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Web caching is an important technology for improving the scalability of Web services. One of the
key problems in coordinated enroute Web caching is to compute the locations for storing copies
of an object among the enroute caches so that some specified objectives are achieved. In this
article, we address this problem for tree networks, and formulate it as a maximization problem.
We consider this problem for both unconstrained and constrained cases. The constrained case
includes constraints on the cost gain per node and on the number of object copies to be placed. We
present dynamic programming-based solutions to this problem for different cases and theoretically
show that the solutions are either optimal or convergent to optimal solutions. We derive efficient
algorithms that produce these solutions. Based on our mathematical model, we also present a
solution to coordinated enroute Web caching for autonomous systems as a natural extension of
the solution for tree networks. We implement our algorithms and evaluate our model on different
performance metrics through extensive simulation experiments. The implementation results show
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that our methods outperform the existing algorithms of either coordinated enroute Web caching
for linear topology or object placement (replacement) at individual nodes only.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed
Systems—Distributed applications; C.4 [Computer System Organization]: Performance of
Systems—Design studies; H.3.5 [Information Storage and Retrieval]: Online Information
Services—Web-based services

General Terms: Algorithms, Design, Management, Performance

Additional Key Words and Phrases: Web caching, dynamic programming, object placement (re-
placement), performance evaluation, tree network, autonomous system (AS)

1. INTRODUCTION

With the explosive growth in popularity of the World Wide Web, prompt Web
content delivery is becoming increasingly important. Web caching is an impor-
tant technology for improving Web performance since caching objects close to
users can save network bandwidth, alleviate server load, and reduce Internet
access latency. An overview of Web caching can be found in Davison [2001] and
Wang [1999].

An important technology for improving the efficiency of Web content delivery
is to cache Web objects in various locations in the network such as servers, prox-
ies, and clients [Davison 2001; Wang 1999]. Although Web caching is similar to
memory caching in that they both store objects at different locations for future
requests, significant differences exist between them as a result of the nonuni-
formity of Web object sizes, access frequencies, retrieval costs, and cacheability
[Davison 2001; Tang and Chanson 2002]. In addition, the performance of Web
caching depends greatly on the network distance from the user to the server
since users are geographically distributed over the entire Internet.

To obtain the full benefits of Web caching, different architectures have
been employed such as hierarchical caching [Rabinovich and Spatscheck 2002;
Rodriguez et al. 2001] and distributed caching [Rodriguez et al. 2001; Tewari
et al. 1999]. Enroute caching is a new caching architecture developed recently
[Krishnan et al. 2000; Rodriguez and Sibal 2000; Tang and Chanson 2002] in
which caches are placed on the access path from the user to the server. Each
enroute cache intercepts any request that passes through its associated node
and either satisfies the request by sending the requested object to the client
or forwards the request upstream along the path to the server until it can be
satisfied. Enroute Web caching can be implemented in several ways such as
by using lightweight techniques [Rabinovich and Wang 2001; Rodriguez et al.
2000], active network [Tennenhouse et al. 1997], and so on.

Cooperative caching, in which caches cooperate in serving each other’s re-
quests and making storage decisions, is a powerful paradigm to improve cache
effectiveness [Dahlin et al. 1994; Korupolu and Dahlin 2002; Korupolu et al.
1999]. The performance of enroute caching mainly relies on where the caches
are placed and how the cache contents are managed. While the first issue has
been extensively studied recently [Krishnan et al. 2000; Li et al. 1999], little
attention has been paid to the second issue. In this article, we address one of
the key problems in coordinated enroute Web caching, that is, for tree networks
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to compute the locations of copies of an object to be placed among the enroute
caches so that the overall cost gain is maximized. We consider this problem for
both unconstrained and constrained cases where the constrained case includes
constraints on the cost gain per node and on the number of copies to be placed.
We also extend our solution to autonomous systems.

Our contributions are summarized as follows. (1) We present solutions to
this problem for different cases applying a dynamic programming-based math-
ematical model and theoretically show that the solutions are either optimal or
convergent to optimal solutions. (2) We derive algorithms for these solutions
and show that their time complexities are very low. (3) We present a solution to
autonomous systems as a natural extension of the solution for tree networks.
(4) We perform extensive experiments to evaluate our model by several per-
formance metrics. The simulation results show that our methods outperform
existing algorithms of either coordinated enroute Web caching for linear topol-
ogy or object placement at individual nodes only.

The rest of the article is organized as follows. Section 2 discusses related
work on enroute Web caching. Section 3 gives a mathematical formulation of
our problems. Section 4 and Section 5 present algorithms for unconstrained
and constrained coordinated enroute Web caching for tree networks. Section 6
presents an algorithm for coordinated enroute Web caching for autonomous sys-
tems. Section 7 describes the simulation model and discusses the experimental
results. Section 8 summaries our work and concludes the article.

2. RELATED WORK

There have been many studies on replacement algorithms for a single Web
cache [Jin and Bestavros 2001; Scheuermann et al. 1997; Williams et al. 1996].
However, these algorithms store copies of an object at each node through which
the object passes, without checking whether it is beneficial to do so. This may
cause ineffective use of the limited cache space since there are numerous objects
to be distributed in the network. Therefore, it is necessary and important to
find methods that can optimally determine the locations to place the copies
of an object. In Dahlin et al. [1994] and Leff et al. [1993], the placement and
replacement algorithms for local-area networks were studied. However, this
problem is relatively unexplored in wide-area networks which are very different
from local-area networks in regard to the number of users and objects.

Cache cooperation is an important approach to improve Web performance.
Recent studies have focused on the benefits of cooperative caching for dis-
tributed systems and large-scale systems [Awerbuch et al. 1998; Chankhunthod
et al. 1996; Leff et al. 1993; Tewari et al. 1999]. In Yu and MacNair [1998], wide-
area cache cooperation was studied under a simple model in which distances
among all nodes in the network are assumed to be the same. In Korupolu et al.
[1999], the authors examined three practical cooperative placement algorithms
for large-scale distributed caches and showed that cooperative object placement
could significantly improve Web performance compared to local replacement al-
gorithms, particularly when the sizes of individual caches were small compared
to those of the objects. In Korupolu and Dahlin [2002], the object placement
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Fig. 1. Enroute Web caching for tree networks.

problem was formulated as an instance of the facility location problem and
solved by reducing it to the minimum cost problem. The time complexity of this
object placement problem is very high, at least quadratic of the product of the
number of nodes and the number of objects in the network. Here, our problems
are formulated as maximization problems from a different point of view and
our algorithms are low-cost. In Korupolu and Dahlin [2002], two approximation
algorithms, a greedy placement algorithm and an amortizing placement algo-
rithm, were proposed. Although the greedy algorithm looks simple and is easy
to implement, it has been shown that the performance of its worst case solution
can be arbitrarily far from optimal, that is, the approximation ratio is rele-
vant to the number of nodes concerned. The amortizing placement algorithm
is a constant-factor approximation algorithm. The problem studied in Tang
and Chanson [2002] considered the coordinated enroute Web caching problem
for linear topology, deciding the optimal locations for placing copies of an ob-
ject among the enroute caches. This scheme, which optimizes the placement of
objects on the path from the user to the server, has been shown to perform sig-
nificantly better than other schemes that considered either object placement or
replacement in individual caches only. An enroute Web caching algorithm, ap-
plying dynamic programming for placing Web files in the tree network, was pro-
posed in Jiang and Bruck [2003]. They established a model which does not con-
sider the impact of caching a copy of a Web file at a node on the requests for this
file from all downstream nodes of this node. This model can result in an optimal
solution for placing a Web file at only one node on the path from client to server.

3. PROBLEM FORMULATION

Before formulating the problem for coordinated enroute Web caching, we intro-
duce the notations and definitions used in this article. We model the network
as a tree T = (V , E) where V is the set of nodes, each of which is associated
with an enroute cache, and E is the set of (bidirectional) network links. Without
loss of generality, we assume there is only one content server at the root of a
tree, where the objects requested by users are maintained. Our analysis can be
easily extended to the case in which enroutes are associated with a subset of
nodes only if we include in the graph the nodes with enroute caches. Figure 1
shows an example of such a tree topology. In this article, we use Tw to denote a
tree whose root is w.
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Let P ⊆ V be a subset of nodes, at each of which a copy of an object is cached.
For every node v ∈ V , D(v) denotes the set of all nodes that are the descendants
of node v, and C(v) denotes the set of all nodes that are the children of node v.
For any two nodes u, v ∈ V , we use E[u → v] to denote the set of all edges on
the path between u and v, and V [u → v] to denote the set of all nodes on the
path between u and v including u and v. Let O be the given object for caching.
For notational tidiness, we omit argument O in all parameters and functions
throughout the article. Let f (v) denote the access frequency of object O which is
defined by the number of requests to access O that pass through node v during
a certain period of time. Obviously, f (v) ≥ ∑

w∈C(v) f (w). Estimation of f (v) can
be tedious and will be discussed in Section 7. Let c(u, v) be a nonnegative cost
assigned to edge (u, v) ∈ E for object O which is defined by network latency,
bandwidth consumption, and processing cost at the cache, or some combination
of these measures, incurring on (u, v) for accessing O. The cost of a path for
object O is the summation of all edge costs on the path. In this article, we
assume that O(maxv∈V {c(v, w)}) = O(n) for tree Tw,

As we have mentioned, it is necessary and important to find methods to
optimally distribute copies of an object among the enroute caches since the size
of each cache is limited. Accordingly, when a new object is stored in a cache,
one or more objects may need to be removed from the cache to make room for
it. Storing an object at a node enables all the requests previously passing it
now to be satisfied at it; hence, its access cost, which is defined in this article
as cost saving, is decreased. Similarly, removing the copy of an object from a
node increases its access cost, which is defined as cost loss. In this article, we
consider cost saving and cost loss in a coordinated way.

Let m(v) be the miss penalty of object O with respect to node v which is given
by

m(v) =
∑

(u1,u2)∈E[v→v′]

c(u1, u2), (1)

where v′ is the nearest higher-level node of v that stores a copy of object O (see
Figure 1). Therefore, the cost saving for node v ∈ P denoted by s(v) is defined as

s(v) = ( f (v) − f ′(v)) m(v), (2)

where f ′(v) is the total access frequency of object O that can still be served by
the original caches on the downstream of node v if the copy of object O stored
at node v is removed. For instance, in Figure 1, f ′(1) = f (3), f ′(2) = f (5),
f ′(3) = f (4) + f (6), f ′(4) = f (7) + f (8), f ′(5) = f ′(6) = f ′(7) = f ′(8) = 0.

Let l (v) be the cost loss for storing a copy of object O at node v caused by
removal of some cached objects at v due to limited cache space. Suppose that
O1, O2, . . . , Ol are cached at node v. Obviously, the removed objects should in-
troduce the least total cost loss while making enough room to accommodate
the object to be cached. We apply the following greedy heuristic to decide re-
placement candidates. Note that the normalized cost loss (NCL, i.e., the cost
loss introduced by creating one unit of free space) of ejecting Oi at v is fi (v)mi (v)

ei
,

where fi(v) is the access frequency for object Oi observed at node v, mi(v) is
the miss penalty of object Oi with respect to node v, and ei is the size of object
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Oi. The objects in the cache are ordered by their NCLs and are selected se-
quentially, starting from the object with the smallest NCL until enough space
is created. Therefore, l (v) can be calculated by summing the cost losses caused
by all the selected objects removed.

Thus, the cost gain for (caching object O at) a single node v, denoted by g (v),
is defined as

g (v) = s(v) − l (v) = ( f (v) − f ′(v)) m(v) − l (v). (3)

Based on the cost gain for a single node, we formulate the general problem
for coordinated enroute Web caching as a maximization problem as follows: max

P⊂V
G(T, P ) = max

P⊂V

{∑
v∈P

[( f (v) − f ′(v)) m(v) − l (v)]

}
,

s.t. C
(4)

where C is called the constraint space.
For unconstrained coordinated enroute Web caching (UCERWC), C is null,

that is, there is no constraint.
For constrained coordinated enroute Web caching (CCERWC), we consider

the following settings of C:

—Nonnegative cost gain per node
C : ( f (v) − f ′(v)) m(v) − l (v) ≥ αv ≥ 0 (∀ v ∈ P ).
This constraint states that an object may be cached at node v if the cost gain
for caching it at v is above a predefined threshold. Clearly, this threshold
should be nonnegative to avoid any possible cost loss, making the caching
practically beneficial.

—Placing exactly k copies
C : |P | = k.

This constraint is to restrict the number of copies to be distributed. Since, in
practice, caching an object will also generate overheads such as maintaining
consistency between caches and the content server, it is necessary to discuss
the case of placing a fixed number of copies.

—Placing at most k copies
C: |P | ≤ k.
This constraint sets an up-bound on the number of copies to be placed and
allows freedom of placement within this bound to maximize the total cost
gain. It can be viewed as an extension of the previous constraint but requires
different technical treatment.

In Equation (4), G(T, P ) is the overall cost gain for placing copies of an
object at each node in P in the constraint space. Regarding the solution to the
constrained cases, we give the following definitions. A placement P is called a
feasible solution if and only if P satisfies the relevant constraints. For example,
if a placement P is a feasible solution to the constrained problem of nonnegative
cost gain per node, then we have ( f (v)− f ′(v)) m(v)−l (v) ≥ αv (∀ v ∈ P ). On the
contrary, if we have ( f (v)− f ′(v)) m(v)−l (v) ≥ αv (∀ v ∈ P ), then the placement
P is a feasible solution to the constrained problem of nonnegative cost gain per
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cost gain per node. A placement P∗ is called an optimal solution if and only if
P∗ is a feasible solution and satisfies that G(T, P∗) = maxP⊂V {G(T, P )}.

4. UNCONSTRAINED COORDINATED ENROUTE WEB CACHING FOR
TREE NETWORKS

In this section, we focus on solving the unconstrained coordinated enroute Web
caching problem for tree network topology.

Based on Equation (4), the unconstrained coordinated enroute Web caching
problem for tree Tw is defined as follows:

max
Aw

G(Tw, Aw) = max
Aw

{ ∑
v∈Aw

[( f (v) − f ′(v)) m(v) − l (v)]

}
, (5)

where Aw ⊆ D(w) and f (v), f ′(v), m(v), and l (v) are the same as defined in
Section 3. Suppose that A∗

w is an optimal solution to Equation (5) with respect
to tree Tw, then we should store a copy of an object at each node in A∗

w, and
G(Tw, A∗

w) represents the relevant maximum overall cost gain.
Let Tw,x be a subtree of Tw, whose node set is V [w → x] ∪ D(x), where

x ∈ D(w). Similarly, we define the unconstrained coordinated enroute Web
caching problem for tree Tw,x as follows:

max
Aw,x

G(Tw,x , Aw,x) = max
Aw,x

{ ∑
v∈Aw,x

[( f (v) − f ′(v)) m(v) − l (v)]

}
, (6)

where Aw,x ⊆ D(x)∪{x}. Suppose that A∗
w,x is an optimal solution to Equation (6)

with respect to tree Tw,x , then we should store a copy of an object at each node
in A∗

w,x , and G(Tw,x , A∗
w,x) represents the relevant maximum overall cost gain.

Before presenting our dynamic programming-based algorithm for solving
Equation (5), we give the following lemmas or theorems.

LEMMA 1. For tree Tw, if C(w) = {w1, w2, . . . , wm}, then we have

G
(
Tw, ∪m

i=1 Aw,wi

) =
m∑

i=1

G(Tw,wi , Aw,wi ), (7)

where Aw,wi ⊆ D(wi) ∪ {wi}, i = 1, 2, . . . , m.

PROOF. Since Aw,wi ⊆ D(wi)∪{wi}, we have ∪m
i=1 Aw,wi ⊆ ∪m

i=1(D(wi)∪{wi}) =
D(w). Since Aw,wi ∩ Aw,wj = φ for i = j , by the definition of G(Tw, Aw), we have

G
(
Tw, ∪m

i=1 Aw,wi

) =
∑

v∈∪m
i=1 Aw,wi

[( f (v) − f ′(v)) m(v) − l (v)]

=
m∑

i=1

∑
v∈Aw,wi

[( f (v) − f ′(v)) m(v) − l (v)]

=
m∑

i=1

G(Tw,wi , Aw,wi ).

Hence, the lemma is proven.
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LEMMA 2. If C(w) = {w1, w2, . . . , wm} and A′
w,wi

= A∗
w ∩ (D(wi) ∪ {wi}), then

we have A∗
w = ∪m

i=1 A′
w,wi

, where A∗
w ⊆ D(w) is an optimal solution to Equation (5)

with respect to tree Tw.

PROOF. Since C(w) = {w1, w2, . . . , wm} and A′
w,wi

= A∗
w ∩ (D(wi) ∪ {wi}), we

have

∪k
i=1 A′

w,wi
= ∪k

i=1(A∗
w ∩ (D(wi) ∪ {wi}))

= A∗
w ∩ ∪k

i=1(D(wi) ∪ {wi})
= A∗

w ∩ D(w) = A∗
w.

Hence, the lemma is proven.

THEOREM 1. For tree Tw, if C(w) = {w1, w2, . . . , wm}, then we have

A∗
w = ∪m

i=1 A∗
w,wi

, (8)

where A∗
w ⊆ D(w) is an optimal solution to Equation (5) with respect to tree Tw,

and A∗
w,wi

⊆ D(wi) ∪ {wi} is an optimal solution to Equation (6) with respect to
tree Tw,wi , i = 1, 2, . . . , m.

PROOF. For A∗
w,wi

⊆ D(wi) ∪ {wi}, we have ∪m
i=1 A∗

w,wi
⊆ ∪m

i=1(D(wi) ∪ {wi}) =
D(w). Since A∗

w is an optimal solution to Equation (5) with respect to tree Tw,
we have G(Tw, A∗

w) ≥ G(Tw, ∪m
i=1 A∗

w,wi
). Let A′

w,wi
= A∗

w ∩ (D(wi) ∪ {wi}) by
Lemma 2, then we have A∗

w = ∪m
i=1 A′

w,wi
. Obviously, A′

w,wi
⊆ D(wi) ∪ {wi}, so we

have G(Tw,wi , A′
w,wi

) ≤ G(Tw,wi , A∗
w,wi

) since A∗
w,wi

⊆ D(wi) ∪ {wi} is an optimal
solution to Equation (6) with respect to tree Tw,wi . By Lemma 1, we have

G(Tw, A∗
w) = G(Tw, ∪m

i=1 A′
w,wi

) =
m∑

i=1

G(Tw,wi , A′
w,wi

)

≤
m∑

i=1

G(Tw,wi , A∗
w,wi

) = G
(
Tw, ∪m

i=1 A∗
w,wi

)
.

Therefore, we have G(Tw, A∗
w) = G(Tw, ∪m

i=1 A∗
w,wi

), so we have A∗
w = ∪m

i=1 A∗
w,wi

.
Hence, the theorem is proven.

THEOREM 2. For tree Tw,x, if C(x) = {x1, x2, . . . , xk}, then we have

A∗
w,x =

{
∪k

i=1 A∗
w,xi

G(Tw,x , ∪k
i=1 A∗

w,xi
) ≥ G(Tw,x , A∗

x ∪ {x})
A∗

x ∪ {x} G(Tw,x , ∪k
i=1 A∗

w,xi
) < G(Tw,x , A∗

x ∪ {x}), (9)

where A∗
w,x ⊆ D(x) ∪ {x} is an optimal solution to Equation (6) with respect to

tree Tw,x, A∗
x ⊆ D(x) is an optimal solution to Equation (5) with respect to tree

Tx, and A∗
w,xi

⊆ D(xi) ∪ {xi} is an optimal solution to Equation (6) with respect
to tree Tw,xi , i = 1, 2, . . . , k.

PROOF. It is easy to see that A∗
x ∪ {x} ⊆ (D(x) ∪ {x}), and ∪m

i=1 A∗
w,xi

⊆ (D(x) ∪
{x}). For node x, we consider the following two cases. One case is that a copy
of an object is stored at node x, that is, x ∈ A∗

w,x , and the other case is that no
copy of that object is placed there, that is, x /∈ A∗

w,x .
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(1) First, we prove A∗
w,x = A∗

x ∪{x} for x ∈ A∗
w,x . Let A′

x,xi
= A∗

w,x ∩(D(xi)∪{xi},
by Lemma 2, then we have A∗

w,x = ∪k
i=1 A′

x,xi
∪ {x}. Therefore, we have

G(Tw,x , A∗
w,x) = G

(
Tw,x , ∪k

i=1 A′
x,xi

∪ {x})
=

∑
v∈(∪k

i=1 A′
x,xi

∪{x})
[( f (v) − f ′(v)) m(v) − l (v)]

=
∑

v∈∪k
i=1 A′

x,xi

[( f (v) − f ′(v)) m(v) − l (v)] + [( f (x) − f ′(x)) m(x) − l (x)]

=
k∑

i=1

∑
v∈A′

x,xi

[( f (v) − f ′(v)) m(v) − l (v)] + [( f (x) − f ′(x)) m(x) − l (x)]

=
k∑

i=1

G(Tx,xi , A′
x,xi

) + [( f (x) − f ′(x)) m(x) − l (x)]

= G
(
Tx , ∪k

i=1 A′
w,xi

) + [( f (x) − f ′(x)) m(x) − l (x)]
≤ G(Tx , A∗

x) + [( f (x) − f ′(x)) m(x) − l (x)].

On the other hand, we have

G(Tw,x , A∗
w,x) ≥ G(Tw,x , A∗

x ∪ {x})
=

∑
v∈A∗

x

[( f (v) − f ′(v)) m(v) − l (v)] + [( f (x) − f ′(x)) m(x) − l (x)]

= G(Tx , A∗
x) + [( f (x) − f ′(x)) m(x) − l (x)].

Therefore, we have G(Tw,x , A∗
w,x) = G(Tw,x , A∗

x ∪{x}), so we have A∗
w,x = A∗

x ∪{x}
for x ∈ A∗

w,x .
(2) Now, we prove A∗

w,x = ∪m
i=1 A∗

w,xi
for x /∈ A∗

w,x . Let A′
w,xi

= A∗
w,x∩(D(xi)∪{xi})

then by Lemma 2, we have A∗
w,x = ∪k

i=1 A′
w,xi

. Therefore, we have

G(Tw,x , A∗
w,x) = G

(
Tw,x , ∪k

i=1 A′
w,xi

)
=

∑
v∈∪k

i=1 A′
w,xi

[( f (v) − f ′(v)) m(v) − l (v)]

=
k∑

i=1

∑
v∈A′

w,xi

[( f (v) − f ′(v)) m(v) − l (v)]

=
k∑

i=1

G(Tw,xi , A′
w,xi

)

≤
k∑

i=1

G(Tw,xi , A∗
w,xi

)

= G
(
Tw,x , ∪k

i=1 A∗
w,xi

)
.

Since G(Tw,x , A∗
w,x) ≥ G(Tw,x , ∪k

i=1 A∗
w,xi

), we have G(Tw,x , A∗
w,x) = G(Tw,x , ∪k

i=1
A∗

w,xi
). So we have A∗

w,x = ∪k
i=1 A∗

w,xi
for x /∈ A∗

w,x .
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Fig. 2. A simple example.

From (1) and (2), we can know that G(Tw,x , A∗
w,x) = max{G(Tw,x , A∗

x ∪ {x}),
G(Tw,x , ∪k

i=1 A∗
w,xi

)}. Therefore, it is easy to see that the theorem is correct.

By Theorem 2, we can see that for tree Tw,x , if G(Tw,x , ∪k
i=1 A∗

w,xi
) ≥ G(Tw,x ,

A∗
x ∪{x}), then we do not store a copy of an object at node x and further consider

the subtrees {Tw,xi , i = 1, 2, . . . , k}, where C(x) = {x1, x2, . . . , xk}. Otherwise, we
store a copy at node x and further consider the subtree Tx .

Based on Theorem 1 and Theorem 2, we can present the dynamic
programming-based algorithm for unconstrained coordinated enroute Web
caching for tree networks as follows:

Algorithm 1: Unconstrained Coordinated Enroute Web Caching for Tree Networks
Step 1. Initialization:
A∗

w = φ and G(Tw, A∗
w) = 0;

Step 2. End condition
if D(w) = φ then return;
Step 3. Recursive procedure
for v ∈ C(w) do

if D(v) = φ then
if f (v)c(w, v) − l (v) > 0 then

A∗
w,v = {v}

else
A∗

w,v = φ
else

for x ∈ C(v) do
if

∑
x∈C(v) G(Tw,x , A∗

w,x) ≥ G(Tv, A∗
v) + ( f (v) − f ′(v))c(w, v) − l (v) then

A∗
w,v = ∪x∈C(v) A∗

w,x
else

A∗
w,v = A∗

v ∪ {v} (According to Theorem 2)
A∗

w = ∪v∈C(w) A∗
w,v (According to Theorem 1)

Now we give in Figure 2 a simple example to show how Algorithm 1 works.
First, we decompose tree T0 into two subtrees, T0,1 and T0,2. For tree T0,1, we
can get an optimal placement by calculating g (1) directly. For tree T0,2, we can
further decompose it into either subtrees, T0,3 and T0,4, or tree T2 according
to the relationship between G(T0,3, A∗

0,3) + G(T0,4, A∗
0,4) and G(T2, A∗

2) + g (2).
Obviously, G(T0,3, A∗

0,3) and G(T0,4, A∗
0,4) can be solved directly, therefore, what

we should do is to further decompose tree T2 until G(T2, A∗
2) can be solved

directly. Accordingly, we can obtain an optimal placement for tree T0.
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From Algorithm 1, we can know that every cache should maintain some
information on the objects, including size, access frequency, update frequency,
and miss penalty with the associated node. Fortunately, it is not necessary to
store the information of an object at all the nodes in the network. The following
theorem describes an important property of Algorithm 1.

THEOREM 3. If A∗
w is an optimal solution to Equation (5) with respect to tree

Tw, then we have f (v)c(v, w) − l (v) ≥ 0, ∀ v ∈ A∗
w.

PROOF. Suppose there exists x ∈ A∗
w that satisfies f (x)c(x, w) − l (x) < 0,

then we have

G(Tw, A∗
w) =

∑
v∈A∗

w

[( f (v) − f ′(v)) m(v) − l (v)]

=
∑

v∈(A∗
w−{x})

[( f (v) − f ′(v)) m(v) − l (v)] + [( f (x) − f ′(x))c(x, x ′) − l (x)]

<
∑

v∈(A∗
w−{x})

[( f (v) − f ′(v)) m(v) − l (v)] + [ f (x)c(x, w) − l (x)]

<
∑

v∈(A∗
w−{x})

[( f (v) − f ′(v)) m(v) − l (v)]

= G(Tw, A∗
w − {x}),

which contradicts the fact that A∗
w is an optimal solution to Equation (5) with

respect to tree Tw. Hence, the theorem is proven.

From Theorem 3, we can easily see that we should consider placing a copy
of an object only among the caches where object caching is locally beneficial.
Here, locally beneficial means that the cost gain is greater than zero if we put
only one copy of an object among the enroute caches.

Regarding the time complexity of Algorithm 1, we have the following
theorem.

THEOREM 4. If all nodes are locally beneficial, then the time complexity of
Algorithm 1 is O(n2), where n is the total number of nodes in the network.

PROOF. From Algorithm 1, we can easily know that the time complexity of it
is O(

∑
v∈V |D(v)|), where |D(v)| is cardinality of the set D(v). Since |D(v)| ≤ n−1,

we have O(
∑

v∈V |D(v)|) ≤ O(
∑

v∈V (n − 1)) = O(n(n − 1)) = O(n2). Hence, the
theorem is proven.

5. CONSTRAINED COORDINATED ENROUTE WEB CACHING FOR
TREE NETWORKS

In this section, we concentrate on solving the constrained coordinated enroute
Web caching problem for the case in which the network topology is a tree,
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determining the locations for placing copies of an object among the enroute
caches such that the overall cost gain is maximized under different constraints,
including nonnegative cost gain per node, placing exactly k copies, and placing
at most k copies of an object among the enroute caches.

5.1 Constraint I: Nonnegative Cost Gain Per Node

Suppose that Bw ⊆ D(w) is a subset of nodes of tree Tw. Based on Equation (4),
the constrained coordinated enroute Web caching problem of nonnegative cost
gain per node for tree Tw is defined as follows: max

Bw
G(Tw, Bw) = max

Bw

{ ∑
v∈Bw

[( f (v) − f ′(v)) m(v) − l (v)]

}
.

s.t. ( f (v) − f ′(v)) m(v) − l (v) ≥ αv (∀ v ∈ Bw)

(10)

Suppose that B∗
w is an optimal solution to Equation (10), then we should store

a copy of an object at each node in B∗
w, and G(Tw, B∗

w) represents the relevant
maximum overall cost gain.

Before developing the dynamic programming-based algorithm for solving
Equation (10), we propose the following mathematical proofs.

LEMMA 3. If A∗
w ⊆ D(w) is an optimal solution to Equation (5) with respect

to tree Tw, then we have ( f (v) − f ′(v)) m(v) − l (v) ≥ 0, ∀ v ∈ A∗
w.

PROOF. Suppose that there exists x ∈ A∗
w that satisfies ( f (x) − f ′(x))m(x) −

l (x) < 0, then we have

G(Tw, A∗
w − {x}) =

∑
v∈A∗

w−(D(x)∪{x})
[( f (v) − f ′(v)) m(v) − l (v)]

+
∑

v∈D(x)∩A∗
w

[( f (v) − f ′(v)) m(v) − l (v)]

>
∑

v∈A∗
w−(D(x)∪{x})

[( f (v) − f ′(v)) c(v, v′) − l (v)] + [( f (x) − f ′(x)) m(x) − l (x)]

+
∑

v∈D(x)∩A∗
w

[( f (v) − f ′(v)) c(v, v′) − l (v)]

≥
∑
v∈A∗

w

[( f (v) − f ′(v)) c(v, v′) − l (v)]1

= G(Tw, A∗
w),

which contradicts the fact that A∗
w is an optimal solution to Equation (5) with

respect to tree Tw. Hence, the theorem is proven.

1This is because f ′(v) becomes larger for the nodes upstream of node x and c(v, v′) smaller for the
nodes downstream of node x when a copy of an object is cached at node x.
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THEOREM 5. If A∗
w ⊆ D(w) is an optimal solution to Equation (5) with respect

to tree Tw, then A∗
w is also an optimal solution to the following equation: max

Bw
G(Tw, Bw) = max

Bw

{ ∑
v∈Bw

[( f (v) − f ′(v)) m(v) − l (v)]

}
.

s.t. ( f (v) − f ′(v)) m(v) − l (v) ≥ 0 (∀ v ∈ Bw)

(11)

PROOF. Since A∗
w is an optimal solution to Equation (5) with respect to tree

Tw, by Lemma 3, we have ( f (v) − f ′(v)) m(v) − l (v) ≥ 0, ∀ v ∈ A∗
w, therefore, A∗

w
is a feasible solution to Equation (11), so we have G(Tw, A∗

w) ≤ G(Tw, B∗
w). Now

we suppose G(Tw, A∗
w) < G(Tw, B∗

w). It is obvious that B∗
w is a feasible solution

to Equation (5), therefore, we have G(Tw, A∗
w) = G(Tw, A∗

w) and G(Tw, B∗
w) =

G(Tw, B∗
w), so we have G(Tw, A∗

w) < G(Tw, B∗
w). This contradicts the fact that

A∗
w is an optimal solution to Equation (5) with respect to tree Tw. Hence, the

theorem is proven.

By Theorem 5 , we can obtain an optimal solution to Equation (11) by solving
Equation (5). It is easy to see that Equation (10) can be transformed into the
following equation: max

Bw
G(Tw, Bw) = max

Bw

{ ∑
v∈Bw

[( f (v) − f ′(v)) m(v) − l (v) − αv] +
∑
v∈Bw

αv

}
.

s.t. ( f (v) − f ′(v)) m(v) − l (v) − αv ≥ 0 (∀ v ∈ Bw)
(12)

Furthermore, it is obvious that Equation (12) is equivalent to the following
equation. max

Bw
G(Tw, Bw) = max

Bw

{ ∑
v∈Bw

[( f (v) − f ′(v)) m(v) − l (v) − αv]

}
.

s.t. ( f (v) − f ′(v)) m(v) − l (v) − αv ≥ 0 (∀ v ∈ Bw)

(13)

By Theorem 5, we can get an optimal solution to Equation (13) by solving
the following equation:

max
Aw

G(Tw, Aw) = max
Aw

{ ∑
v∈Aw

[( f (v) − f ′(v)) m(v) − l (v) − αv]

}
. (14)

Therefore, we can obtain an optimal solution to Equation (10) by solving
Equation (14).

By now, we have proved that the constrained coordinated enroute Web
caching problem as described in Equation (10) can be transformed into an
unconstrained coordinated enroute Web caching problem as described in
Equation (14). Based on the algorithm proposed in Section 4, we present the
following dynamic programming-based algorithm for constrained coordinated
enroute Web caching of nonnegative cost gain per node, which is described as
follows.
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Algorithm 2: UCERWC—Nonnegative Cost Gain Per Node
Step 1. Initialization
A∗

w = φ and G(Tw, A∗
w) = 0;

Step 2. End Condition
if D(w) = φ then return;
Step 3. Recursive Procedure
for v ∈ C(w) do

if D(v) = φ then
if f (v)c(w, v) − l (v) − αv > 0 then

A∗
w,v = {v}

else
A∗

w,v = φ
else

for x ∈ C(v) do
if

∑
x∈C(v) G(Tw,x , A∗

w,x) ≥ G(Tv, A∗
v) + [( f (v) − f ′(v))c(w, v) − l (v) − αv]

then
A∗

w,v = ∪x∈C(v) A∗
w,x

else
A∗

w,v = A∗
v ∪ {v}

A∗
w = ∪v∈C(w) A∗

w,v

Similar to Algorithm 1, we can know that every cache should maintain some
information on the objects, including size, access frequency, update frequency,
and miss penalty with the associated node. For Algorithm 2, the constraint
for each node should also be maintained. The following corollary describes an
important property of Algorithm 2.

COROLLARY 1. If A∗
w is an optimal solution to Equation (14), then we have

f (v) c(v, w) − l (v) − αv ≥ 0, ∀ v ∈ A∗
w.

The proof of Corollary 1 is similar to that of Theorem 3.
From Corollary 1, we can easily see that we should consider placing a copy

of an object only among the caches where object caching is locally beneficial.
Here, locally beneficial means that the cost gain for each node is greater than
the constraint for that node if we put only one copy of an object among the
caches.

Regarding the time complexity of Algorithm 2, we have the following
corollary.

COROLLARY 2. If all nodes are locally beneficial, then the time complexity of
Algorithm 2 is O(n2), where n is the total number of nodes in the network.

The proof of Corollary 2 is similar to that of Theorem 4.

5.2 Constraint II: Placing Exactly k Copies of An Object

Similarly, the constrained coordinated enroute Web caching problem of placing
exactly k copies of an object among the enroute caches for tree Tw is defined as
follows:  max

Bw
G(Tw, Bw) = max

Bw

{ ∑
v∈Bw

[( f (v) − f ′(v)) m(v) − l (v)]

}
.

s.t. |Bw| = k

(15)
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Fig. 3. Relationship between cost gain and number of copies.

Suppose that A∗
w is an optimal solution to Equation (5) with respect to tree

Tw, we can easily know that it is not necessary to place more than k∗ copies of
an object among the enroute caches where k∗ = |A∗

w|. Otherwise, there must be
at least one node whose cost gain is negative. Therefore, k should be less than
k∗. So we first compute k∗ by Algorithm 2 by setting αv = 0, and the optimal
locations are all the nodes in A∗

w when k ≥ k∗. The relationship between the
overall cost gain and the number of copies can be visualized from Figure 3.

Before presenting the algorithm for solving the problem of placing exactly k
copies of an object among the enroute caches for tree Tw, we give the following
definition. The local cost gain for node v, denoted by h(v), is the cost gain for
placing only one copy of an object in the enroute cache at node v, which is given
by

h(v) = f (v) c(v, w) − l (v). (16)

Let αmax = maxv∈V {h(v)}, then we have the following theorem with respect
to a feasible solution to Equation (10).

THEOREM 6. if αv > αmax, then there is no feasible solution to Equation (10).

PROOF. Suppose that there exists a node v that satisfies ( f (v)− f ′(v)) m(v)−
l (v) ≥ αv. On the other hand, we have

( f (v) − f ′(v)) m(v) − l (v) ≤ ( f (v) − f ′(v)) c(v, w) − l (v)
≤ f (v) c(v, w) − l (v) ≤ h(v) < αv.

So, the supposition is not correct. Hence, the theorem is proven.
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Fig. 4. Relationship between k∗ and αv.

From Theorem 6, we can know that the parameter αv in Equation (10) should
satisfy 0 ≤ αv ≤ αmax. It is obvious that the number of copies of an object to be
placed in the network is relevant to the parameter αv. Hence, the proper selec-
tion of αv determines the number of caching locations. The crucial observation
is that the number of caching locations is a monotonically-decreasing function
of αv, that is, as αv increases, the number of caching locations decreases mono-
tonically. Therefore, we can determine the optimal locations for placing exactly
k copies of an object among the enroute caches by tuning the parameter αv. The
relationship between the optimal number of copies k∗ and the parameter αv can
be visualized in Figure 4.

The algorithm for placing exactly k copies of an object among the enroute
caches is described as follows.

Algorithm 3: UCERWC—Placing Exactly k Copies of An Object
Step 1. Initialization
αmin = 0; αmax = maxv∈V {h(v)}, k∗ = |A∗

w|.
Step 2. Recursive Procedure
while k∗ = k do

α = (αmin + αmax)/2;
Call Algorithm 2 by setting αv = α;
k∗ = |A∗

w|;
if k∗ > k then

αmin = α
else

αmax = α
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We can see that Algorithm 3 converges to an optimal solution to Equation (15)
quickly. The time complexity of Algorithm 3 is given by the following corollary.

COROLLARY 3. The time complexity of Algorithm 3 is O(n2 log( f n)), where n
is the total number of nodes in the network and f = maxv∈V { f (v)}.

PROOF. Since αmax = maxv∈V {h(v)} ≤ f n, from Theorem 2, we can easily
know that the time complexity of Algorithm 3 is O(n2 log( f n)).

5.3 Constraint III: Placing At Most k Copies of An Object

Based on Equation (4), the constrained coordinated enroute Web caching prob-
lem of placing at most k copies of an object among the enroute caches for tree
Tw is defined as follows: max

Bw
G(Tw, Bw) = max

Bw

{ ∑
v∈Bw

[( f (v) − f ′(v)) m(v) − l (v)]

}
.

s.t. |Bw| ≤ k

(17)

We say that two equations are equivalent if the optimal solution to one equation
is also an optimal solution to the other equation. Suppose that k∗ = |A∗

w|, where
A∗

w is an optimal solution to Equation (10) by setting αv = 0, then we have the
following theorem on the equivalence between Equation (17) and Equation (5).

THEOREM 7. if k ≥ k∗, then Equation (17) is equivalent to Equation (5).

PROOF. Suppose that A∗
w is an optimal solution to Equation (5) with respect

to tree Tw, and B∗
w is an optimal solution to Equation (17). By the definition of

optimal solution, we easily know that A∗
w is an optimal solution to Equation (17)

since k ≥ k∗. Now we prove B∗
w is an optimal solution to Equation (5). We

apply reduction to absurdity, and we have G(Tw, A∗
w) < G(Tw, B∗

w). Since A∗
w

is a feasible solution to Equation (17), we have G(Tw, A∗
w) = G(Tw, A∗

w) and
G(Tw, B∗

w) = G(Tw, B∗
w), so we have G(Tw, A∗

w) < G(Tw, B∗
w). This contradicts

the fact that A∗
w is an optimal solution to Equation (5) with respect to tree Tw.

Hence, the theorem is proven.

From Theorem 7, we can see that the problem as described in Equation (5)
can be viewed as a special case of the problem being discussed in this section
by setting k = n.

Based on Algorithm 3 , we can present the following algorithm for placing at
most k copies of an object.

Algorithm 4: UCERWC—Placing at Most k Copies of An Object
Step 1. Initialization
gain:=0, placement= φ.
Step 2. Recursive Procedure
for i = 0 to k do

Call Algorithm 3 by setting k = i;
gain(i) = G(Tw, B∗

w);
if gain(i) > gain then

gain = gain(i)
placement = B∗

w
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We can see that Algorithm 4 converges to an optimal solution to Equation (17)
quickly. The time complexity of Algorithm 4 is given by the following corollary.

COROLLARY 4. The time complexity of Algorithm 4 is O(kn2 log( fn)), where n
is the total number of nodes in the network and f = maxv∈V { f (v)}.

PROOF. From Corollary 3, it is obvious that the time complexity of Algorithm
4 is O(kn2 log(fn)).

6. COORDINATED ENROUTE CACHING FOR AUTONOMOUS SYSTEMS

In this section, we focus on solving the coordinated enroute Web caching prob-
lem for autonomous systems, determining the locations for placing exactly k
copies of an object among the enroute caches so that the overall cost gain is
maximized. This problem is different from the problem studied in Section 5.2
since the network topology is completely different.

Autonomous systems play an important role in routing objects on the Inter-
net [Bates et al. 1995; Pierre and Steen 2002]. When a client accesses an object,
the request is always sent to the local replica server which serves this region.
The request is always satisfied by the first node on the path from the client to
the local replica sever where a copy of this object is cached. Thus, the routes to
all clients served by the replica server form a shortest-path tree rooted at the
replica server as assumed in Paxson [1997] and Wolfson and Milo [1991]. Obvi-
ously, the routes used by all the clients in the entire network to access an object
form a collection of disjoint tress as illustrated in Figure 5.

We denote the whole network by TAS = (VAS, EAS) where VAS is the set of
the nodes, and EAS is the set of the links. We assume that there are m ASes in
the network, each of which is represented by tree Ti, i = 1, 2, . . . , m. Figure 5
shows a simple example of such an autonomous system in which the replica
servers have the same contents as the content server. We denote the set of the
replica servers and the content server by SAS.

Based on Equation (4), the problem for coordinated enroute Web caching for
autonomous systems is defined as follows: max

PAS

G(TAS, PAS) = max
PAS

{ ∑
v∈PAS

[( f (v) − f ′(v)) m(v) − l (v)]

}
,

s.t. |PAS| = k

(18)

where PAS ⊆ VAS − SAS.
From Equation (18), we can see that this problem degenerates to the problem

addressed in Section 5.2 when m = 1, that is, determining the optimal locations
for placing k copies of an object in tree networks. In this section, we also use
G̃(TAS, k) to denote the overall maximum cost gain for placing k copies of an ob-
ject in TAS for convenience, that is, G̃(TAS, k) = G(TAS, P∗

AS) where G(TAS, P∗
AS)

is an optimal solution to Equation (18) and k∗ = |P∗
AS|.

Now we apply the following idea to solve this problem, similar to that pre-
sented in Jia et al. [2001]. We first divide TAS into two parts: ∪m−1

i=1 Ti and Tm.
Then, we consider the problem of placing km copies of an object in the first part
and k − km copies of an object in the second part where 0 ≤ km ≤ k. We divide
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Fig. 5. Enroute Web caching for autonomous systems.

∪m−1
i=1 Ti into two parts, ∪m−2

i=1 Ti and Tm−1; thus, we consider the problem of plac-
ing km−1 copies of an object in the first part and km − km−1 copies of an object in
the second part where 0 ≤ km−1 ≤ km. We repeat this process until there is only
one tree left. Regarding the recursive process, we have the following theorem.

THEOREM 8.

G̃(T+i, k) =
 G̃(T1, k) if T+i = T1

max
0≤k′≤k

{G̃(T+(i−1), k′) + G̃(Ti, k − k′)} if T+i = T1
, (19)

where T+i = ∪i
j=1Tj .

PROOF. When T+i = T1, it becomes the constrained coordinated enroute Web
caching problem of placing k copies of an object among the enroute caches for
tree topology, therefore, it is obviously correct.

Now we consider T+i = T1. Let G̃ ′(T+i, k) = max0≤k′≤k{G̃(T+(i−1), k′) +
G̃(Ti, k − k′)}. We first prove G̃ ′(T+i, k) ≥ G̃(T+i, k). Suppose that P∗ is an opti-
mal solution for placing k copies of an object in T+i, then we have G̃(T+i, k) =
G(T+i, P∗). Suppose that P∗∩T+(i−1) = l , then we have P∗∩Ti = k−l , therefore
we have

G(T+i, P∗) = G(T+(i−1), P∗ ∩ T+(i−1)) + G(Ti, P∗ ∩ Ti). (20)

It is easy to see that P∗ ∩ T+(i−1) and P∗ ∩ Ti are optimal placements for placing
l copies and k − l copies in T+(i−1) and Ti, respectively. Otherwise, there should
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be a better placement than P∗ ∩ T+(i−1) or P∗ ∩ Ti which would contradict that
P∗ is an optimal placement. Therefore, we have

G̃(T+i, k) = G(T+i, P∗)
= G

(
T+(i−1), P∗ ∩ T+(i−1)

) + G(Ti, P∗ ∩ Ti)

= G̃
(
T+(i−1), l

) + G̃(Ti, k − l )

≤ max
0≤l ′≤k

{
G̃

(
T+(i−1), l ′) + G̃(Ti, k − l ′)

}
= G̃ ′(T+i, k).

Now we prove G̃ ′(T+i, k) ≤ G̃(T+i, k). Suppose that G̃(T+(i−1), l ) + G̃(Ti, k −
l )} = max0≤l ′≤k{G̃(T+(i−1), l ′)+ G̃(Ti, k−l ′)}. Let P∗

+(i−1) be an optimal placement
for placing l copies of an object in T+(i−1) and P∗

i an optimal placement for
placing k − l copies of an object in Ti, then for any l , we have

G̃(T+i, k) ≥ G
(
T+i, P∗

+(i−1) ∪ P∗
i )

= G
(
T+(i−1), P∗

+(i−1)

) + G(Ti, ∪P∗
i )

= G̃
(
T+(i−1), l

) + G̃(Ti, k − l ),

therefore, we have G̃(T+i, k) ≥ max0≤l ′≤k{G̃(T+(i−1), l ′) + G̃(Ti, k − l ′)} =
G̃ ′(T+i, k). Hence, the theorem is proven.

Our algorithm for coordinated enroute Web caching for autonomous systems
is described as follows.

Algorithm 5: Algorithm for Coordinated Enroute Web Caching for Autonomous
Systems
Main Procedure
for i = 1 to m do (Initialization)

for j = 0 to k − m + i do
G̃(T+i , j ) = −1; (The cost gain for placing j copies in T+i)
P (Ti , j ) = φ (The optimal solution for placing j copies in Ti)

Call Placement(T+m, k); (Calling procedure Placement recursively)
Procedure Placement(T+i , l )
if G̃(T+i , l ) ≥ 0 then

Return G̃(T+i , l ); (G̃(T+i , l ) computed)
if i = 1 then

Return G̃(T1, l ); (Call Algorithm 3 since G̃(T1, l ) = G(T1, A∗
1))

TG = 0;
for l ′ = (i − 1) to l − 1 do (Finding the optimal number of copies to be placed in Ti)

TG = Placement(T+(i−1), l ′) + G̃(Ti , l − l ′); (According to Theorem 8)
= Placement(T+(i−1), l ′) + G(Ti , A∗

i );
if G̃(T+i , l ) > TG then

G̃(T+i , l ) = TG
P (Ti , l − l ′) = A∗

i

The time complexity of Algorithm 5 is given by the following corollary.

COROLLARY 5. The time complexity of Algorithm 5 is O(kn2 log( f n)), where
n is the total number of nodes in the network and f = maxv∈V { f (v)}.

PROOF. According to Corollary 3, the time for running Placement(T+i, l ) is
O(n2

i log( f ni)), where ni is the number of nodes of tree Ti and 1 ≤ i ≤ m. Since

ACM Transactions on Internet Technology, Vol. 5, No. 3, August 2005.



500 • K. Li et al.

Algorithm 5 calls Placement(T+i, l ) to compute all the elements in G̃(T+i, l ), its
time complexity is

O

(
m∑

i=1

k∑
l=1

(
n2

i log( fni)
)) = O

(
m∑

i=1

(
kn2

i log( fni)
))

≤ O

(
log( fn)

m∑
i=1

(
n2

i

)) ≤ O(kn2 log( fn)). (21)

Hence, the corollary is proven.

7. SIMULATION AND RESULTS

In this section, we introduce the parameter estimation in Section 7.1, describe
the simulation model in Section 7.2, and discuss the experimental results in
Section 7.3.

7.1 Parameter Estimation

In the actual implementation, the access frequency and the miss penalty of an
object with respect to a node are not usually constant. We have to estimate
them accurately so that the characteristics of data access can be well captured.

We apply the methods described in Tang and Chanson [2002] for estimating
parameters used in our model. The access frequency f (v) is estimated by re-
cent request data. We apply a sliding window technique to estimate the access
frequency to make our model less sensitive to transient workload [Shim et al.
1999]. Specifically, f (v) is calculated by K /(t − tK ), where K is the number
of accesses recorded, t is the current time, and tK is the K th most recently
referenced time (the time of the oldest reference in the sliding window). It is
shown by in Shim et al. [1999] that K can be as small as 2 or 3 to achieve
the best performance. In our simulation k is set to 2. If knowledge of access
frequency is imprecise, another method can be applied to estimate the average
access frequency for object O observed at node v based on the size of this object.
Specifically, f (v) is calculated by p/sb, where p and b are constants for object
O at node v, and s is the size of object O [Shim et al. 1999]. This is shown
by Cunha et al. [1995] and Glassman [1994] based on studies that show that
Web clients exhibit a strong preference for accessing small objects. The miss
penalty is updated by the response messages. Specifically, a variable with an
initial value of zero is attached to each object. At each intermediate node along
the way, the variable is increased by the cost of the last link the object has
just traversed. The value is then used to update the miss penalty of the object
maintained by the associated cache. If the object is inserted into the cache, the
node resets the value to zero before forwarding the object downstream. In this
way, the updated cost loss is disseminated to all the caches along the way.

7.2 Simulation Model

We have performed extensive simulation experiments for comparing the results
of our model with those of the existing models. The network in our simulation
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Table I. Parameters of Our Experiments

Parameter Value
Total Number of Nodes 300
Number of WAN Nodes 150
Number of MAN Nodes 150

Delay of WAN Links 0.45 second
Delay of MAN Links 0.06 second
Number of Objects 1000

Average Object Size 30KB
Average Request Rate Per Node U (1, 9) requests per second

consists of numerous nodes. Here, we assume that there is only one server.
As far as we know, it is difficult to find true trace data in the open literature
to simulate our model. Similar to the simulation model proposed in Tang and
Chanson [2002], we generated the simulation model from empirical results
presented in Barford and Crovella [1998], Breslau et al. [1999], and Calvert
et al. [1997].

The network topology is randomly generated by the Tier program [Calvert
et al. 1997]. We have conducted experiments for many topologies with differ-
ent parameters and found that the performance of our model was insensitive to
topology changes. Here we list only the experimental results for one topology be-
cause of space limitations. Table I shows the parameters and their values used
in our experiments where U (x, y) denotes the uniform distribution between x
and y .

The WAN (Wide Area Network) is viewed as the backbone network to which
no servers or clients are attached. Each MAN (Metropolitan Area Network)
node is assumed to connect to the content server. Each MAN and WAN node
is associated with an enroute cache. Similar to the studies in Breslau et al.
[1999], Cao and Irani [1997], Jin and Bestavros [2001], and Shim et al. [1999],
we describe cache size as the total relative size of all objects available in the
content server. We assume for our experiments that the object sizes follow the
distribution as described in Barford and Crovella [1998] and that the average
object size is 30KB. In our experiments, the client at each MAN node randomly
generates the requests and the average request rate of each node follows the
distribution of U (1, 9). The cost for each link is calculated by the access latency.
For simplicity, the delay caused by sending the request and the relevant re-
sponse for that request is proportional to the size of the requested object. We
consider the average object sizes for calculating all delays, including the propa-
gation delay, the transmission delay, and the searching delay. The cost function
is taken to be the delay of the link which means that the cost in our model is
interpreted as the access latency in our simulation.

7.3 Experimental Results

In our experiments, we compare the performance results of different models
across a wide range of cache sizes, from 0.04 percent to 12 percent, and the
performance metrics include the average access latency, the response ratio of a
request (the ratio of its access latency to the size of the target object), the object
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Fig. 6. Experiment for average access latency.

hit ratio (the ratio of the number of requests satisfied by the caches as a whole
to the total number of requests.), the byte hit ratio (the ratio of the bytes of
requests satisfied by the caches as a whole to the total bytes of requests), and
the average server load (the average number of bytes served by the server per
second). In our experiments, we denote the results for the LRU model [Williams
et al. 1996] by LRU, the results for coordinated enroute Web caching for linear
topology [Tang and Chanson 2002] by LT, and the results for unconstrained
coordinated enroute Web caching for tree topology by TT.

Figure 6 shows the results of the average latency as a function of the relative
cache size at each node. We also describe the results of the response ratio of a
request as a function of the relative cache size at each node in Figure 7. As we
knew, the lower the average access latency or the average response ratio, the
better the performance. We can easily see that the performance results for the
three models improve as the relative cache size increases. We can also see that
TT can improve both the average access latency and the average response ratio
compared to LRU and LT since our model determines the optimal locations in
the whole tree, while LRU places the copies of an object at each enroute cache
and LT optimally places the copies of an object on the path from the client to
the server.

Figure 8 and Figure 9 show the results of the object hit ratio and the byte hit
ratio as functions of the relative cache size for different models, respectively.
By computing the optimal locations for the tree topology, we can see that the
results for our model can greatly outperform those of the other two models,
especially for smaller cache sizes. The object hit ratio and the byte hit ratio
steadily improve as the relative cache size increases which conforms to the fact
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Fig. 7. Experiment for average response ratio.

Fig. 8. Experiment for object hit ratio.

that more requests will be satisfied by the caches, as the cache size becomes
larger.

Figure 10 shows the results of the server load as a function of the relative
cache size. It can be seen that the average server load for our model is lower

ACM Transactions on Internet Technology, Vol. 5, No. 3, August 2005.



504 • K. Li et al.

Fig. 9. Experiment for byte hit ratio.

Fig. 10. Experiment for average server load.

than that of the other models. We can also see that the average server load
decreases as the relatice cache size increases.

Figure 11 shows the results of the average response ratio and the object hit
ratio as functions of the average number of copies of the objects placed among
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Fig. 11. Experiment for different number of copies.

Table II. Different Cases Addressed In This Article

Case Network Topology Description Time Complexity
UCERWC Tree Network No constraints O(n2)

Tree Network Non-negative cost gain per node O(n2)
Tree Network Placing exactly k copies O(n2 log( f n))CCERWC
Tree Network Placing at most k copies O(kn2 log( fn))

Autonomous System Placing exactly k copies O(kn2 log( fn))

the enroute cache, respectively. We can see that the average response ratio
decreases as the number of copies of an object placed among the enroute caches
increases. When the number arrives at about 175, the average response ratio
begins to decrease slowly. This is true because the optimal number of copies
of an object to be placed in such a network topology is approximately 175.
We also can see that the object hit ratio decreases with the number of copies
of an object placed among the enroute caches increasing. When the number
reaches about 190, the object hit ratio starts to decrease. This is true because
the optimal number of copies of an object to be placed in such a network topology
is approximately 190.

8. CONCLUSION

The performance of enroute Web caching depends mainly on the locations of
caches and on the management of cache contents. In this article, we studied the
coordinated enroute Web caching problem on tree networks and autonomous
systems for both unconstrained and constrained cases (see Table II).
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We presented a mathematical model that integrates both cost loss and cost
saving for storing an object at a node. According to the information stored at
each node, we can optimally decide where copies of the requested object should
be placed and what should be removed, if necessary, to make room for them.
We also proposed low-cost dynamic programming-based algorithms for the dif-
ferent cases and theoretically showed that the algorithms were either optimal
or convergent to optimal solutions. We have performed extensive experiments
to compare the proposed methods with the existing algorithms. The simulation
results show that our methods significantly outperform the existing algorithms
which consider either coordinated enroute Web caching for linear topology or
object placement (replacement) at individual nodes only. Our methods have
made significant contributions to enroute Web caching since the locations for
placing copies of an object among the enroute caches can be optimally obtained
for different networks under different constraints.

A challenging task for our future research is to solve the coordinated enroute
object caching problem in networks of arbitrary topology. The techniques of
applying dynamic programming shown in this article may serve as useful tools
for deriving such solutions in the general case.

In this article we treated each object as a separate problem and assumed that
costs for different objects are independent of each other, as done by others in the
literature [Tang and Chanson 2002; Xu et al. 2002]. Taking into consideration
interobject dependency to cache individual objects also remains an important
and challenging problem for our future research.
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