

s

)(
1−

(
n−(d+s)
k−s

)(
n
k

) )t

≥ 1−
(

en

d+ s

)d+s(
e(d+ s)

s

)s (
1− rs(1− r)d

)t
8
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Lemma 3.3.

−1

ln(1− rs(1− r)d)
<

1

rs(1− r)d

Proof

−1

ln(1− rs(1− r)d)

=
−1

−rs(1− r)d − [rs(1−r)d]2
2

− [rs(1−r)d]3
3

− · · ·

<
1

rs(1− r)d

Theorem 3.4. There always exists a t0 × n (d̄, s̄)-separable matrix M with
exactly k ‘1’s in each row where

t0 =
(d+ s) lnn− d ln(d+ s)− s ln s+ d+ 2s

rs(1− r)d
= O

(
d+ s

rs(1− r)d
log n

)

where r = k
n−d+1

.

Proof Consider a random binary t × n matrix M with exactly k randomly
selected ‘1’ in each row. By Lemma 3.2

1−
(

en

d+ s

)d+s(
e(d+ s)

s

)s (
1− rs(1− r)d

)t
> 0

⇔ −t ln(1− rs(1− r)d) > (d+ s)[lnn− ln(d+ s) + 1] + s[ln(d+ s)− ln s+ 1]

⇔ t >
(d+ s) lnn− d ln(d+ s)− s ln s+ d+ 2s

− ln(1− rs(1− r)d)

When t satisfies the above inequality, the probability that such a t×n random
binary matrix is a (d̄, s̄)-separable matrix is larger than 0, i.e. there always
exists a t×n (d̄, s̄)-separable matrix M . The theorem is proved using Lemma
3.3. �

Corollary 3.5. There always exists a t0 × n (d̄, s̄)-separable matrix M with
at least k ‘1’s in each row, where t0 is defined in Theorem 3.4 and r =
max{ k

n−d+1
, s
d+s
}.
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Proof By differentiating the equation in Theorem 3.4 with respect to r,
rs(1 − r)d has the maximum value and t0 the minimum value when r =
s/(d+ s). Thus, when k/(n− d+ 1) ≤ s/(d+ s), we can increase the value
of k to s(n − d + 1)/(d + s) and achieve the minimum t0 = (d + s)d+s[(d +
s) lnn − d ln(d + s) − s ln s + d + 2s]/(ddss). Note that the assumption “at
least k 1’s” is still satisfied. �

Note that when solving the classical non-adaptive group testing problem
with s = 1 and k = 1, t0 = O(d2 log n) which matches with the lower bound.
When solving the non-adaptive group testing for disjoint pairs problem with
s = 2 and k = 1, t0 = O(d3 log n).

4. Constructing a (d̄, s̄)-Separable Matrix

Theorem 3.4 shows that there is a t0 × n (d̄, s̄)-separable matrix with
exactly k ‘1’s in each row. In this section, we will introduce a deterministic
algorithm for constructing such a t × n (d̄, s̄)-separable matrix with t ≤ t0
by derandomization.

Recall that the sufficient condition for a matrix M being a (d̄, s̄)-separable
matrix is that for any d + s columns, there are

(
d+s
s

)
rows such that the

induced
(
d+s
s

)
× (d + s) matrix represents all possible combinations of s ‘1’

out of d+ s columns (Theorem 3.1). Therefore, if all the
(
n
d+s

)
combinations

of columns satisfy this requirement, matrix M is a (d̄, s̄)-separable matrix.
We first show by Lemma 4.1 that for a random matrix with exactly k entry ‘1’
in each row, the expected number of combinations of d+s columns satisfying
the requirement is larger than

(
n
d+s

)
− 1. Based on Lemma 4.2, we can fill in

each entry of the matrix with ‘0’ and ‘1’ to each row one by one such that
the expected number of groups of d + s columns (out of

(
n
d+s

)
) satisfying

the requirement does not decrease. Thus, we can construct a t0 × n (d̄, s̄)-
separable matrix in a greedy manner.

4.1. The Derandomized Algorithm

Let C be a subset of d+s columns in a t×n binary matrix M and M(C)
be the t× (d+ s) binary matrix by restricting the columns in C.

Lemma 4.1. For some t ≤ t0, the expected number of combinations of
columns (out of

(
n
d+s

)
) of a random t × n matrix satisfying the requirement

in Theorem 1 is larger than
(
n
d+s

)
− 1.
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Proof For any subset C of d + s columns, the probability that M(C) is a
(d̄, s̄)-separable matrix is at least

1−
(
d+ s

s

)(
1−

(
n−(d+s)
k−s

)(
n
k

) )t0

Thus, the expected number of combinations of columns (out of
(
n
d+s

)
) satis-

fying the requirement is at least(
n

d+ s

)[
1−

(
d+ s

s

)(
1−

(
n−(d+s)
k−s

)(
n
k

) )t0]

>

(
n

d+ s

)
− 1

�

Now, we want to show that we can fill in the matrix in a greedy manner in
order to obtain a (d̄, s̄)-separable matrix with t ≤ t0. We order the entries of
the matrix from top to bottom and from left to right (i.e., we fill the entry
from M(1, 1) to M(t, n)). Assume that all entries proceeding M(i, j) have
been filled. Let E0(i, j) be the expected number of combinations of columns
(out of

(
n
d+s

)
satisfying the requirement in Theorem 1 assuming that we fill

the entry M(i, j) with ‘0’. And E1(i, j) is defined similarly assuming that we
fill the entry M(i, j) with ‘1’.

For any subset C of (d + s) columns in the matrix M with some entries
filled, let p(M,C) be the probability that M(C) contains

(
d+s
s

)
rows such

that the induced
(
d+s
s

)
× (d + s) matrix represents all combinations of s

‘1’ out of d + s positions when each row of M is assigned with exactly k ‘1’
randomly (how to compute p(M,C) will be described in the next subsection).
The expected number of subsets C with M(C) satisfying Theorem 3.1 is∑

C p(M,C). Thus, E0(i, j) =
∑

C p(M,C) when all previously assigned
entries are fixed and M(i, j) is assigned ‘0’, similarly for E1(i, j).

Lemma 4.2. max{E0(i, j), E1(i, j)} ≥ max{E0(i
′, j′), E1(i

′, j′)} where M(i′, j′)
is the entry just before M(i, j), i.e., i′ = i and j′ = j − 1 if j ≤ n, otherwise
i′ = i− 1, j′ = n and j = 1.
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Construct a t0 × n matrix M with all entries marked as ‘x′;
for i← 1 to t0 do

q′ ← 0;
for j ← 1 to n do

Calculate E0(i, j) =
∑

C p(M,C) when M(i, j) = 0;
Calculate E1(i, j) =

∑
C p(M,C) when M(i, j) = 1;

if E0(i, j) ≥ E1(i, j) or q′ ≥ k then
M(i, j)← 0;

else
M(i, j)← 1;
q′ ← q′ + 1;

end

if max{E0(i, j), E1(i, j)} =
(
n
d+s

)
then

Assign 0 to all entries marked as ‘x’;
Return the first i-th rows of M (an i× n matrix);

end

end

end

Algorithm 1: derandomized algorithm for constructing (d̄, s̄)-separable
matrix

Proof We first let j = 2, 3, . . . , n. Since E0(i, j − 1) and E1(i, j − 1) are
calculated based on the assumption that M(i, j) is assigned ‘0’ and ‘1’,
max{E0(i, j−1), E1(i, j−1)} = p0E0(i, j)+(1−p0)E1(i, j) for some real num-
ber 0 ≤ p0 ≤ 1. Thus max{E0(i, j), E1(i, j)} ≥ max{E0(i, j−1), E1(i, j−1)}.
Similarly, we have max{E0(i, 1), E1(i, 1)} ≥ max{E0(i− 1, n), E1(i− 1, n)}.

�

Based on Lemma 4.2, we can assign values to M(i, j) according to the
larger value of E0(i, j), E1(i, j). Algorithm 1 shows the details of the con-
struction. Initially, we mark all unassigned entries by ‘x′. Since the value
of
∑

C p(M,C) increases monotonically with the assignment of M(i, j) and
the initial value of

∑
C p(M,C) with no entry being assigned is larger than(

n
d+s

)
− 1, the correctness of Algorithm 1 is guaranteed. The following the-

orem follows. Note also that when max{E0(i, j), E1(i, j)} =
(
n
d+s

)
, it means

that we can assign anything to the remaining entries, so we assign ‘0’ to these
entries.
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Theorem 4.3. Algorithm 1 outputs a t× n (d̄, s̄)-separable matrix with t ≤
t0.

4.2. Computing the probability

In this subsection, we show how to compute p(M,C). Given a t× (d+ s)
binary matrixM(C) with all entries in the first i−1 rows and the first j entries
of the i-th row assigned, the probability p(M,C) that M(C) containing

(
d+s
s

)
rows such that the induced

(
d+s
s

)
× (d+s) matrix represents all combinations

of s ‘1’ out of d+ s positions can be calculated by the following arguments.
When the last column of C has been assigned, i.e. we are considering the

case when all the entries in the first i rows of M(C) have been assigned, we
can identify the set of distinct rows of the

(
d+s
s

)
combinations of s ‘1’ out of

d+ s positions already existed in the first i rows of M(C). Let R be the set
of r out of

(
d+s
s

)
combinations that do not exist in the first i rows of M(C).

p(M,C) is equal to the probability prow(i, r) that these r combinations in R
appear in the remaining t−i rows of M(C). If all the

(
d+s
s

)
rows have already

existed in the first i rows of M(C), then R = ∅, r = 0 and p(M,C) = 1.
The probability that none of the t− i rows equals to a particular row in R is
(1−

(
n−(d+s)
k−s

)
/
(
n
k

)
)t−i and the probability that none of the t− i rows equals

to any of the r particular rows in R is (1 − r
(
n−(d+s)
k−s

)
/
(
n
k

)
)t−i. By inclusion

and exclusion principle

prow(i, r) = 1 +
r∑

α=1

(−1)α
(
r

α

)(
1− α

(
n−(d+s)
k−s

)(
n
k

) )t−i

When the last column of C has not been assigned yet, we can calculate
p(M,C) = prc with the following parameters
r = number of rows in R that do not exist in the first i− 1 rows of M(C)
r′ = number of rows (out of r) in R can occur in the i-th row by assigning
the rest entries properly
w = number of entries in C have not been assigned any value in the i-th row
q = number of unassigned entries in C have to be assigned with ‘1’ such that
exactly s ‘1’ appear in the i-th row of C
q′ = number of entries in the i-th row have been assigned with ‘1’

prc =


(
r′((n−j)−w

k−q′−q )
(n−j
k−q′)

)
prow(i, r − 1) +

(
1−

r′((n−j)−w

k−q′−q )
(n−j
k−q′)

)
prow(i, r) q + q′ ≤ k

0 q + q′ > k
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Since the values of 0 ≤ w, q ≤ d+ s, 0 ≤ r′ ≤ r ≤
(
d+s
s

)
≤ (d+ s)s, 1 ≤ i ≤ t,

1 ≤ j < n and 1 ≤ q′ ≤ k, there are O(t(d + s)s) prow(i, r) and O(nkt(d +
s)2+2s) prc needed to be precomputed. All possible values of

(
n′

q′

)
and (1 −

α
(
n−(d+s)
k−s

)
/
(
n
k

)
)t−i for different parameters can be precomputed in O(n2) and

O(t(d+s)s) times. Each prow(i, r) can be calculated in O((d+s)s) time after
the above precomputation. Thus, the O(t(d+ s)s) prow(i, r) elements can be
calculated in O(t(d + k)2s) times. Since each prc element can be calculated
in constant time after the precomputation, the O(nkt(d + s)2+2s) possible
prc elements can be calculated in O(nkt(d + s)2+2s) times. The total time
complexity for pre-calculating all possible p(M,C) is O(n2 +nkt(d+ s)2+2s).

5. Conclusions

In this paper, we have introduced a deterministic algorithm for construct-
ing tests with the constraint that at most (or at least) k tested items in each
test for the non-adaptive complex group testing problem. The algorithm
matches with the lower bound O(d2 log n) for the unconstrained classical
non-adaptive group testing problem. In the future, more complicated con-
straints, such as inhibition and errors, should be modeled and considered.
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