
Linear-Time Haplotype Inference on Pedigrees
without Recombinations

M. Y. Chan1, Wun-Tat Chan1, Francis Y. L. Chin1?, Stanley P. Y. Fung2, and
Ming-Yang Kao3

1 Department of Computer Science, University of Hong Kong, Hong Kong
{mychan, wtchan, chin}@cs.hku.hk

2 Department of Computer Science, University of Leicester, Leicester, UK
pyfung@mcs.le.ac.uk

3 Department of Electrical Engineering and Computer Science, Northwestern
University, USA

kao@cs.northwestern.edu

Abstract. In this paper, a linear-time algorithm, which is optimal, is
presented to solve the haplotype inference problem for pedigree data
when there are no recombinations and the pedigree has no mating loops.
The approach is based on the use of graphs to capture SNP, Mendelian
and parity constraints of the given pedigree.

1 Introduction

The modeling of human genetic variation is critical to the understanding of the
genetic basis for complex diseases. Single nucleotide polymorphisms (SNPs)[6]
are the most frequent form of this variation, and it is useful to analyze haplotypes,
which are sequences of linked SNP genetic markers (small segments of DNA) on
a single chromosome. In diploid organisms, such as humans, chromosomes come
in pairs, and experiments often yield genotypes, which blend haplotypes for the
chromosome pair. This gives rise to the problem of inferring haplotypes from
genotypes.

Before defining our problem, some preliminary definitions are needed. The
physical position of a marker on a chromosome is called a locus and its state is
called an allele. Without loss of generality, the alleles of a biallelic SNP can be
denoted by 0 and 1, and a haplotype with m loci is represented as a length-m
string in {0, 1}m, and a genotype as a length-m string in {0, 1, 2}m. Haplotype
pair 〈h1, h2〉 is SNP-consistent with genotype g if where the two alleles of h1

and h2 are the same at the same locus, say 0 (respectively 1), the corresponding
locus of g is also 0 (1), which denotes a homozygous locus; otherwise, where
the two alleles of h1 and h2 are different, the corresponding locus of g is 2,
which denotes a heterozygous locus (i.e. SNP). A genotype with s heterozygous
loci can have 2s−1 SNP-consistent haplotype solutions. For example, genotype
? This research was supported by Hong Kong RGC Grant HKU-7119/05E and HKU

Strategic Research Team Fund



g = 012212 with s = 3 has four SNP-consistent haplotype pairs: {〈011111,
010010〉, 〈011110, 010011〉, 〈011011, 010110〉, 〈011010, 010111〉}.

D

M

S

F2102

2202

2000

1200

Fig. 1. Example of a pedigree
with 4 nodes.

A pedigree is a fundamental connected
structure used in genetics. Figure 1 shows
the pictorial representation of a pedigree with
4 nodes, with a square representing a male
node and a circle representing a female node
and children placed under their parents: in
particular, a father (node F), a mother (node
M) and two children (son node S and daugh-
ter node D). F-M-S (also F-M-D) is a father-
mother-child trio or simply trio. Further-
more, each individual node in the pedigree is
associated with a genotype. We assume that
there are no mating loops, i.e., no marriages
between descendants of a common ancestor, in the pedigree.

A Consistent Haplotype Configuration (with no recombinations) for a given
pedigree is an assignment of a pair of haplotypes to each individual node such
that (i) all the haplotype pairs are SNP-consistent with their corresponding
genotypes and (ii) the haplotypes of each child are Mendelian-consistent, i.e.
one of the child’s haplotype is exactly the same as one of its father’s and the
other is the same as one of its mother’s.

Haplotyping Pedigree Data (with No Recombinations) Problem (HPD-
NR): Given a pedigree P where each individual node of P is associated with a
genotype, find a consistent haplotype configuration (CHC) for P. ut

Wijsman [8] proposed a 20-rule algorithm, and O’Connell [5] described a
genotype elimination algorithm, both of which can be used for solving the HPD-
NR problem. Li and Jiang [2] formulated the problem as an mn×mn matrix and
solved HPD-NR by Gaussian elimination which could be solved in polynomial
time (O(m3n3)), where n is the number of individuals in the pedigree and m
is the number of loci for each individual. Xiao, Liu, Xia and Jiang [9] later
improved this to O(mn2+n3 log2 n log log n). For the case without mating loops,
their algorithm runs in O(mn2 + n3) time. In this paper, we propose a new 4-
stage algorithm that can either find a CHC solution or report “no solution” in
optimal O(mn) time when there are no mating loops. Due to space constraints,
some proofs are omitted from this version.

2 The Algorithm

2.1 Stage 1

Definition 1. If there exists a father F, mother M and two children C1 and C2

in the pedigree and two locus i and j such that i and j are heterozygous loci for
F, M and C1 but are homozygous and heterozygous, respective, for C2, then we
say that the pedigree has a family problem. ut



Stage 1A - Checking for family problems: Since a pedigree with a fam-
ily problem has no CHC solution, our algorithm begins by checking for family
problems. Only if there are no family problems will the algorithm continue; oth-
erwise, “no solution” is reported. ut
Stage 1B – Generation of vector-pairs: For each trio in the given pedi-
gree, let the respective genotypes of the father F, the mother M and the child
C be: x1x2. . . xm and y1y2. . . ym and z1z2. . . zm where xi, yi, zi ∈ {0, 1, 2}.
We determine a pair of vectors (or vector-pair) each for the father, the mother
and the child, namely: 〈f1, f2〉, 〈m1,m2〉 and 〈c1, c2〉, respectively, where f1 =
x1,1x1,2 . . . x1,m and f2 = x2,1x2,2 . . . x2,m; m1 = y1,1y1,2 . . . y1,m and m2 =
y2,1y2,2 . . . y2,m; c1 = z1,1z1,2 . . . z1,m and c2 = z2,1z2,2 . . . z2,m. The vector-pairs
are determined in the following manner.

1. For each locus i, for f1 and f2:
(a) If xi = 0 then x1,i = x2,i = 0.
(b) If xi = 1 then x1,i = x2,i = 1.
(c) If xi = 2 and zi = 0 then x1,i = 0 and x2,i = 1.
(d) If xi = 2 and zi = 1 then x1,i = 1 and x2,i = 0.
(e) If xi = 2 and zi = 2 and yi = 0 then x1,i = 1 and x2,i = 0.
(f) If xi = 2 and zi = 2 and yi = 1 then x1,i = 0 and x2,i = 1.
(g) If xi = 2 and zi = 2 and yi = 2 then x1,i = ? and x2,i = ?.

2. m1 and m2 are similarly determined.
3. We assume C inherits f1 from F and m1 from M and thus 〈c1, c2〉 = 〈f1,m1〉.

Check if 〈c1, c2〉 is consistent with C’s genotype z1z2. . . zm. If not, report “no
solution”. ut
Observe that if a particular node N in the pedigree belongs to k different trios,

then k vector-pairs, or 2k vectors, will be created for N in Stage 1. Let Φ(N)
be the multiset comprised of these k vector-pairs. It is sometimes convenient
to refer to the vectors rather than the vector-pairs. Thus, we let Γ (N) be the
multiset of 2k vectors, containing the two vectors of each vector-pair in Φ(N).
Note that we can define SNP-consistency and Mendelian-consistency in terms of
vector-pairs.

SNP-Consistency Condition: SNP-consistency is said to be maintained iff,
for all nodes N in the pedigree, each vector-pair in Φ(N) is SNP-consistent with
N’s genotype. Vector-pair 〈h1, h2〉 is said to be SNP-consistent with genotype
g if h1 and h2 are both 0 (respectively 1) at the same locus, the corresponding
locus of g is also 0 (1); otherwise, if h1 is 0 (respectively 1) and h2 is 1 (0) at
the same locus, the corresponding locus of g is 2 (2). ut
Mendelian-Consistency Condition [1, 7]: Mendelian-consistency is said to
be maintained iff, for all nodes N in the pedigree, if N is a child in a trio comprised
of F, M and N, then Φ(N) contains a vector-pair 〈c1, c2〉 = 〈f1, m1〉 where f1 ∈
Γ (F) and m1 ∈ Γ (M). ut
Stage 1C - Initial construction of G = (V, E): Let V be the multiset of all
the vectors created in Stage 1B and E be the set of red and brown edges defined
below.



1. A red edge will be introduced to join the two vectors of each vector-pair
generated in Stage 1A and indicates that a ? appearing at locus i of both
vectors must be resolved differently in the later stages of the algorithm (the
two vectors can be different or the same at other locus positions depending
on whether the genotype has a 2 or not at that locus). [SNP-consistency]

2. For each F-M-C trio, let 〈f1, f2〉, 〈m1,m2〉 and 〈c1, c2〉 be vector-pairs in
Φ(F), Φ(M) and Φ(C), respectively, associated with this trio. Two brown
edges will be introduced, one connecting c1and f1, and the other connecting
c2and m1. A brown edge between two vectors means that the two vectors
must be the same at all locus positions. [Mendelian-consistency] ut

Example 1: Consider the pedigree with F (father), M (mother), S (son), D
(daughter) shown in Figure 1. Stage 1 produces the following graph G of 12 ver-
tices and 10 edges (6 red and 4 brown), comprised of two connected components.

?101

?101

(F):

(M):

(S):

Φ

Φ

Φ Φ(D):

red
brown

?100

?000 ?000

?000

1100 0101

1000 0000

1100 1000

Fig. 2. Graph G for Example 1.

Definition 2. For any loci in a connected component G of G, we say
1. Locus i is resolved in G iff all vectors in G have 0 or 1 at locus i.
2. Locus i is unresolved in G iff all vectors in G have ? at locus i.
3. Otherwise, locus i is a mix of ? and non-? at i. ut

In Example 1, the connected component for trio F-M-S has one unresolved
locus (locus 1) and three resolved loci (locus 2, 3 and 4). Meanwhile, the com-
ponent for trio F-M-D has no unresolved loci and four resolved loci (locus 1, 2,
3 and 4).

Lemma 1. The time complexity of Stage 1 (Stage 1A, 1B and 1C) is O(mn),
where n is the number of nodes in the pedigree and m is the number of loci in each
genotype. Furthermore, after Stage 1, all loci are either resolved or unresolved
in each connected component of G, and G has O(n) nodes and edges. ut

In Stages 2 and 3, no vector-pairs will be added to or deleted from each Φ(N)
and the 0’s and 1’s of Stage 1 will remain as they are (unchanged). The unre-
solved loci of each component of G will become resolved with SNP-consistency
and Mendelian-consistency maintained, and components of G will be repeatedly
merged with the addition of connecting green (added in Stage 2) or white



(added in Stage 3) edges until G evolves into being a single connected compo-
nent. Each green or white edge is added between two vectors belonging in the
same Γ (N). This structured way of adding edges to make G connected can be
done given Lemma 2 below.

Lemma 2. If G has more than one connected component, then there exists a
Φ(N) for some N such that there are two vector-pairs in Φ(N) which belong to
two different components.

Proof. Suppose to the contrary that, for all N, the vector-pairs in Φ(N) are
all connected. We make use of the fact that the brown edges in G preserve
the connectivity of any two nodes in the pedigree, which we have assumed to
be connected. Therefore, if vector-pairs in Φ(N) are all connected for all N,
then all vectors are connected together in a single connected component, which
contradicts the assumption that G has more than one connected component. ut

As loci are resolved, each multiset Φ(N) may contain one or more copies of
more than one unique vector-pair. However, by the time all loci are resolved, for
all nodes N, each multiset Φ(N) must contain k copies of one unique vector-pair
〈h1, h2〉, which represents the haplotype-pair in the CHC for N, where k is the
number of trios to which N belongs. We need an additional condition:

Endgame-Consistency Condition: Endgame-consistency is said to be main-
tained iff, for all nodes N is the pedigree, N is Endgame-consistent. Node N is
said to be Endgame-consistent if there does not exist vector-pairs 〈u1, u2〉, 〈v1,
v2〉 ∈ Φ(N) such that the vector values at some heterozygous locus i and j (i 6= j)
for u1, u2, v1 and v2 are a permutation of the four possibilities: 00, 01, 10 and
11; and Endgame-inconsistent otherwise. A connected component G of graph G
is said to be Endgame-consistent if there does not exist a node N and vector-
pairs 〈u1, u2〉, 〈v1, v2〉 in both Φ(N) and G such that the vector values at some
heterozygous locus i and j (i 6= j) for u1, u2, v1 and v2 are a permutation of the
four possibilities: 00, 01, 10 and 11; and Endgame-inconsistent otherwise. ut

Our algorithm achieves a solution if, at the end of Stage 4, (a) graph G
comprises a single connected component; (b) all loci are resolved in G; and
(c) SNP-consistency, Mendelian-consistency and Endgame-consistency are main-
tained. However, our algorithm might report “no solution” if some N is Endgame-
inconsistent before the end of Stage 4.

2.2 Stage 2

We begin by defining an important subroutine called LOCUS RESOLVE. LO-
CUS RESOLVE(G, i, u, x) will resolve all ?’s at an unresolved locus i in a
connected component G (of G) starting with resolving the ? at locus i of vector
u in G to x ∈ {0, 1} in a manner consistent with red and non-red edges.

LOCUS RESOLVE(G, i, u, x):
1. Let vector u = u1u2. . . um. Set ui ← x



2. For each edge e = (u, v):
3. Let vector v = v1v2. . . vm.
4. If vi = ? then
5. If e is a red edge then LOCUS RESOLVE(G, i, v, 1− x)
6. else LOCUS RESOLVE(G, i, v, x) ut

The idea of Stage 2 is to add O(n) green edges to connect components of G
together, where green edges are like brown edges requiring that the ?s in the two
vectors connected by the edge to be resolved the same. The way in which green
edges are added respects Endgame-consistency. In particular, green edges are
added to connect two unconnected vectors that have the value 0 at heterozygous
locus i.

Stage 2 – Adding Green Edges: For each locus i do the following:
1. For each node N, if locus i is heterozygous in N, (a) let u = u1u2. . . um in

Γ (N) such that ui = 0 (if any); and (b) for each other vector v = v1v2. . . vm

in Γ (N) such that vi = 0 do the following:
(a) For each locus j such that uj ∈ {0,1} and vj = ?, run LOCUS RESOLVE

(Gv, j, v, uj). In so doing, we say that we use u to resolve all unre-
solved loci of Gv.

(b) Likewise, for each locus j such that vj ∈ {0,1} and uj = ?, run LOCUS
RESOLVE(Gu, j, u, vj). Thus, we use v to resolve all unresolved
loci of Gu.

(c) Add a green edge joining u and v.
2. Make G acyclic, by removing green edges only. ut

Lemma 3. The time complexity of Stage 2 is O(mn). Furthermore, after Stage
2, all loci are either resolved or unresolved in each connected component of G,
and G has O(n) nodes and edges.

Proof. There are two aspects for the time complexity of Stage 2. Firstly, only
unresolved loci in each component are considered, and thus a locus, once resolved,
will not be considered again even upon the component’s subsequent joining with
other components by green edges. In this way, O(mn) time complexity can be
achieved. Secondly, when heterozygous locus i is considered, at most n−1 green
edges will be added to G and thus G will still have O(n) edges. Step 2 is intended
to prevent an explosion of green edges by eliminating any cycles among vectors
in Γ (N) by removing green edges and can be done in O(n) time by a traversal
of G and is only done once for each locus. Note that, after Stage 2, there may
still exists unconnected vectors u and v in Γ (N) with ui = vi = 0 for some
heterozygous locus i in N; such u and v will become properly connected in Stage
3. ut

Stage 2 ensures that each connected component has only resolved and unre-
solved loci. This property is important. Lemma 4 essentially tells us that we can
arbitrarily resolve unresolved loci in any such component of G, and it will not
affect Endgame-consistency in the sense that no matter how the unresolved loci



are resolved, either Endgame-consistency will be maintained or not maintained
within that component. Stage 1A and Stage 2 combined ensure the mother-father
property of Lemma 5.

Lemma 4. If a component G (of G) has only resolved and unresolved loci, then
all possible ways of resolving ?’s in vectors in G such that SNP-consistency and
Mendelian-consistency are maintained will either all make G Endgame-consistent
or all make G Endgame-inconsistent.

Proof. Consider a particular resolution of ?’s in the vectors in G such that
SNP-consistency and Mendelian-consistency are maintained. Suppose Endgame-
inconsistency occurs at node N, i.e. there exist two vector-pairs 〈x1, x2〉, 〈y1,
y2〉 ∈ Φ(N). We can assume, without loss of generality, that the value at some
heterozygous locus i and j (i 6= j) for x1, x2, y1 and y2 are 00, 11, 01 and 10
respectively. Consider the following three cases for the state of locus i and j
prior to the resolution:

Case 1: Suppose locus i and j were both unresolved in G. Then, for all other
possible resolutions, the values at locus i and j for x1, x2, y1 and y2 would
either be 00, 11, 01 and 10 respectively, or 11, 00, 10 and 01 respectively,
and Endgame-consistency would also be violated.

Case 2: Suppose only one of locus i and j was unresolved, say i, in G. Then,
for all other possible resolutions, the values at locus i and j for x1, x2, y1

and y2 would either be 00, 11, 01 and 10 respectively, or 10, 01, 11 and 00
respectively, and Endgame-consistency would also be violated.

Case 3: Suppose both locus i and j were not unresolved (i.e., resolved). Then,
the Endgame-inconsistency existed prior to any resolution of ?’s. ut

Lemma 5. Suppose (a) M and F are the mother and father of two unconnected
trios in G after Stage 2 and (b) the given pedigree has no family problems. Then,
for all possible way of resolving ?s in vectors in the two trios such that SNP-
consistency and Mendelian-consistency are maintained, M and F are either both
Endgame-consistent or both Endgame-inconsistent.

Proof. Suppose F is Endgame-inconsistent. Without loss of generality, let the
values at locus i and j for x1, x2, y1 and y2 be 00, 11, 01 and 10 respectively
where 〈x1, x2〉, 〈y1, y2〉 ∈ φ(F). This means locus i and j are heterozygous loci
for F. Since the two trios are unconnected by a green edge, locus i and j are
also heterozygous for M also. Let C1 and C2 be the two respective children of
F connected to 〈x1, x2〉 and 〈y1, y2〉 by a brown edge. In the absence of family
problems and green edges connecting the two trios, there are only three cases to
consider: (i) when locus i and j are both heterozygous for both C1 and C2; (ii)
when locus i and j are both heterozygous for C1 and both homozygous for C2;
and (iii) when locus i is heterozygous for C1 and homozygous for C2 while locus
j is homozygous for C1 and heterozygous for C2. It can be readily shown that
in all three cases, M would also be Endgame-inconsistent. ut



2.3 Special Case of a Connected Graph

Let us consider the special case where G becomes a connected graph (i.e. a single
connected component) after Stage 2. By Lemma 3, we are left only with at most
two kinds of locus in G: resolved and unresolved. To resolve all unresolved loci
in G (if any), we do the following. Arbitrarily pick a vector u of G. For all
unresolved locus i, we simply run LOCUS RESOLVE(G, i, u, 0). Note that
running LOCUS RESOLVE(G, i, u, 1) would have worked equally well (Lemma
4), the effect being all 1’s become 0 and all 0’s become 1 at locus i and gives
another solution. Finally, we check that that all N are Endgame-consistent and
report “no solution” if any N were Endgame-inconsistent. This procedure for
dealing with G when G is a single connected component will later be called
Stage 4.

Lemma 6. If G is a connected graph after Stage 2, we can either achieve a
solution that represents a CHC for the given pedigree, or report “no solution”
when there is no CHC for the pedigree, in O(mn) time.

Proof. By Lemma 4, we do not have to try all possible resolutions; one will do.
The time complexity of resolving the remaining k unresolved loci in the manner
described above is O(kn) since LOCUS RESOLVE runs in O(n) time. Checking
all N for Endgame-consistency can be done in O(mn) time. ut
Lemma 7. Suppose G is a connected graph after Stage 2. If there exists a CHC
solution, there are 2s different CHC solutions, where s is the number of unre-
solved loci in G, unless every node in the pedigree has exactly s heterozygous loci
in which case there are 2s−1 different CHC solutions.

Proof. If there is a CHC solution, it is easy to see that it will remain a solution
if all values at a particular unresolved locus were reversed (i.e. 0 changed to 1
and vice versa) because SNP-consistency, Mendelian-consistency and Endgame-
consistency will be maintained. Thus, there are 2s possible CHC solutions alto-
gether, as long as there exists at least one node with more than s heterozygous
loci. However, when each node in the pedigree has exactly s heterozygous loci,
i.e. all the other loci are homozygous, the number of different CHC solutions is
2s−1. ut

2.4 Stage 3

After Stage 2, suppose G is left with r connected components where r > 1, with
each component having only resolved and unresolved loci. The idea of Stage 3
is to connect components of G together so that a single connected component
results. After G becomes a single connected component, we can continue in the
manner described in the previous section for a single connected component. Note
that white edges will be treated as “non-red” edges by LOCUS RESOLVE.

As it turns out, we can connect components in a structured way with the
help of a support graph H . This we do in Stage 3A.

Stage 3A – Constructing Support Graph H :



1. For each node N in the pedigree, if N is unmarried, Γ (N) cannot intersect
with more than one connected component of G. Nothing is added to H.
Otherwise, suppose N is married to M in the pedigree. Let GN denote the set
of connected components in G that intersect Γ (N) but not Γ (M). Similarly,
GM denote those that intersect Γ (M) but not Γ (N), and GMN denote those
that intersect both Γ (M) and Γ (N). Now,
(a) Pick a vector from Γ (N) from each connected component in GN ∪GMN .

Connect the k chosen vectors with k − 1 edges.
(b) Next, pick a vector from Γ (M) from each connected component in GM .

Connect them to one of the vectors in Γ (M) from a connected component
in GMN .

2. Next, we introduce k′ − 1 edges to connect up the k′ vectors in H that are
in the same component of G, and for each such edge (u, v) introduced, we
label the edge with 0 if there is a path with an even number of red edges
between u and v in G; otherwise, we label it with 1.

Lemma 8. If there are no mating loops in the pedigree, H is acyclic.

Proof. We claim that, if there are no mating loops (cycles) in the pedigree, any
two components both intersect the Γ of at most two nodes. Furthermore, if
there are two such nodes, they are the parents within two unconnected trios.
This being the case, by making sure there are no cycles between a node and its
spouse in H, as we have done in Step 1, there are no cycles in H. To prove the
claim, we make use of the fact that the brown edges in G preserve and reflect
the connectivity of any two nodes in the pedigree. ut

Lemma 9. H has O(n) edges, and can be constructed in O(n) time. ut

The idea is that we will label each edge of support tree H with 0 and 1.
Some edges have been labeled in Stage 3A and others have not. We are mainly
interested in the label of edge (u, v) in H where u and v are unconnected in G.
Such a labeling will be done in Stage 3C. If the label is 0, then we would connect
(unconnected) u and v with a white edge in G. Otherwise, we would instead
connect u and the vector that is connected to v by a red edge. This is how H
is used. Note that, a CHC solution of the pedigree corresponds a labeling of the
edges of H. Our challenge is to finding that labeling.

In order to assist the labeling, we construct a parity constraint graph J ,
which is constructed in Stage 3B. One of the essential differences between H
and J is that H shows connections between “neighboring” components while J
captures all parity constraints between far-apart components.

Stage 3B – Construct parity constraint graph J :
1. Nodes in J are the same as the nodes in H.
2. Add an edge between two vectors u and v in J if (u, v) is labeled in H.

Furthermore, the label of this edge in J is the same as its label in H.
3. If there is a path between two vectors u and v in H and a heterozygous locus

i such that u and v are resolved (has 0 or 1) at locus i but all other vectors



(if any) in the path are unresolved at locus i, add an edge (u, v) labeled L
between u and v in J , where L is 1 if u and v are resolved differently at
locus i and 0 otherwise, provided there is no such edge already in J . Note
that there may still be two edges between any two pairs of vectors u and v
in J , one labeled 0 and the other labeled 1, which is an odd cycle.

4. Check that all cycles in J have an even number of edges labeled 1. Report
“no solution” and stop if there is a cycle in J with an odd number of edges
labeled 1.

5. Let graph K be a copy of graph J . Note that K is not necessarily connected.
To make K connected, we add edge (u, v) to K when u and v are in different
components in K where (u, v) is an edge in H. This is always possible because
H is a connected graph and K and H have the same set of vectors as nodes.
We arbitrarily label this edge with 0 and call the corresponding edge in H
a free edge because we have the freedom to label (u, v) with 1 instead. We
continue adding edges until K is connected. ut

Lemma 10. If H has no cycles but J has an odd cycle, then there is no CHC
solution. ut
Lemma 11. K has at most O(mn) edges and can be constructed in O(mn)
time. ut
Stage 3C – Complete labeling of H :
1. Traverse K, computing, for each node v in K, whether the number of 1-

labeled edges in the path from a fixed node t in K is odd or even, i.e. parity.
2. For each unlabeled edge (u, v) in H: if u and v have same parity in K then

label edge (u, v) in H with 0; else with 1. ut
Lemma 12. All edges in H can be labeled with 0 or 1 in O(mn) time in Stage
3C, and the labels in H are consistent with the parity constraints specified in J
in the sense that the parity between any two vectors u and v specified in J is
consistent with the number of 1-label edges in the path between u and v in H. ut
Lemma 13. Suppose the pedigree has a CHC solution, which corresponds to a
labeling of edges in H where free edge e is labeled α ∈ {0, 1}. Then, changing
the label on e to 1 − α will result in a labeling that also corresponds to a CHC
solution. ut

Stage 3D – Adding White Edges to G: For each edge (u, v) in H where u
is in say component Gu and v in Gv:
1. If edge is labeled 1 then let x ← vector adjacent to v by red edge else x ← v.
2. Add white edge between u and x.
3. Use u to resolve unresolved loci in Gv.
4. Use x to resolve unresolved loci in Gu.
5. G now has one less component.

Lemma 14. Stage 3D can be done in O(mn) time, and after Stage 3D, G will
be a single connected component with only unresolved and resolved loci. ut



Lemma 15. If the pedigree has a CHC solution, Stage 3D maintains Endgame-
consistency.

Proof. Suppose, to the contrary, that some node N becomes Endgame-inconsistent
after Stage 3D. Without loss of generality, let the values at locus i and j for x1,
x2, y1 and y2 be 00, 11, 01 and 10, respectively, where 〈x1, x2〉, 〈y1, y2〉 ∈ Φ(N).
We say that the two vectors are Endgame-inconsistent.

Consider the situation prior to Stage 3D. Since the pedigree has a CHC
solution, given Lemma 4, 〈x1, x2〉 and 〈y1, y2〉 must belong to the different
components. Now suppose 〈x1, x2〉 and 〈y1, y2〉 become connected during Stage
3D, in particular, after the addition of a white edge e. Before the addition of
white edge e, suppose 〈x1, x2〉 belonged to component G1 and 〈y1, y2〉 belonged
to component G2. There are four cases to consider:

Case 1: e connects 〈x1, x2〉 and 〈y1, y2〉. White edge e corresponds to an edge
in H that is labeled with a unique parity. Suppose e connects x1 and y1 and
is labeled 0. This white edge will make x1 and y1 equal and therefore the
value of locus i and j cannot possibly become 00 for x1 and 01 for y1.

Case 2: e connects 〈x3, x4〉 in G1 and 〈y3, y4〉 in G2 where 〈x3, x4〉 and 〈y3, y4〉
∈ Φ(N). Since pedigree has a CHC solution and G1 has only resolved and un-
resolved loci, according to Lemma 4, G1 must be Endgame-consistent. This
implies that 〈x1, x2〉 and 〈x3, x4〉, which are in G1, are Endgame-consistent.
Likewise, 〈y1, y2〉 and 〈y3, y4〉 must also be Endgame-consistent. Because
of the argument in Case 1, 〈x3, x4〉 and 〈y3, y4〉 must also be Endgame-
consistent. This makes it impossible for 〈x1, x2〉 and 〈y1, y2〉 to be Endgame-
inconsistent.

Case 3: e connects 〈x3, x4〉 in G1 and 〈y3, y4〉 in G2 where 〈x3, x4〉 and 〈y3,
y4〉 ∈ Φ(M) and M is N’s spouse. Suppose 〈u1, u2〉 ∈ φ(M) belongs to the
same trio as 〈x1, x2〉 and suppose 〈v1, v2〉 ∈ φ(M) belongs to the same
trio as 〈y1, y2〉. According to the Lemma 5, 〈u1, u2〉 and 〈v1, v2〉 are also
Endgame-inconsistent. Thus, we can consider 〈u1, u2〉 and 〈v1, v2〉 instead
of 〈x1, x2〉 and 〈y1, y2〉, and accordingly, apply the arguments of Case 2.

Case 4: e connects 〈x3, x4〉 in G1 and 〈y3, y4〉 in G2 where 〈x3, x4〉 and 〈y3,
y4〉 ∈ Φ(M) and M is neither N nor N’s spouse. Assuming no mating loops,
this case does not exist. ut

2.5 Stage 4

Now we deal with the single connected component G as described before:

Stage 4 – Dealing with Single Component:

1. Arbitrarily pick a vector u of G. For all unresolved locus i, run LOCUS
RESOLVE(G, i, u, 0).

2. For all N, check Φ(N) for Endgame-consistency and report “no solution” if
it is not maintained.



Theorem 1. For a given pedigree, we can either achieve a solution that rep-
resents a CHC for the given pedigree, or report “no solution” when there is no
solution, in O(mn) time where n is the number of nodes in the pedigree and m
is the number of loci. ut

3 Concluding Remarks

In this paper, a linear-time algorithm, which is optimal, is presented to solve
the haplotype problem for pedigree data when there are no recombinations and
the pedigree has no mating loops. We are currently extending the algorithm to
handle mating loops.

For the haplotyping problem with recombinations, the problem becomes in-
tractable even when at most one recombination is allowed at each haplotype of
a child, or when the problem is to find a feasible haplotype with the minimum
number of recombinations (even without mating loops) [4]. However, there is
still much scope for further study. For example, in practice, pedigree data often
contains a significant amount of missing alleles (up to 14-15% of the alleles be-
longing to a block could be missing in the pedigree data studied). In some cases,
the deduction of the missing information on alleles is possible. The goal is then
to devise an efficient algorithm to determine as many missing alleles as possible.

References

1. R. Cox, N. Bouzekri, et al. Angiotensin-1-converting enzyme (ACE) plasma concen-
tration is influenced by multiple ACE -linked quantitative trait nucleotides. Hum.
Mol. Genet., 11:2969-2977, 2002.

2. J. Li and T. Jiang. Efficient rule-based haplotyping algorithms for pedigree data.
RECOMB’03, pages 197-206, 2003.

3. J. Li and T. Jiang. Efficient inference of haplotypes from genotypes on a pedigree.
J. Bioinfo Comp Biol, 1(1):41-69, 2003.

4. J. Li and T. Jiang. An exact solution for finding minimum recombinant haplo-
type configurations on pedigrees with missing data by integer linear programming.
RECOMB’04, pages 20-29, 2004.

5. J. R. O’Connell. Zero-recombinant haplotyping: applications to fine mapping using
SNPs. Genet Epidemiol, 19 Suppl 1:S64-70, 2000.

6. E. Russo et al. Single nucleotide polymorphism: Big pharmacy hedges its bets. The
Scientist, 13, 1999.

7. N. Wang, J. M. Akey, K. Zhang, K. Chakraborty, and L. Jin. Distribution of recom-
bination crossovers and the origin of haplotype blocks: The interplay of population
history, recombination, and mutation. Am. J. Hum. Genet., 11:1227-1234, 2002.

8. E. M. Wijsman. A deductive method of haplotype analysis in pedigrees. Am J Hum
Genet, 41(3):356-373, 1987.

9. J. Xiao, L. Liu, L. Xia and T. Jiang. Fast Elimination of Redundant Linear Equa-
tions and Reconstruction of Recombination-Free Mendelian Inheritance on a Pedi-
gree. Manuscript.


